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Abstract

Vibrating and oscillation systems play an important task in physics and
mathematics. In this paper, we investigated the dynamical behavior of an im-
portant system called the vibrating triangle (in some literature it is called the
planar system). First of all, the Lagrangian equation of the system has been
constructed. Secondly, we derived the Euler- Lagrange equations (ELEs).
Thirdly, we solve the obtained ELEs numerically using MATLAB for some
selected parameters, and for speci�ed initial conditions.
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1 Introduction

Spring mass problems are one of the familiar di�erential equations that have
signi�cant importance in mechanical engineering, physics and mathematics. Multi-
atom molecules, oscillating circuits and elastic solids can be represented by two or
more masses with two and more springs [13].

The masses attached to springs will have potential energy and as they are
moved from their equilibrium position, they will start oscillations. Obtaining the
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frequency, amplitude and describing the motion of such oscillated systems is of
great importance for scientists and material science engineers as these oscillations
may be undesired in some situations as vibrations in planes and automobiles which
can lead to structural defects due to fatigue [14], and desired in other situations
as conducting heat in solids.

Describing and obtaining the equations of motion of such systems may be
accomplished using Newtonian mechanics by investigating and analyzing the forces
on each mass of the system and this needs a lot of labor and care as forces are
vector quantities. Another easier approach to obtain these equations is through
building the Lagrangian of the system which is the di�erence between kinetic and
potential energies which are scalar quantities and easy to deal with and then by
applying Lagrangian mechanics one can obtain the equations of motion. Interested
readers can refer to some classical books to take a whole picture of how one can
apply Lagrangain mechanics to solve vibrating and oscillating physical systems in
addition to many other interesting physical systems [12, 17, 9]. It is important to
point that upon applying Lagrangain equation and deriving the Euler- Lagrange
equations (equations of motion), which are di�erential equations, one has to seek
for their analytical solution if they are simple for this purpose, we refer to some
texts on di�erential equations to learn how to solve them [6, 2, 19].

In many cases, the derived Euler- Lagrange equations are not so easily solved
analytically and, in this case, we focus our attention On getting a numerical or a
simulation result for the derived equations.

Many numerical methods have been introduced in literature to solve di�erential
equations. These numerical methods are based on MATLAB, MATHEMATICA,
MATCAD software and other computerized programs. For interested readers we
advise them to refer to the following works [7, 16, 11, 8, 5] and reference therein.
In many cases MATLAB has to used to obtain the simulation results. We point
here to some recent works carried on, see for example [15, 1, 3, 4, 20] and references
therein.

The structure of this work is systematized on the following picture: A physical
description of the system is presented, where the Euler- Lagrange equations were
derived from the Lagrangian equation in Sec. 2. In Sec. 3 a numerical and
simulation technique used is discussed and presented, and in Sec. 4 results and
discussions are reported on the dynamical behavior of the system. Finally, we
close the paper with a conclusion in Sec. 5

2 The vibrating triangle

The arrangement shown in Fig. 1 is composed of three masses (m1, m2 and
m3) located at the corners of an equilateral triangle and connected by three spiral
springs with sti�ness (k12, k13,k23). In some literature this arrangement is known
as the vibrating triangle or planar system [19], we suppose that masses are allowed
to vibrate in the plane of the page only. This system is considered to be a good
example on group and group representation theory and for more details one can
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refer reference [18] chapter 16.
Firstly, we begin our description by constructing the Lagrangian, which is the

di�erence between the kinetic and potential energies, respectively.

Figure 1: The Vibrating Triangle

Let us describe the displacements from the equilibrium positions by u1, v1, u2,
v2, u3, v3. The kinetic energy T of the system is then obtained from:
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The potential energy stored in the springs attached between masses (m1, m2)
, (m1, m3) and (m2, m3) respectively is given as:
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According to the de�nition of the Lagrangian (L) and Eqs. (1), (2), we can
write:
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Applying
∂ L

∂ q
− d

d t
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∂ q̇
= 0

to Eq. (3) with q = u1, u2, u3, v1, v2, v3 respectively, the equations of motion for
our system read:
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We will focus our attention on the case where all masses are identical (i.e.,
m1 = m2 = m3 = m ), in addition three cases of interests will be studied as
follows:

2.1 Case 1: all springs are identical (k12 = k13 = k23 = k)

For this case equations (4-9) read

ü1 = w2u3 + w2u2 − 2w2u1 (10)

ü2 = w2u1 + w2u3 − 2w2u2 (11)

