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ON UNIQUE SOLVABILITY AND PICARD’S ITERATIVE
METHOD FOR ABSOLUTE VALUE EQUATIONS

Mohamed ACHACHE 1 and Nassima ANANE∗,2

Abstract

In this paper, we deal with unique solvability and numerical solution of
absolute value equations (AVE), Ax − B |x| = b, (A,B ∈ Rn×n, b ∈ Rn).
Under some weaker conditions, a simple proof is given for unique solvability
of AVE. Furthermore, we demonstrate with an example that these results are
reliable to detect unique solvability of AVE. These results are also extended
to unique solvability of standard and horizontal linear complementarity prob-
lems. Finally, we suggest a Picard iterative method to compute an approx-
imated solution of some uniquely solvable AVE problems where its globally
linear convergence is guaranteed via one of our weaker sufficient condition.
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1 Introduction

In this paper, we consider absolute value equations (abbreviated as AVE) of
type:

Ax−B |x| = b, (1)

where A,B ∈ Rn×n are given, b ∈ Rn, and |x| is a vector whose i-th entry is the
absolute value of the i-th entry of x. If B = I the identity matrix, then the AVE
(1) can be reduced to the type:

Ax− |x| = b. (2)

Many problems in scientific and applied mathematics can lead to the solution
of AVE. For example, boundary value problems [11], interval linear systems [6]
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and equilibrium problems [8]. Also the AVE includes the general NP-hard lin-
ear complementarity problem (LCP) which subsumes linear and convex quadratic
programs [5]. The two research efforts in studying the AVE, one is purely theoret-
ical analysis where researchers focus on the existence and uniqueness of solutions
and the second is the numerical computation of solutions (cf. e.g. [3], [6], [8],
[11]-[14]). For unique solvability of AVE, we cite the most well-known established
results until today. In [10], Mangasarian and Meyer presented a sufficient condi-
tion, namely, 1 < σmin(A) for AVE (2). In [12], Rohn generalized this result to
unique solvability of AVE (1) where he imposed the following sufficient condition

σmax(|B|) < σmin(A), (3)

where σmax(|B|) denotes the maximal singular value of matrix |B| = (|bij |) and
the σmin(A) denotes the smallest singular values of matrix A. Furthermore, Lotfi
and Veiseh [9], imposed other sufficient conditions that if the following matrix

ATA− ‖|B|‖2I, (4)

is positive definite, then AVE (1) is uniquely solvable for any b ∈ Rn.

In this paper, we demonstrate that if matrices A and B satisfy either of the
following conditions:

� σmin(A) > σmax(B)

�

∥∥A−1B∥∥ < 1, provided A is non singular,

� the matrix ATA− ‖B‖2 I is positive definite,

then the AVE (1) is uniquely solvable for any b. The proof of our main results
is based on the reformulation of the AVE (1) as a standard linear system of
equations and then we show under our conditions that its matrix of coefficients is
non singular. It is worth mentioning that our proof differs for the first condition
from Rhon’s proof [13], which is based on the alternative theorem and also for
the second condition from the proof of Lotfi and Veiseh [9], which is inspired by
the regularity of the interval matrix. Also it differs for the first condition from
the proofs of Achache [1], Achache and Hazzam [3] and Wu and Li [15], where
they involved the theory of linear complementarity problems with the class of P -
matrix,i.e., a matrix with the determinants of all principal submatrices are positive
(Theorem 3.3.7 in [5]). In addition, across an example of AVE (1), we demonstrate
that our obtained results are reliable to detect unique solvability of AVE (1) rather
than those stated in [9] and [12]. These results are also extended to standard
LCP and its generalization horizontal LCP where through their reformulation as
AVE (1), we deduce their unique solvability. Finally, a Picard iterative method
is suggested to compute numerically an approximated solution for some uniquely
solvable AVE problems. The globally linear convergence of the letter is guaranteed
via the sufficient condition ‖A−1B‖ < 1.
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At the end of this section, some notations are presented. Let Rn×n be the set
of all n×n real matrices. The scalar product and the Euclidean norm are denoted,
respectively, by xT y, x, y ∈ Rn and ‖x‖ =

