ABOUT SOME SPEEDS OF CONVERGENCE TO THE CONSTANT OF EULER

Andrei VERNESCU ${ }^{1}$

Abstract

The speed of convergence of the classical sequence which defines the constant of Euler (or Euler-Mascheroni), $\gamma=\lim _{n \rightarrow \infty} \gamma_{n}=0,577215 \ldots$, where $\gamma_{n}=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln n$, was intensively studied. In 1983 I established in [14] one of the first two sided estimates of this speed, namely $\frac{1}{2 n+1}<\gamma_{n}-\gamma<\frac{1}{2 n}$. Further several new sequences with a faster convergence are defined either by modifying the argument of the logarithm (De Temple, 1993, Negoi 1997, Ivan 2002) or by modifying the last term $1 / \mathrm{n}$ of the harmonic sum (Vernescu 1999). Now we give a systematic study of these speeds of convergence and especially of the last ones.

2000 Mathematics Subject Classification: 26A06, 40A05.
Key words: Constant of Euler, harmonic number, logarithm.

1 Introduction

The classical convergent and decreasing sequence which defines, by its limit the constant of Euler γ, has the general term:

$$
\gamma_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n
$$

(this being denoted sometime by c_{n}). We also denote here, as usually, by H_{n} the n-th harmonic number, $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.

The speed of convergence of $\left(\gamma_{n}\right)_{n}$ to its limit γ is described by the two-sided estimate:

$$
\begin{equation*}
\frac{1}{2 n+1}<\gamma_{n}-\gamma<\frac{1}{2 n} \tag{1}
\end{equation*}
$$

[^0]that I obtained in 1983 (see [14]). Later, 1991 (see see [17]), R. M. Young found it again in a weaker form
$$
\frac{1}{2 n+2}<\gamma_{n}-\gamma<\frac{1}{2 n} .
$$

The speed of convergence of the sequence $\left(\gamma_{n}\right)_{n}$ to γ is of order of $1 / n$, denoted by $O(1 / n)$, that is a slow speed. It is remembering and can be compared with the speed of the convergence of $\left(1+\frac{1}{n}\right)^{n} \underset{n \rightarrow \infty}{\rightarrow}$ e, that is described by the two-sided estimate

$$
\frac{\mathrm{e}}{2 n+2}<\mathrm{e}-\left(1+\frac{1}{n}\right)^{n}<\frac{\mathrm{e}}{2 n+1}
$$

(see Pólya and Szegö [11] and, for the shortest proof, see [15]). Therefore the numerical computation of e is made by using the alternative formula, $e=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!}$, with the speed of convergence of $O(1 /(n!n))$. (Also see [13], [9] and [10].)

For this reason, other faster convergences to γ were searched. First the argument of the logarithm was changed, and then the harmonic number H_{n}.

So, D. W. De Temple showed in 1993 ([1]), that, if $R_{n}=H_{n}-\ln (n+1 / 2)$, then $\left(R_{n}\right)_{n}$ tends decreasing to γ with the speed of $O\left(1 / n^{2}\right)$ and established the inequality

$$
\begin{equation*}
\frac{1}{24(n+1)^{2}}<R_{n}-\gamma<\frac{1}{24 n^{2}} . \tag{2}
\end{equation*}
$$

In 1997 ([8]) T. Negoi has proved that, if $T_{n}=H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}\right)$, then $\left(T_{n}\right)_{n}$ tends increasing to γ with the speed of $O\left(1 / n^{3}\right)$ and

$$
\begin{equation*}
\frac{1}{48(n+1)^{3}}<\gamma-T_{n}<\frac{1}{48 n^{3}} . \tag{3}
\end{equation*}
$$

I have defined in 1999 ([16]) a new faster convergence to γ by replacing in γ_{n} not the argument of the logarithm, but the last term of $H_{n}, 1 / n$ by $1 /(2 n)$. If:

$$
x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}+\frac{1}{2 n}-\ln n,
$$

then $\left(x_{n}\right)_{n}$ tends increasing to γ and we have

$$
\begin{equation*}
\frac{1}{12(n+1)^{2}}<\gamma-x_{n}<\frac{1}{12 n^{2}} . \tag{4}
\end{equation*}
$$

