INVO- k-CLEAN RINGS

Fatemeh RASHEDI ${ }^{*, 1}$

Abstract

In this paper, we offer a new generalization of the invo-clean ring that is called invo k-clean ring. Let $2 \leq k \in \mathbb{N}$. Then a ring R is called invo k-clean if for each $a \in R$ there exist $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ such that $a=u+e$. We obtain some properties of invo k-clean rings.

2000 Mathematics Subject Classification: 16U60, 16U99.
Key words: invo-clean ring, invo k-clean ring.

1 Introduction

Let R be an associative ring with identity. As usual, $U(R)$ denotes the set of all units of $R, \operatorname{Inv}(R)$ the subset of $U(R)$ consisting of all involutions of R, $I d(R)$ the set of all idempotents of R and $\operatorname{Nil(R)}$ the set of all nilpotents of R. Traditionally, $J(R)$ stands for the Jacobson radical of R. Let $2 \leq k \in \mathbb{N}$. Then an element $e \in R$ is said to be k-potent if $e^{k}=e$. Assume that $P_{k}(R)$ is the set of k-potent elements of ring R. A ring R is said to be clean if for each $a \in R$ there exist $u \in U(R)$ and $e \in I d(R)$ such that $a=u+e[1,7]$. A ring R is said to be invo-clean if for each $a \in R$ there exist $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$ such that $a=v+e$. If, in addition, $v e=e v, R$ is said to be strongly invo-clean $[2,3,4,5]$. In [3, Theorem 2.2] it is shown that, if R is an invo-clean ring and e is an idempotent, then the corner subring $e R e$ is also invo-clean. In particular, if for any $n \in N$ the full matrix $n \times n$ ring $M_{n}(R)$ is invo-clean, then so is R. In [4, Corollary 2.16] it is shown that, if R is an invo-clean ring, then $J(R)$ is nil with index of nilpotence not exceeding 3. In [5, Corollary 3.2] it is proved that, a ring R of characteristic 2 is strongly invo-clean if and only if R is strongly nil-clean with index of nilpotence at most 2 . In this paper, we introduce the notion of a invo k-clean ring as a new generalization of a invo-clean ring. Let $2 \leq k \in \mathbb{N}$. Then a ring R is said to be a invo k-clean if for each $a \in R$ there exist $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ such that $a=v+e$. We obtain an element-wise characterization of invo k-clean rings. The proofs of the obtained results in this article imitate those from the articles [2,5].

[^0]
2 Main results

We start in this section with the following notion, which motivates the writing of this short note.

Definition 2.1. Let R be a ring and $2 \leq k \in \mathbb{N}$. Then an element $a \in R$ is called invo k-clean if there exist $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ such that $a=v+e$. A ring R is called invo k-clean if every element of R is invo k-clean.

Every idempotent element of a ring R is an invo k-clean element, because $e=(2 e-1)+(1-e),(2 e-1)^{2}=1$ and $(1-e)^{2}=1-e$. Hence every Boolean ring is invo k-clean. Moreover, $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{6}$ and \mathbb{Z}_{8} are invo k-clean.
A ring R is said to be invo-clean if every $a \in R$ can be written as $a=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)[2,3,4,5]$. It is clear that every invo-clean is an invo k-clean ring. However, invo k-clean rings are not invo-clean, in general. For example \mathbb{Z}_{5} is invo k-clean but not invo-clean.
Let $2 \leq k \in \mathbb{N}$. A ring R is said to be k-clean if there exist $u \in U(R)$ and $e \in P_{k}(R)$ such that $a=u+e$ [8]. It is easy to see that every invo k-clean ring is k-clean.

Lemma 2.2. Let R be a ring in which every element is k-potent. Then R is invo k-clean.

Proof. Assume that $a \in R$. Hence $a=1+(1-a)$, where $1 \in \operatorname{Inv}(R)$ and $1-a \in P_{k}(R)$. Therefore R is invo k-clean.

Lemma 2.3. Let $2 \leq k \in \mathbb{N}$ and R be a ring in which every element is involution. Then R is invo k-clean.