√
xTx. The sign(x) denotes a vector

with the components equal to -1, 0 or 1 depending on whether the corresponding
component is negative, zero or positive. In addition, D(x) := Diag(sign(x))
will denote a diagonal matrix corresponding to sign(x). The absolute value of a
matrix A = (aij) ∈ Rn×n and the vector of all ones are denoted by |A| = (|aij |) ∈
Rn×n and e ∈ Rn, respectively. σmin(A), σmax(A) represent, respectively, the
smallest and the largest singular value of matrix A. As is well known, σ2min(A) =
min‖x‖=1 x

TATAx, and σ2max(A) = max‖x‖=1 x
TATAx. Finally, a matrix A ∈

Rn×n is positive definite if for all nonzero vector x, xTAx > 0 and the inverse of
a non singular matrix A, is denoted by A−1.

The remaining part of the paper is organized as follows. The main results are
stated in section 2. In section 3, the obtained results are extended to standard and
horizontal LCP. In section 4, a Picard’s iterative method is suggested to provide
an approximated solution for AVE (1). In section 5, some uniquely solvable AVE
problems (including some standard and horizontal LCP problems) via our weaker
sufficient conditions are detected. Moreover, the unique solution of these problems
is computed via Picard’s iterative method. A conclusion and some remarks are
presented in section 6.

2 The main results

In this section, we will give our main results. First, for given matrices A,B ∈
Rn×n and for any diagonal matrix D ∈ Rn×n whose diagonal elements are ±1 and
0, we define the matrix (A−BD) ∈ Rn×n. Then to achieve our main results, the
following lemma is required.

Lemma 1. Each of three conditions below implies the non singularity of (A−BD).

1. σmin(A) > σmax(B),

2.
∥∥A−1B∥∥ < 1, provided A is non singular,

3. the matrix ATA− ‖B‖2 I is positive definite.

Proof. For the first claim, assume that (A−BD) is singular then,

(A−BD)x = 0, for somex 6= 0.

We then have

σ2min(A) = min
‖y‖=1

yTATAy ≤ xTATAx = xTDBTBDx

≤ max
‖z‖=1

zTDBTBDz = ‖BD‖2

≤ ‖B‖2 ‖D‖2 ≤ ‖B‖2 = max
‖z‖=1

zTBTBz

= σ2max(B)
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which contradicts the first condition. Hence (A− BD) is non singular. Next, by
the same argument, assume that A is singular and let a nonzero vector x with
‖x‖ = 1 and such that

(A−BD)x = 0.

Next, because x = A−1BDx, we then have,

1 = ‖x‖ =
∥∥A−1BDx∥∥

≤
∥∥A−1B∥∥ ‖D‖ ‖x‖

≤
∥∥A−1B∥∥ ,

which leads to a contradiction and hence (A− BD) is non singular. For the last
claim, assuming the contrary that (A−BD) is singular, then for a nonzero vector
x with ‖x‖ = 1, we have,

(A−BD)x = 0.

As Ax = BDx, we then have,

xTATAx− ‖B‖2xTx = xT (BD)TBDx− ‖B‖2xTx
= ‖BDx‖2 − ‖B‖2xTx
≤ ‖B‖2 ‖D‖2 ‖x‖2 − ‖B‖2xTx
≤ ‖B‖2 − ‖B‖2 = 0,

and consequently
xTATAx− ‖B‖2xTx ≤ 0.

This contradicts the fact that the matrix ATA−‖B‖2I is positive definite. Hence
(A − BD) is non singular for any diagonal matrix D whose elements are are ±1
and 0. This completes the proof.

Next, according to Dx = |x| where D := Diag(sign(x)), the AVE (1) can be
rewritten [8] as the following standard linear system of equations:

(A−BD)x = b. (5)

Then, it is clear that the AVE (1) is uniquely solvable for any b if the matrix
of coefficients (A − BD) of the linear system (5) is non singular for all diagonal
matrix D whose diagonal elements are ±1 or 0.

