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ABOUT SOME SPEEDS OF CONVERGENCE TO THE
CONSTANT OF EULER

Andrei VERNESCU1

Abstract

The speed of convergence of the classical sequence which defines the con-
stant of Euler (or Euler-Mascheroni), γ = lim

n→∞
γn = 0, 577215 . . . , where

γn =

(
n∑

k=1

1
k

)
− lnn, was intensively studied. In 1983 I established in [14]

one of the first two sided estimates of this speed, namely 1
2n+1 < γn−γ < 1

2n .
Further several new sequences with a faster convergence are defined either
by modifying the argument of the logarithm (De Temple, 1993, Negoi 1997,
Ivan 2002) or by modifying the last term 1/n of the harmonic sum (Vernescu
1999). Now we give a systematic study of these speeds of convergence and
especially of the last ones.
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1 Introduction

The classical convergent and decreasing sequence which defines, by its limit
the constant of Euler γ, has the general term:

γn = 1 +
1

2
+

1

3
+ . . .+

1

n
− lnn

(this being denoted sometime by cn). We also denote here, as usually, by Hn the
n-th harmonic number, Hn = 1 + 1

2 + 1
3 + . . .+ 1

n .

The speed of convergence of (γn)n to its limit γ is described by the two-sided
estimate:

1

2n+ 1
< γn − γ <

1

2n
(1)
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that I obtained in 1983 (see [14]). Later, 1991 (see see [17]), R. M. Young found
it again in a weaker form

1

2n+ 2
< γn − γ <

1

2n
. (1′)

The speed of convergence of the sequence (γn)n to γ is of order of 1/n, denoted
by O(1/n), that is a slow speed. It is remembering and can be compared with the
speed of the convergence of

(
1 + 1

n

)n →
n→∞

e, that is described by the two-sided

estimate
e

2n+ 2
< e−

(
1 +

1

n

)n

<
e

2n+ 1

(see Pólya and Szegö [11] and, for the shortest proof, see [15]). Therefore the nu-

merical computation of e is made by using the alternative formula, e = lim
n→∞

n∑
k=0

1
k! ,

with the speed of convergence of O(1/(n!n)). (Also see [13], [9] and [10].)
For this reason, other faster convergences to γ were searched. First the argu-

ment of the logarithm was changed, and then the harmonic number Hn.
So, D. W. De Temple showed in 1993 ([1]), that, if Rn = Hn − ln (n+ 1/2),

then (Rn)n tends decreasing to γ with the speed of O(1/n2) and established the
inequality

1

24(n+ 1)2
< Rn − γ <

1

24n2
. (2)

In 1997 ([8]) T. Negoi has proved that, if Tn = Hn − ln
(
n+ 1

2 + 1
24n

)
, then

(Tn)n tends increasing to γ with the speed of O(1/n3) and

1

48(n+ 1)3
< γ − Tn <

1

48n3
. (3)

I have defined in 1999 ([16]) a new faster convergence to γ by replacing in γn
not the argument of the logarithm, but the last term of Hn, 1/n by 1/(2n). If:

xn = 1 +
1

2
+

1

3
+ . . .+

1

n− 1
+

1

2n
− lnn,

then (xn)n tends increasing to γ and we have

1

12(n+ 1)2
< γ − xn <

1

12n2
. (4)

(This two-sided estimate (4) gave as a trivial consequence a refinement of (1),
namely

1

2n
− 1

12n2
< γn − γ <

1

2n
− 1

12(n+ 1)2
(4′)

also see [7]).
Of course, all the inequalities (1), (2), (3), (4) give immediately the attached

first iterated limits of the respective sequences

lim
n→∞

n(γn − γ) =
1

2
,
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lim
n→∞

n2(Rn − γ) =
1

24
,

lim
n→∞

n3(γ − Tn) =
1

48
,

lim
n→∞

n2(γ − xn) =
1

12
.

2 Main results

In his universitary textbook [3], on page 215, Professor Mircea Ivan considers
the sequence (xn)n of general term:

xn = 1 +
1

2
+

1

3
+ . . .+

1

n
− ln

√
n(n+ 1)

and proposes as an exercise to show that:

lim
n→∞

n2(xn − γ) =
1

6
. (5)

(Let’s note first that xn = (Hn − lnn) +
(
lnn− ln

√
n(n+ 1)

)
= γn +

ln
√

n+1
n →

n→∞
γ .)