ü3 = w2u2 + w2u1 − 2w2u3 (12)

v̈1 = w2v3 + w2v2 − 2w2v1 (13)

v̈2 = w2v1 + w2v3 − 2w2v2 (14)

v̈3 = w2v2 + w2v1 − 2w2v3 (15)
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2.2 Case 2: The two springs on the sides are only identical, and
the third spring is sti�er than the side springs (k12 = k13 =
k, k23 = 10k)

In this case, the equations of motion become:

ü1 = w2u3 + w2u2 − 2w2u1 (16)

ü2 = w2u1 + 10w2u3 − 11w2u2 (17)

ü3 = w2u1 + 10w2u2 − 11w2u3 (18)

v̈1 = w2v3 + w2v2 − 2w2v1 (19)

v̈2 = w2v1 + 10w2v3 − 11w2v2 (20)

v̈3 = w2v1 + 10w2v2 − 11w2v3 (21)

2.3 Case 3: The two springs on the sides are only identical, while
the third spring is less sti� than the side springs (k12 = k13 =
k, k23 = 0.01k)

For this case, the equations (4-9) read:

ü1 = w2u3 + w2u2 − 2w2u1 (22)

ü2 = w2u1 + 0.01w2u3 − 1.01w2u2 (23)

ü3 = 0.01w2u2 + w2u2 − 1.01w2u3 (24)

v̈1 = w2v3 + w2v2 − 2w2v1 (25)

v̈2 = w2v1 + 0.01w2v3 − 1.01w2v2 (26)

v̈3 = 0.01w2v2 + w2v1 − 1.01w2v3 (27)

where in the all the cases above w =
√

k
m is the angular frequency. In the

following, we aim to obtain a numerical solution for the equations of motion for
the cases presented above for some selected initial conditions.
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3 Numerical and simulation technique

MATLAB is good software for solving symbolic and di�erential equations using
pre-de�ned and user de�ned functions. Several MATLAB packages are used for
doing plots in 2-dimensional and 3-dimensional graphs. MATLAB is now used for
mathematical calculations and data simulation in companies and government labs
ranging from aerospace, civil engineering, car design, biology, signal analysis and
hydrodynamics to instrument control and �nancial analysis [22].

Symbolic equations are important blocks in di�erent mathematical problems.
They are used in di�erent implementations and systems as physical and chemical
applications, control and electrical engineering, and economy [21]. MATLAB pre-
processes the symbolic operations using various functions and commands such as
findsym(), collect(), expand(), factor(), simplify() and pretty(). In preprocess-
ing phase, MATLAB restructures the symbolic equations as the general structure
and style of the numerical operations before the solution. The pretty mathe-
matical equations are solved using solve() command if the equations are Algebra
equations, for example the ordinary di�erential equations can be solved using the
dsolve() command [4, 22, 10].

The dsolve() command returns a solution as a matrix of n-columns, the number
of columns depends on the number of equation systems in the symbolic system of
equations. The inputs of dsolve() are equations system and their initial conditions
but its output is the matrix of the solutions: the �rst column is the solution of
the �rst variable, the second column is the solution of the second variable.

The output (the matrix of n-columns) of dsolve() command lets the oppor-
tunity for researchers to plot charts and graphs easily. In MATLAB, symbolic
di�erentiation for n-order equations can be implemented by utilizing the diff()
function [21, 23].

In the next section, simulation results for the dynamical behavior of the vi-
brating triangle system will be studied using dsolve() and plot(). Several plots
and graphs were created for many important states.

4 Results and discussion

In this section the dynamical behavior of the coordinates u1, u2 and u3 will be
depicted against time for the three cases explained in section 2 above, and for the
speci�c three initial conditions listed below.

i)u1(0) = u2(0) = u3(0) = 0, and u̇1(0) = 0, u̇2(0) = 1, u̇3(0) = −1

ii)u1(0) = u2(0) = u3(0) = 0, and u̇1(0) = 1, u̇2(0) = 0, u̇3(0) = 0

iii)u1(0) = u2(0) = −u3(0) = 1, and u̇1(0) = 1, u̇2(0) = 0, u̇3(0) = 0

The following parameters will be considered in our numerical results m = 1.00,
and k = 1.00, respectively with the following initial conditions:



The mechanics of the triangle vibrating system 33

Figures(2 - 4) below show the dynamical behavior of the coordinates u1, u2
and u3 against time, for the above cases and initial conditions speci�ed and listed
before. In Fig.2 the �rst initial condition was used, where Fig.2(a) shows the
dynamical behavior of the coordinates u1, u2 and u3 against time for case 1, while
in Fig.2(b) it represents case 2, and �nally Fig.2(c) belongs to case 3.