Theorem 1. If matrices A and B satisfy
1. σmin(A) > σmax(B),
2.
∥∥A−1B∥∥ < 1, provided A is non singular,

3. the matrix ATA− ‖B‖2 I is positive definite,
then the AVE (1) is uniquely solvable for any b.

Proof. Based on the results in Lemma 1, the matrix (A − BD) of coefficients of
the linear system (5) is non singular for any diagonal matrix D whose diagonal
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elements are ±1 and 0. Hence the AVE (1) is uniquely solvable for any b. This
completes the proof.

For AVE (2), the results of unique solvability are summarized in the following
theorem.

Theorem 2. If a matrix A satisfies either of the following conditions:
1. σmin(A) > 1,
2.
∥∥A−1∥∥ < 1, provided A is non singular,

3. the matrix ATA− I is positive definite,
then the AVE (2) has a unique solution for any b.

Proof. The proof is straightforwardly from Theorem 1, with B = I.

The following results concerning the unique solvability of the AVE (1) were pro-
vided in [9, 12].

Theorem 3 ([12]). Let A and B satisfy

σmin(A) > σmax(|B|),

then the AVE (1) has a unique solution for any b.

Theorem 4 ([9]). Let A,B ∈ Rn×n and the matrix

ATA− ‖|B|‖2I,

is positive definite, then the AVE (1) has a unique solution for any b.

Next example shows that Theorem 1 is reliable for detecting the unique solv-
ability of AVE (1). Consider the following AVE (1) problem, where A,B ∈ R3×3

and b ∈ R3 are given by

A =

 7 0 0
0 7 0
0 0 7

 , B =

 4 −2 −2
−2 −5 −2
−2 −2 2

 , b =

 7
2
9

 .
By simple calculations, σmin(A) = 7, σmax(B) = 6.1355, σmax(|B|) = 7.9018.
Theorem 3 [12], is not capable of detecting the unique solvability of the AVE
since σmin(A) = 6 < σmax(|B|) = 7.9018. However, the application of Theorem 1
shows that σmin(A) > σmax(B) which implies that the AVE has a unique solution
for any b ∈ R3. Next, checking Theorem 4 [9], we have

ATA− ‖|B|‖2 I =

 −13.438 0 0
0 −13.438 0
0 0 −13.438

 .
So it is clear that ATA− ‖|B|‖2 I is not positive definite. But Theorem 1, shows
that

ATA− ‖B‖2 I =

 11.356 0 0
0 11.356 0
0 0 11.356


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is positive definite and the AVE has a unique solution for any b. The unique
solution of this example is x∗ = [1, −1, 1]T .

3 Unique solvability of standard and horizontal LCP

3.1 The standard LCP

In this section, our interest is to deduce sufficient conditions for the existence
and uniqueness of the solution of standard LCP via those established in Theorem
1 for the AVE.
The linear complementarity problem [5], consists in finding a vector x ∈ Rn such
that

y = Mx+ q ≥ 0, x ≥ 0, xT y = 0 (6)

where M ∈ Rn×n is a given matrix and q ∈ Rn. Letting

y = |z| − z, and x = |z|+ z,

then the LCP (6) can be reformulated as the following AVE (1) as follows:

(I +M)z − (I −M)|z| = −q. (7)

Then the LCP (6) has a unique solution for all q if and only if the AVE in (7) has
a unique solution for any b = −q. Using Theorem 1 the following results of the
unique solvability of the LCP are deduced.

Theorem 5. Let I+M , I−M ∈ Rn×n satisfy either of the following conditions:
1- σmin(I +M) > σmax(I −M),
2- ‖((I +M)−1(I −M))‖ < 1, provided that the matrix I +M is non singular,
3- (I +M)T (I +M)− ‖I +M‖2I is positive definite,then the LCP has a unique
solution for any q.