(This two-sided estimate (4) gave as a trivial consequence a refinement of (1), namely

$$
\frac{1}{2 n}-\frac{1}{12 n^{2}}<\gamma_{n}-\gamma<\frac{1}{2 n}-\frac{1}{12(n+1)^{2}}
$$

also see [7]).
Of course, all the inequalities (1), (2), (3), (4) give immediately the attached first iterated limits of the respective sequences

$$
\lim _{n \rightarrow \infty} n\left(\gamma_{n}-\gamma\right)=\frac{1}{2}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{2}\left(R_{n}-\gamma\right) & =\frac{1}{24} \\
\lim _{n \rightarrow \infty} n^{3}\left(\gamma-T_{n}\right) & =\frac{1}{48} \\
\lim _{n \rightarrow \infty} n^{2}\left(\gamma-x_{n}\right) & =\frac{1}{12}
\end{aligned}
$$

2 Main results

In his universitary textbook [3], on page 215, Professor Mircea Ivan considers the sequence $\left(x_{n}\right)_{n}$ of general term:

$$
x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln \sqrt{n(n+1)}
$$

and proposes as an exercise to show that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2}\left(x_{n}-\gamma\right)=\frac{1}{6} \tag{5}
\end{equation*}
$$

(Let's note first that $x_{n}=\left(H_{n}-\ln n\right)+(\ln n-\ln \sqrt{n(n+1)})=\gamma_{n}+$ $\left.\ln \sqrt{\frac{n+1}{n}} \underset{n \rightarrow \infty}{\rightarrow} \gamma.\right)$

The solution can be done, e.g., by using the lemma of Cesàro for the case $\frac{0}{0}$ and then moving on to the continuous real variable and using the differential calculus tools.)

Now, considering not only the previous limits, but also the two-sided estimates $(1),(2),(3)$ and (4), we can pose the problem of finding a two-sided estimation for the sequence $\left(x_{n}\right)_{n}$ of Ivan.
Theorem 1. For the sequence $\left(x_{n}\right)_{n}$, we have the two sided estimate

$$
\frac{1}{6(n+1)^{2}}<H_{n}-\ln \sqrt{n(n+1)}-\gamma<\frac{1}{6 n^{2}}
$$

Proof. An elementary but somewhat laborious proof consist [as in the proofs of inequalities $(1)-(4)]$ to decompose the double inequality into two inequalities, to isolate the constant γ, and use a monotonicity argument.

But using some tools ,,forte", we obtain the result faster. Take into account the formulas

$$
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\varepsilon, \text { where } 0<\varepsilon<\frac{1}{256 n^{6}}
$$

and

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+o\left(x^{7}\right), \text { where }|x|<1
$$

Performing the calculation, we obtain

$$
x_{n}=\gamma+\frac{1}{6 n^{2}}-\frac{1}{6 n^{3}}+\frac{2}{15 n^{4}}-\frac{1}{10 n^{5}}+o\left(\frac{1}{n^{5}}\right)
$$

This shows that $x_{n}>\gamma$. Also, we obtain $x_{n}-\gamma<\frac{1}{6 n^{2}}$ and, again after a little calculation, $x_{n}-\gamma>\frac{1}{6(n+1)^{2}}$. Q.E.D.

3 A sequence which converges to γ constructed by using the harmonic mean

The argument of the logarithm in the sequence of De Temple is the arithmetic mean of the numbers n and $n+1$ and the argument of the logarithm in the sequence of Ivan is the geometric mean of the same numbers. Let's note simply by $a(n), g(n)$ and $h(n)$ the arithmetic, geometric, respectively harmonic means of the numbers n and $n+1$, i. e. $a(n)=n+1 / 2, g(n)=\sqrt{n(n+1)}, h(n)=2 n(n+1) /(2 n+1)$.

We can consider now the sequence of general term

$$
H_{n}-\ln h(n)=H_{n}-\ln \frac{2 n(n+1)}{2 n+1}
$$

Using similar tools as before, we obtain in a similar manner, that the sequence also converges to γ and we can prove the following

Theorem 2. We have the limit and the double estimate below

$$
\lim _{n \rightarrow \infty} n^{2}\left(H_{n}-h(n)-\gamma\right)=\frac{1}{3}
$$

and

$$
\frac{1}{3(n+1)^{2}}<H_{n}-\ln \frac{2 n(n+1)}{2 n+1}-\gamma<\frac{1}{3 n^{2}}
$$

4 A special discrete scale of convergences to γ and a concluding remark

The above results allows us to establish a a scale of increasingly refined convergences: $\left(\gamma_{n}\right)_{n}$ with the speed of convergence of $O(1 / n),\left(R_{n}\right)_{n}$ and $\left(x_{n}\right)_{n}$ with the speed of $O\left(1 / n^{2}\right)$ and finally $\left(T_{n}\right)_{n}$ with the speed of $O\left(1 / n^{3}\right)$.