The solution can be done, e.g., by using the lemma of Cesàro for the case
0
0 and then moving on to the continuous real variable and using the differential
calculus tools.)

Now, considering not only the previous limits, but also the two-sided estimates
(1), (2), (3) and (4), we can pose the problem of finding a two-sided estimation
for the sequence (xn)n of Ivan.

Theorem 1. For the sequence (xn)n, we have the two sided estimate

1

6(n+ 1)2
< Hn − ln

√
n(n+ 1)− γ <

1

6n2
.

Proof. An elementary but somewhat laborious proof consist [as in the proofs of
inequalities (1) – (4)] to decompose the double inequality into two inequalities, to
isolate the constant γ, and use a monotonicity argument.

But using some tools ,,forte“, we obtain the result faster. Take into account
the formulas

Hn = lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
− ε, where 0 < ε <

1

256n6

and

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ o(x7), where |x| < 1.

Performing the calculation, we obtain

xn = γ +
1

6n2
− 1

6n3
+

2

15n4
− 1

10n5
+ o

(
1

n5

)
.

This shows that xn > γ. Also, we obtain xn−γ < 1
6n2 and, again after a little

calculation, xn − γ > 1
6(n+1)2

. Q.E.D.



176 Andrei Vernescu

3 A sequence which converges to γ constructed by
using the harmonic mean

The argument of the logarithm in the sequence of De Temple is the arithmetic
mean of the numbers n and n+1 and the argument of the logarithm in the sequence
of Ivan is the geometric mean of the same numbers. Let’s note simply by a(n), g(n)
and h(n) the arithmetic, geometric, respectively harmonic means of the numbers
n and n+ 1, i. e. a(n) = n+ 1/2, g(n) =

√
n(n+ 1), h(n) = 2n(n+ 1)/(2n+ 1).

We can consider now the sequence of general term

Hn − lnh(n) = Hn − ln
2n(n+ 1)

2n+ 1
.

Using similar tools as before, we obtain in a similar manner, that the sequence
also converges to γ and we can prove the following

Theorem 2. We have the limit and the double estimate below

lim
n→∞

n2(Hn − h(n)− γ) =
1

3

and
1

3(n+ 1)2
< Hn − ln

2n(n+ 1)

2n+ 1
− γ <

1

3n2
.

4 A special discrete scale of convergences to γ and a
concluding remark

The above results allows us to establish a a scale of increasingly refined con-
vergences: (γn)n with the speed of convergence of O(1/n), (Rn)nand (xn)n with
the speed of O(1/n2)and finally (Tn)n with the speed of O(1/n3).

Consider now the sequence of general termHn−ln(n+1), the adjacent sequence
of the classical Euler’s first convergence (γn)n,which converges increasing to γ and
for which the two sided estimate holds

1

2n+ 1
< γ − (Hn − ln(n+ 1)) <

1

2n

(see [2]). This gives immediately us the first iterated limit:

lim
n→∞

n (γ − (Hn − ln(n+ 1))) =
1

2
.

and so, this convergence is also of speed of O(1/n) as (γn)n .
Let’s consider the above result, but for a moment, without the sequence (Tn)n.

We can construct a special discrete finite scale of some sequences which tend to γ.
Let the family of functions {φ : N∗ → [n, n+1] | n ∈ N}, be and consider for each
of these functions the sequence defined by the formula xn(φ(n)) = Hn − lnφ(n).
It seems that when φ(n) increases from n to n + 1/2, the speed of convergence
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becomes more and more refined and when φ(n) decreases from n+ 1 to n+ 1/2,
the speed of convergence also becomes more and more refined. But this finding
is not entirely correct, because the best convergence speed is achieved not when
φ(n) = n+ 1

2 , but when φ(n) = n+ 1
2 +

1
24n ! This can lead to an ,,open problem“,

namely to find the next term of the finite sequence of the functions φ, arguments
of the logarithms, n, n+ 1

2 , n+
1
2 +

1
24n which may be of the form n+ 1

2 +
1

24n +
α
n2 ,

where α is a real constant, so that convergence is the fastest, e.g. of order at least
of 1/n4.
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[11] Pólya, G. and Szegö, G., Problems and theorems in analysis, Springer-Verlag,
Berlin-Heidelberg-New York, 1978.

[12] Tims, S.R. and Tyrell, J.A., Approximative evaluation of Euler’s Constant
Math. Gazette 55 (1971), 65-66.

[13] Vernescu, A., An inequality concerning the number “e”, Gazeta Matematică
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