3.2 The horizontal LCP

The generalization of the standard LCP is called the horizontal linear comple-
mentarity problem (HLCP) [3, 5], consists also in finding a vector x ∈ Rn such
that

Ny = Mx+ q ≥ 0, x ≥ 0, xT y = 0 (8)

where N,M ∈ Rn×n are given matrices and q ∈ Rn. It is worth noting that the
HLCP becomes a standard LCP if N = I, then the HLCP reduces to an LCP. By
using the same change of variables, y = |z|−z and x = |z|+z, the HLCP reduced
to the following AVE (1)

(N +M)z − (N −M)|z| = −q. (9)

According to this relation, then it is clear that the HLCP (8) has a unique solution
for any q if and only if the AVE (9) is uniquely solvable for any b = −q. Again by
Theorem 1, we provide the following results for the unique solvability of HLCP.
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Theorem 6. Let N+M , N−M ∈ Rn×n satisfy either of the following conditions:
1- σmin(N +M) > σmax(N −M)
2- ‖(N +M)−1(N −M))‖ < 1, provided that the matrix (N +M) is non singular,
3- (N +M)T (N +M)− ‖N +M‖2I is positive definite,
then the HLCP has a unique solution for any q.

4 Picard’s iterative method for AVE

In this section, in order to provide an approximated solution of some uniquely
solvable AVE problems, a simple Picard’s iterative method is proposed. First, we
state the Banach fixed point theorem which will be used for proving the conver-
gence of the proposed method, one can see [7] and [4] for its details proof.

Theorem 7. (Banach’s fixed point theorem). Let (X, d) be a non-empty complete
metric space, 0 ≤ α < 1 and T : X → X a mapping satisfying

d(T (x), T (y)) ≤ αd(x, y), for all x, y ∈ X.

Then there exists a unique x ∈ X such that T (x) = x. Furthermore, x can be
found as follows: start with an arbitrary element x0 ∈ X and define a sequence
{xk} by

xk+1 = T (xk),

then
lim
k 7→∞

xk = x

and the following inequalities hold:

d(x, xk+1) ≤
α

1− α
d(xk+1, xk), d(x, xk+1) ≤ αd(x, xk).

Next, based on the fixed point principle, the sequence of iterations for solving
the AVE (1) is given by

xk+1 = A−1B |xk|+A−1b, k = 0, 1, 2, . . . (10)

Next under the condition 2 (Theorem 1), we provide a sufficient condition for the
globally linear convergence of the fixed point iterations (10).

Theorem 8. Let A be a non singular matrix and if∥∥A−1B∥∥ < 1

then the sequence {xk} converges to the unique solution x∗ of the AVE (1) for any
arbitrary x0 ∈ Rn. In this case the error bound is given by

‖xk+1 − x∗‖ ≤
∥∥A−1B∥∥

1− ‖A−1B‖
‖xk − x∗‖ , k = 0, 1, 2, . . . (11)

Moreover, the sequence {xk} converges linearly to x∗ as follows

‖xk+1 − x∗‖ ≤
∥∥A−1B∥∥ ‖xk − x∗‖ , k = 0, 1, 2, . . . (12)
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Proof. First, if the condition
∥∥A−1B∥∥ < 1, holds then Theorem 2.1, implies that

the AVE (1) is uniquely solvable for any b. Next, to prove the convergence of the
sequence {xk} to x∗, we define the function ϕ : Rn→ Rn by

ϕ(x) = A−1B |x|+A−1b.

Then it is easy to see with the help of the following inequality

‖|x| − |y|‖ ≤ ‖x− y‖, for allx, y ∈ Rn,

that
‖ϕ(x)− ϕ(y)‖ ≤

∥∥A−1B∥∥ ‖x− y‖ , for all x, y ∈ Rn.

Using Theorem 7 with X = Rn, T = ϕ, d(x, y) = ‖x− y‖ for all x, y ∈ Rn and
α =

∥∥A−1B∥∥ < 1, we deduce the convergence of the sequence {xk} given by

xk+1 = ϕ(xk), k = 0, 1, 2, . . .

to the unique fixed point x∗ to ϕ(x) which is in turn the unique solution of the
AVE (1). Moreover, the (11) and (12) hold which lead to the globally linear
convergence of the method.

