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IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS IN
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Abstract

This article deals with some existence results for some classes of Caputo—
Fabrizio implicit fractional differential equations in b-metric spaces with ini-
tial conditions. The results are based on some fixed point theorems. We
illustrate our results by some examples in the last section.
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1 Introduction

Fractional calculus has sparked the interest from researchers ever since its
beginning. Fractional differential equations arise from a variety of applications,
in various areas such as, applied sciences, physics, chemistry, biology, etc. [1, 5,
6, 18, 21, 24, 25].

In 2015, Caputo an Fabrizio published a new paper [12] proposing a new
fractional derivative with a non-singular kernel. Next, another one by Losada and
Nieto [19] discussing some properties of the so-called Caputo-Fabrizio fractional
derivative. Fractional differential equations involving this new derivative have
been developed and studied by many authors; see [2, 3, 9, 10, 11, 17, 22], and the
references therein.
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The notion of b-metric was proposed by Czerwik [14, 15]. Following these
initial papers, the existence fixed point for the various classes of operators in the
setting of b-metric spaces have been investigated extensively; see [13, 16, 20, 23],
and related references therein.

Implicit fractional differential equations were studied in several papers. We
mention the monograph [1] and the papers [4, 22]. In this paper, we investigate
the existence and uniqueness of solutions for the following class of initial value
problems of Caputo—Fabrizio fractional differential equations

{(CFDSU)(t) = f(tu(t), (“FDRu)(1); te 1= 0,T], Q

u(0) = u,

where T > 0, f : I x R x R — R is a given continuous function, ¢¥ Dy is the
Caputo—Fabrizio fractional derivative of order r € (0,1), and uy € R.

In the last section, we present some examples illustrating the presented results.

2 Preliminaries

Let C(I) be the Banach space of all real continuous functions on I with the
norm

[ufloo = sup [u(t)].
tel

By L'(I) we denote the Banach space of measurable functions u : I — R with are
Lebesgue integrable, equipped with the norm

T
lull o = /0 fu(t) .

Definition 1. [12, 19] The Caputo-Fabrizio fractional integral of order 0 < r <1
for a function h € L*(I) is defined by

) o T
M(T)(2—7“)h( )+M(7~)(2_r)/0 h(z)dz, >0,

where M (r) is normalization constant depending on 7.

CEIh(r) =

Definition 2. [12, 19] The Caputo-Fabrizio fractional derivative for a function
h € CY(I) of order 0 < r < 1, is defined by

(T = (22_(1T)—]\£)(T) /oT o (_1 .

(r — ac)) W(z)dz; T € 1.

Note that (°FD7)(h) = 0 if and only if h is a constant function.
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Lemma 1. Let h € L'(I,R). A function v € C(I) is a solution of problem

(CFDpu)(t) = h(t); tel:=][0,T] 5
{ u(0) = o, (2)

if and only if u satisfies the following integral equation

u(t) = C + arh(t) + b, / h(s)ds. (3)
0
o — 2(1—r) B 2r
T@=-r)M(@) T (2—r)M(r)’
C = ug — a,-h(0).

proof. Suppose that u satisfies (2). From Proposition 1 in [19]; the equation
(“FDgu)(t) = h(t),
implies that
u(t) — u(0) = a,(h(t) — h(0)) + b, /Ot h(s)ds.

Thus from the initial condition u(0) = ug, we get
t
u(t) = u(0) + arh(t) — a-h(0) + by / h(s)ds.
0

So; we get (3).
Conversely, if u satisfies (3), then (“F Diu)(t) = h(t); for t € I,
and u(0) = up.

We can conclude the following lemma:

Lemma 2. A function u is a solution of problem (1), if and only if u satisfies
the following integral equation

) = e+ ara®) +br [ a(s)ds
where g € X, with g(t) = f(t,u(t),g(t)) and

¢ =up — arg(0).

Definition 3. [7, 8] Let ¢ > 1 and M be a set. A distance function d : M x M —
R?% s called b-metric if for all p,v,§ € M, the following are fulfilled:

e (bM1) d(p,v) =0 if and only if u = v;
o (bM2) d(p,v) = d(v, p);

o (bM3) d(p,&) < cd(p, v) + d(v, £)].
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The tripled (M, d, c) is called a b-metric space.
Example 1. [7, 8] Let d : C(I) x C(I) — R be defined by

d(u,v) = ||(w — v)?||oo := sup |u(t) — v(t)[*; for all u,v e C(I).
tel

It is clear that d is a b-metric with ¢ = 2.
Example 2. [7, 8] Let X =[0,1] and d : X x X — R be defined by
d(z,y) = |az:2 - y2]; for all x,y € X.