Consider now the sequence of general term $H_{n}-\ln (n+1)$, the adjacent sequence of the classical Euler's first convergence $\left(\gamma_{n}\right)_{n}$, which converges increasing to γ and for which the two sided estimate holds

$$
\frac{1}{2 n+1}<\gamma-\left(H_{n}-\ln (n+1)\right)<\frac{1}{2 n}
$$

(see [2]). This gives immediately us the first iterated limit:

$$
\lim _{n \rightarrow \infty} n\left(\gamma-\left(H_{n}-\ln (n+1)\right)\right)=\frac{1}{2}
$$

and so, this convergence is also of speed of $O(1 / n)$ as $\left(\gamma_{n}\right)_{n}$.
Let's consider the above result, but for a moment, without the sequence $\left(T_{n}\right)_{n}$. We can construct a special discrete finite scale of some sequences which tend to γ. Let the family of functions $\left\{\varphi: \mathbb{N}^{*} \rightarrow[n, n+1] \mid n \in \mathbb{N}\right\}$, be and consider for each of these functions the sequence defined by the formula $x_{n}(\varphi(n))=H_{n}-\ln \varphi(n)$. It seems that when $\varphi(n)$ increases from n to $n+1 / 2$, the speed of convergence
becomes more and more refined and when $\varphi(n)$ decreases from $n+1$ to $n+1 / 2$, the speed of convergence also becomes more and more refined. But this finding is not entirely correct, because the best convergence speed is achieved not when $\varphi(n)=n+\frac{1}{2}$, but when $\varphi(n)=n+\frac{1}{2}+\frac{1}{24 n}$! This can lead to an ,,open problem", namely to find the next term of the finite sequence of the functions φ, arguments of the logarithms, $n, n+\frac{1}{2}, n+\frac{1}{2}+\frac{1}{24 n}$ which may be of the form $n+\frac{1}{2}+\frac{1}{24 n}+\frac{\alpha}{n^{2}}$, where α is a real constant, so that convergence is the fastest, e.g. of order at least of $1 / n^{4}$.

References

[1] De Temple, D.W., A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (1993), 468-470.
[2] Duca, D. and Vernescu, A., On the convergence rates of the pairs of adjacent sequences, J. Numer. Anal. Approx. Theory 49 (2020) no. 1, 45-53.
[3] Ivan, D.M., Calculus, Ed. Mediamira, Cluj-Napoca, 2002.
[4] Karatsuba, E., On the computation of the Euler constant, Numer. Algorithms 24 (2000), 83-97.
[5] Lupaş, A., The Problem 12.739, Gazeta Matematică 99 (1973), no. 2, 109 (in Romanian).
[6] Mitrinović, D.S. and Vasić, P.M., Analytic inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[7] Mortici, C. and Vernescu, A., An improvement of the convergence speed of the sequence converging to Euler's constant, An. S,tiint,. Univ. "Ovidius" Constant,a Ser. Mat. 13 (2005), no. 1, 95-98.
[8] Negoi, T., A faster convergence to Euler's constant, Gazeta Matematică 15 (1997), 111-113 (in Romanian).
[9] Niculescu, C.P. and Vernescu, A., On the order of convergence of the sequence $\left(1+\frac{1}{n}\right)^{n}$, Gazeta Matematică 109 (2004), no. 4, 145-148 (in Romanian).
[10] Niculescu, C.P. and Vernescu, A., A Two-sided estimation of $\mathrm{e}^{x}-\left(1+\frac{x}{n}\right)^{n}$, JIPAM 5 (2004), no. 3, (article no. 55).
[11] Pólya, G. and Szegö, G., Problems and theorems in analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[12] Tims, S.R. and Tyrell, J.A., Approximative evaluation of Euler's Constant Math. Gazette 55 (1971), 65-66.
[13] Vernescu, A., An inequality concerning the number "e", Gazeta Matematică 87 (1982), no. 2-3, 61-62 (in Romanian).
[14] Vernescu, A., The order of convergence of the defining sequence of the Euler's constant, Gazeta Matematică 88 (1983), no. 10-11, 380-381 (in Romanian).
[15] Vernescu, A., A simple proof of an inequality related to the number ,,e", Gazeta Matematică 93 (1988), no. 5-6, 206-207 (in Romanian).
[16] Vernescu, A., A new accelerated convergence to the constant of Euler,Gazeta Matematică Series A, 17 (96) (1999), 273-278 (in Romanian).
[17] Young, R.M., Euler's constant, Math. Gaz. 75 (472), 187-190.

[^0]: 1* Corresponding author, Bucharest. Valahia University of Târgovişte (retired), Romania, avernescu@gmail.com