5 Checking unique solvability of AVE and numerical
results

In this section, we present some examples of AVE problems including some
examples of LCP where their unique solvability is checked. Also by applying Pi-
card’s iterative method, we compute an approximated solution of these examples.
Our implementation is done by using the software Matlab. The starting point and
the unique solution of the AVE are denoted, respectively, by x0 and x∗. In the
tables of numerical results we display the following notations: ”Iter” and ”CPU”
state for the number of iterations and the elapsed times. The termination of the
algorithm is as the relative residue:

RSD :=
‖Ax−B|x| − b‖

‖b‖

is less than the tolerance ε = 10−6.
Example 1. Consider the problem of AVE where A,B ∈ R10×10 are given by:

A =



101 1 1 1 1 1 1 1 1 1
−1 102 1 1 1 1 1 1 1 1
−1 −1 103 1 1 1 1 1 1 1
−1 −1 −1 104 1 1 1 1 1 1
−1 −1 −1 −1 105 1 1 1 1 1
−1 −1 −1 −1 −1 106 1 1 1 1
−1 −1 −1 −1 −1 −1 107 1 1 1
−1 −1 −1 −1 −1 −1 −1 108 1 1
−1 −1 −1 −1 −1 −1 −1 −1 109 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 110


, B = I.
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By a simple calculation, we get σmin(A) = 101.04 > 1 and
∥∥A−1B∥∥ = 0.09897 < 1.

Hence Theorem 2 implies that this problem is uniquely solvable for any b ∈ R10.
For b = (A− I)e and with the starting point

x0 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T ,

the obtained numerical results by Picard’s method are stated in Table 1.

Iter CPU (time) RSD

5 0.008021 3.9734e− 008
.

Table 1.

The unique solution of this example is x∗ = e.
Example 2. Consider the AVE in (1) where A, B ∈ R7×7 are given by:

A =



1 10 1 1 2 0 0
2 1 6 6 1 1 2
1 3 5 9 100 1500 −5
5 1 3 1 0 3 40
3 3 8 2 2 0 2
1 5 5 0 0 1 0
1 1 1 1 1 2 1000


,

and

B =



0.5 0.5 0.05 0.05 0 0 0
0 0.5 0 0 0.5 0.5 0

0.5 0.5 0.5 0.5 0 0 0
0 0.5 0.5 0 0 0 0.5
0 0 0.25 0.5 0.25 0 0.5

0.5 0 0 0 0 0.05 0
0.5 0.05 0 0.05 0 0 0


.

Applying Theorem 1, we have, σmin(A) = 1.5029 > σmax(B) = 1.4653 and∥∥A−1B∥∥ = 0.373 < 1, then this problem is uniquely solvable for any b.
For

b = [−16.2, 23, 3206, 79, 13, −1.1, 2004.8]T .

The starting point is taken as:

x0 = [1, 2, 3, 4, 5, 6, 7]T .

Then the obtained numerical results are summarized in Table 2.

Iter CPU (time) RSD

6 0.023814 7.1883e− 007.
.

Table 2.
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The exact unique solution of this problem is given by

x∗ = [−2, −2, 2, 2, 2, 2, 2]T .

Example 3. Consider the standard LCP where M ∈ R4×4 is given as

M =


0.4974 −0.0105 −0.0630 −0.001
−0.0839 0.6642 −0.0147 −0.00336
−0.0105 −0.042 0.7482 −0.0042
−0.001 −0.0042 −0.0252 0.7996

 .
By a simple calculation using Theorem 5, we get σmin(I+M) = 1.4786 > σmax(I−
M) = 0.5239 and

∥∥(I +M)−1(I −M)
∥∥ = 0.35413 < 1 then the associated AVE

has a unique solution for any b = −q and consequently the LCP problem has
a unique solution for every q. For example if b = −(I + M)−1q, where q =
[−1.5, −2, −3.5, −4.5]T and with the starting point

z0 = [1, 2, 3, 4]T ,

the obtained numerical results are stated in Table 3.