It is clear that d is not a metric, but it is easy to see that d is a b-metric space
with r > 2.

Let @ be the set of all increasing and continuous function ¢ : R} — R%
satisfying the property: ¢(cu) < co(p) < cu, for ¢ > 1 and ¢(0) = 0. We denote
by J the family of all nondecreasing functions A : R% — [0, C%) for some ¢ > 1.

Definition 4. [7, 8] For a b-metric space (M,d,c), an operator T : M — M
is called a generalized o — ¢— Geraghty contraction type mapping whenever there
erists o : M x M — R%, and some L > 0 such that for

d(z, T(y)) + d(y, T'(z)) }
2s ’

D, y) = max {d@c, ). d(z. T(x)). d(y. T(4)),

and
N(z,y) = min{d(z,y), d(z,T(x)),d(y, T (y))},
we have
alu v)p(d(T (1), T(v)) < M&(D (k) (D, v)) + LH(N(p,v);  (4)
for all p,v € M, where A\ € F, ¢ € .
Remark 1. In the case when L = 0 in Definition 4, and the fact that

d(z,y) < D(z,y);
for all z,y € M, the inequality (4) becomes
alu, ) (AT (1), T(v)) < No(d(n, v))d(d(p, V). (5)

Definition 5. [7, 8/ Let M be a non empty set, T : M — M, and o : M x M — R*,
be a given mappings. We say that T is a—admissible if for all p,v € M, we have

a(p,v) 2 1= a(T(p), T(v)) = 1.

Definition 6. [7, 8/ Let (M,d) be a b-metric space and let o : M x M — R be
a function. M is said to be a—regular if for every sequence {xy,}nen in M such
that o(xp, xny1) > 1 for all n and x, — x as n — oo, there exists a subsequence

{Zn ) hen of {@n}n with oy, z) > 1 for all k.
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The following fixed point theorem plays a key role in the proof of our main
results.

Theorem 1. [7, 8] Let (M,d) be a complete b-metric space and T : M — M be
a generalized o — ¢— Geraghty contraction type mapping such that

e (i) T is a—admissible;
e (ii) there exists po € M such that a(po, T'(10)) > 1;
e (iii) either T is continuous or M is a—regular.
Then T has a fized point. Moreover, if
e (iv) for all fixred points p,v of T, either a(u,v) > 1 or a(v,u) > 1,

then T has a unique fized point.

3 Main Results

Let (C(I),d,2) be the complete b-metric space with ¢ = 2, such that d :
C(I) x C(I) — R is given by:

d(u,v) = [|(u—v)*[loc = sup Ju(t) - vt

Then (C(I),d,2) is a b-metric space.
In this section, we are concerned with the existence results of problem (1).

Definition 7. By a solution of problem (1) we mean a function w € C(I) that
satisfies

u(t) = c+arg(t) + by /Otg(s)ds, (6)
where g € C(I), with g(t) = f(t,u(t), g(t)) and
¢ =up — arg(0).
The following hypotheses will be used in the sequel.

(Hy) There exist p: C(I) x C(I) — (0,00) and ¢q : I — (0,1) such that for each
u,v,ui,v1 € C(I)and t € I

£ (t,u,0) = [t ur,01)] < pu,v)fu —ui] + q()]v — vl

with

t 2
122 g, [0 < o0 o)
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(H3) There exist ¢ € ® and pg € C(I) and a function 6 : C(I) x C(I) — R, such
that

o (o) anatt) 4. tg(s)ds) >0,

where g € C(I), with g(t) = f(t, uo(t), g(t)),

(Hs) For each t € I, and u,v € C(I), we have:
O(u(t),v(t)) >0
implies
t t
0 (c + arg(t) + bT/o g(s)ds,c+ arh(t) + br/o h(s)ds> >0,
where g, h € C(I), with
g(t) = f(t,u(t), g(t)) and h(t) = f(t,v(t), h(t)).
(Hy) If uppen € C(I) with u, — u and 6(up, ups1) > 1, then
0(un, u) > 1,

(Hs) For all fixed solutions x,y of problem (1), either

0(x(t), y(t)) = 0,

or
O(y(t), x(t)) = 0.
Theorem 2. Assume that the hypotheses (Hy) — (Hy) hold. Then the problem

(1) has at least one solution defined on I. Moreover, if (Hs) holds, then we get a
unique solution.

Proof. Consider the operator N : C'(I) — C(I) such that,

(Nu)(t) = c+arg(t) + br/o g(s)ds,
where g € C(I), with g(t) = f(t,u(t),g(t)) and

¢ =up — arg(0).

Using Lemma 2, it is clear that the fixed points of the operator N are solutions
of our problem (1).
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Let a: C(I) x C(I) —]0,00) be the function defined by:

{ alu,v) =1; if O(u(t),v(t)) >0, tel,
a(u,v) =0; eles.