In Fig.3 the initial second initial condition was applied, where Fig.3(a) shows
the dynamical behavior of the coordinates u1, u2 and u3 against time for case 1,
while in Fig.3(b) it represents case 2, and �nally Fig.3(c) belongs to case 3.

Finally, in Fig.4 the third initial condition was used, where Fig.4(a) shows the
dynamical behavior of the coordinates u1, u2 and u3 against time for case 1, while
in Fig.4(b) it represents case 2, and �nally Fig.4(c) belongs to case 3.

(a) Case a

(b) Case b (c) Case c

Figure 2: The dynamical behavior of the coordinates u1, u2 and u3 against time
for the �rst initial condition u1(0) = u2(0) = u3(0) = 0, and u̇1(0) = 0, u̇2(0) =
1, u̇3(0) = −1 .

It is clear from Fig.2(a, b, c) that masses 2 and 3 undergo simple harmonic
motion with the same amplitude and frequency for each case but they are out
phase, while mass 1 remains at rest. The important three features for a simple
harmonic motion are the amplitude, period, and frequency, and its clear that
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for this initial condition for case 1 the amplitude (0.6 units), period (T = 3.6363)
units, and the frequency (f = 0.275) units, while for case 2 the amplitude is nearly
(0.22 units), the period (T = 1.3793) units, and the frequency (f = 0.725) units.
Finally, for case 3 the amplitude is nearly (1.00 units), the period (T = 6.25) units,
and the frequency (f = 0.16) units. Changing spring constant k between the two
masses 2 and 3 in the base of the triangle directly a�ects the vibration frequency
of these masses which clearly increases by increasing k23.

(a) Case a

(b) Case b (c) Case c

Figure 3: The dynamical behavior of the coordinates u1, u2 and u3 against time
for the second initial condition u1(0) = u2(0) = u3(0) = 0, and u̇1(0) = 1, u̇2(0) =
0, u̇3(0) = 0 .

In Fig.3 above, no displacement is given to the three masses and they start
from equilibrium position but a push is given to the �rst mass. One can easily
notice that the two masses 2, and 3 are undergoing a harmonic motion in phase
while mass 1 is undergoing a harmonic motion out of phase with masses 2, and 3.
It is important here to mention that the harmonic motion of the three masses is
not completely the known simple harmonic motion, whereas here after the system
starts the vibrating under the second initial condition each of the three masses
start the harmonic motion every time in a new equilibrium position. In other
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words the masses starts from the original equilibrium position reaching a maximum
displacement and instead of returning to the same original equilibrium position
they returned to a new equilibrium position and underwent again a harmonic
motion and so on every time the equilibrium position is shifted to a new one which
means that we have a mixed motion composed of harmonic plus translational one.

(a) Case a

(b) Case b (c) Case c

Figure 4: The dynamical behavior of the coordinates u1, u2 and u3 against time for
the second initial condition u1(0) = u2(0) = −u3(0) = 1, and u̇1(0) = 1, u̇2(0) =
0, u̇3(0) = 0 .

In Fig.4 and according to the third initial condition all masses don't start from
their equilibrium positions and are displaced by the same amount but m1 and m2

are displaced in the same direction while m3 is displaced in the opposite direction
and again the equilibrium position is shifted to a new one each new oscillation as
in Fig.3. In case 1 we can notice that the vibration of m3 is out of phase with m1

while m2 was not in step nor out of step with m1, it has a small phase shift. In
case 2 and 3 both m2 and m3 are nearly out of phase in motion. The oscillation
frequency of m1 is the same in the three cases while the frequency of m2 and m3

are a�ected and directly proportional to the spring constant k23.
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5 Conclusion

In this paper several user-de�ned and prede�ned functions in addition to di�er-
ent structures have been applied successfully to �nd a truthful numerical solution
for the vibrating triangle system. The position of each mass is depicted for the
time interval [0, 10]. We examine the motion for three di�erent cases and in each
case three di�erent initial conditions were taken into consideration.

We noticed from the �gures that mainly two main featured motions are ob-
tained depending on the chosen initial conditions. In Fig.2 a totally simple har-
monic motion is obtained, while in Fig.3 and Fig.4 the simple harmonic motion is
shifted, and for each case the oscillations of the system start at a new equilibrium
position.

Furthermore, we believe that this method is e�ective for predicting the numer-
ical solutions in many branches of science and engineering problems.
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