Iter CPU (time) RSD

13 0.005759 3.9225e− 007.
.

Table 3.

The exact unique solution for the AVE (7) is given by

z∗ = [1.8664, 1.8110, 2.4831, 2.9040]T .

Hence the unique solution of the LCP is x∗ = z∗ + |z∗|. But since z∗ is positive
vector i.e., z∗i > 0 for all i, then |z∗| = z∗ and so the unique solution of the LCP
is x∗ = 2z∗.
Example 4. Consider the standard LCP where M ∈ Rn×n is given by:

M =



0.6 −0.01 0 · · · 0 0
−0.01 0.6 −0.01 · · · 0 0

0 −0.01 0.6 · · · 0
...

...
...

. . .
. . . −0.01 0

0 0 0 · · · 0.6 −0.01
0 0 · · · 0 −0.01 0.6


.

By a simple calculation using Theorem 5, we get for any size of n of the matrix
M , σmin(I +M) = 1.5808 > σmax(I −M) = 0.4192, and

∥∥(I +M)−1(I −M)
∥∥ =

0.2652 < 1, then the LCP has a unique solution for any q ∈ Rn. For b = −(I +
M)−1q where q = −e, and the starting point z0 = [1, 2, 3, · · · , n]T , the obtained
numerical results with different size of n, are summarized in Table 4.

size n Iter CPU(s) RSD

100 15 0.039046 5.8061e− 007

1000 17 4.912430 4.1563e− 007

2000 17 35.421034 8.3189e− 007

3000 18 119.553462 3.3178e− 007
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Table 4.

Therefore the unique solution of the LCP for any size of n, is deduced from the
formula x∗ = |z∗|+ z∗. Also since z∗ > 0, then x∗ = 2z∗ where

z∗ = [0.8477, 0.8618, 0.8621, · · · , 0.8621, 0.8618, 0.8477]T .

Example 5. Consider the following horizontal LCP where M,N ∈ Rn×n are
given by

M =



4 2 2 · · · 2 2
2 4 2 · · · 2 2

2 2 4 · · · 2
...

...
...

. . .
. . . 2 2

2 2 2 · · · 4 2
2 2 · · · 2 2 4


and

N =



5 1 1 · · · 1 1
1 5 1 · · · 1 1

1 1 5 · · · 1
...

...
...

. . .
. . . 1 1

1 1 1 · · · 5 1
1 1 · · · 1 1 5


.

By simple calculation using Theorem 6, and for different size of n, we have∥∥(N +M)−1(N −M)
∥∥ = 0.3333 < 1, then this problem has a unique solution

for any b. For b = −(I +M)−1q with q = −Me, and with the starting point

z0 = [1, 2, 3, · · · , n]T ,

the obtained numerical results for different size of n, are summarized in Table 5.

size(n) Iter CPU(s) RSD

100 17 0.042596 5.9651e− 007

1000 19 5.722172 8.7750e− 007

2000 20 40.834046 3.7460e− 007

3000 20 135.925389 8.9758e− 007

Table 5.

Also since z∗ is positive, the unique solution of the HLCP is x∗ = 2z∗ = e where

z∗ = [0.5, 0.5, · · · , 0.5]T .
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6 Conclusion

In this paper, we have presented some weaker sufficient conditions that guar-
antee the unique solvability of the AVE (1). Our proofs are simple and elegant
with the advantage that we do not use the theory of linear complementarity to
prove unique solvability of the AVE (1). Across an example of AVE, we have
showed the reliability of our weaker sufficient conditions to detect unique solv-
ability of AVE (1). These obtained results are also extended to detecting unique
solvability of standard and horizontal LCP. Numerically, the proposed Picard’s it-
erative method is efficient for providing an approximated solution of some uniquely
solvable AVE including standard and horizontal LCP problems.
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