First, we prove that N is a generalized a-¢-Geraghty operator:
For any u,v € C(I) and each t € I, we have

[(Nu)(t) = (No) ()] < [eg = enl + arlg(t) = A(H)] + b / l9(s) — h(s)lds

where g, h € C(I), with g(t) = f(t,u(t), g(t)) and h(t) = f(t,v(t), h(t)).
From (H;) we have

Thus,

where ¢x = sup,¢; |q(t)].
Next, we have

()~ (Vo)) < - uoo+2u<lqﬁu<u—v>2uéo
(u — v)?||ds.

Thus
a(u,v)|(Nu)(t) — (Nv)(t)[

IN

l(u = v)? Hooa(u v)
Hl—i—Qar py) | p, [ By H

< l(u=v)? Hoo¢(H(u—v) loo)-

A

Hence
a(u,v)(2°d(N (u), N(v)) < Mo(d(u,v))p(d(u,v)),

where A € ', ¢ € ®, with A(t) = §¢, and ¢(t) =
So, N is generalized a-¢-Geraghty operator.
Let u,v € C(I) such that
a(u,v) > 1.

Thus, for each t € I, we have
O(u(t),v(t)) > 0.
This implies from (Hs) that

O(Nu(t), Nu(t)) > 0,
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which gives

a(N(u),N(v)) > 1.

Hence, N is a a-admissible.

Now, from (Hz), there exists po € C'(I) such that

a(po, N (ko)) > 1.

Finally, From (Hy), If pn,,cy C M with g, — p and a(pin, pin+1) > 1, then

apn, p) = 1.

From an application of Theorem 1, we deduce that N has a fixed point u which
is a solution of problem (1).

Moreover, (Hs), implies that if x and y are fixed points of N, then either

O(z,y) > 0 or O(y,x) > 0. This implies that either a(x,y) > 0 or a(y,x) > 0.
Hence; problem (1) has the uniqueness.

4 An Example

Consider the Caputo-Fabrizio fractional differential problem

(“FDgu)(t) = f(t, u(t), (“FDhu)(t)); t € [0,1]
u(0) =0,

where

1 + sin(|ul) 1 '
AT+ ul) 41+ v])’

fltu,v) = t €[0,1].

Let (C([0,1]),d,2) be the complete b-metric space, such that d : C([0,1]) x
C([0,1]) — R is given by:

d(u,v) = [[(u = v)?[loc := sup |u(t) —ov(t)[*.
te(0,1]
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For each uw,v € C([0,1]), we have Let ¢ € (0,1], and u,v,u,v € C([0,1]). If

lu(t)] < |v(t)|, then

(¢, u(t), u(t) — f(t

The case when |v(t)]

[ (&, u(t), ult))

Hence

[t u(®), a(t)) = f (¢ 0(t),0(8))] < min{2+[|ufloo, 2+ [[0floo } 1w —vlfoo +

yo(t),o(t))] <

AL+ |u(®)]
a(t) — o)

L+sin(u(t)))  1+sin(jv(t)])
+la@®)]) 40+ [v®)] + o))
|

u(t)])]

+ 4
< ()] = (o) + §sinu(t)]) — sin(lo(0)]
+ (o) sinlo()) — [o(0)] sin
o o
< fult) — o)) + glsin(lu(d)]) —sin(lo(t)))
RNOE!
+ o] sin(o(0)])  o(2)| sin(lu(?))
= Ju(t) — o(0)
0+ (o) sinu(t)) — sino(0)
L ) — o)
4

IN

u(t) — (1) + (1 + (1))

sin <‘|“(t);|”(t)||)’

< (24 vlloo)llu = vllo +

X

|

< u(®)], we get

— [t (), v(0)] < (2 + [lulloc)lu = vlloo +

Thus, hypothesis (H») is satisfied with

p(u,v) = min{2 + [luloc, 2 + [[v]lc}, and ¢(t) = 7.

1
4

2

s (AL 1O1) ‘

Hﬂ_@Hoo

4

Define the functions A(t) = ¢, ¢(t) = t, a : C([0,1]) x C([0,1]) — R% with

{

alu,v) =1; if d(u(t),v(t)) >0, t €I,

a(u,v) = 0; else,
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and ¢ : C(]0,1]) x C([0,1]) = R with 6(u,v) = ||u — v||cc-
Hypothesis (Ha) is satisfied with uo(t) = ug. Also, (H3) holds from the definition
of the function d.

Simple computations show that all conditions of Theorem 2 are satisfied.

Hence, we get the existence of solutions and the uniqueness for problem (7).
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