Proof. Assume that $a \in R$. Hence $a=1+(1-a)$, where $1 \in P_{k}(R)$ and $1-a \in$ $\operatorname{Inv}(R)$. Therefore R is invo k-clean.

Recall that an element a of a ring R is said to be tripotent if the equality $a^{3}=a$ holds. If each element of R is tripotent, the ring R is said to be tripotent [6].

Proposition 2.4. Let $2 \leq k \in \mathbb{N}$. Then every tripotent ring is invo k-clean.
Proof. Suppose that R is a tripotent ring and $a \in R$. So $a^{3}=a$. Thus $1-a^{2} \in$ $P_{k}(R)$ and $a^{2}+a-1 \in \operatorname{Inv}(R)$. Since $a=\left(1-a^{2}\right)+\left(a^{2}+a-1\right), R$ is invo k-clean.

The following example shows that the converse of Proposition 2.4 is not true in general.

Example 2.5. Let $2 \leq k \in \mathbb{N}$ and R be the group ring $B G$, where $B \nsubseteq \mathbb{Z}_{2}$ is a Boolean ring and G is a group consisting only of elements of order at most 2 . Since $\operatorname{char}(R)=2, a^{4}=a^{2}$ for every $a \in R$. Since $1+a^{2} \in P_{k}(R), a^{2}+a+1 \in \operatorname{Inv}(R)$ and $a=\left(1+a^{2}\right)+\left(a^{2}+a+1\right), R$ is an invo k-clean. Since B contains non-trivial idempotents, $a^{3} \neq a^{2}$ and $a^{3} \neq a$ for every $a \in R$. Therefore R is not a tripotent ring.

Lemma 2.6. Let $2 \leq k \in \mathbb{N}$ and R be an invo k-clean ring. Then each homomorphic image of R is invo k-clean.

Proof. Assume that $h: R \longrightarrow R^{\prime}$ be a ring homomorphism and R be an invo k-clean ring. Let $a^{\prime} \in h(R)$. Then $a^{\prime}=h(a)$ for some $a \in R$. Since R is invo k-clean, there exist $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ such that $a=v+e$. Since h is a homomorphism, $h(a)=h(v)+h(e)$ and $h(e)=h\left(e^{k}\right)=(h(e))^{k}$. Hence $h(e) \in P_{k}(h(R))$. Then $h(v)^{2}=h\left(v^{2}\right)=h(1)=1$, and so $h(v) \in \operatorname{Inv}(h(R))$. So $h(R)$ invo k-clean, as required.

Proposition 2.7. Let $2 \leq k \in \mathbb{N}$ and R be an invo k-clean ring. Then $30 \in$ $\operatorname{Nil}(R)$.

Proof. Suppose that $3=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$. Hence $v^{2}=$ $(3-e)^{2}=1$, and so $8=5 e$, whence $24=0$ and $3 \cdot 24=72=0$ by squaring both sides. Hence $30^{3}=27000=72 \cdot 375=0$. Therefore $30 \in \operatorname{Nil}(R)$.

By using the above proposition, we have the following result.
Corollary 2.8. Let $2 \leq k \in \mathbb{N}$ and R be an invo k-clean ring. Then the following two equivalencies hold.
(i) $5 \in U(R) \Longleftrightarrow 6 \in \operatorname{Nil}(R)$.
(ii) $6 \in U(R) \Longleftrightarrow 5 \in \operatorname{Nil}(R)$

Proof. These relations follow directly from the fact that $1+N i l(R) \subseteq U(R)$ and that $30=5 \cdot 6 \in \operatorname{Nil}(R)$ by Proposition 2.7.

As an interesting consequence, we obtain the following one.
Corollary 2.9. Let $2 \leq k \in \mathbb{N}, R$ be an invo k-clean ring such that $U(R) \cap$ $P_{k}(R)=\{1\}$. Then $J(R)$ is nil with index of nilpotence at most 3 .

Proof. Suppose that $a \in J(R)$ and $a=v+e$ for some $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$. Hence $a-v=e \in U(R) \cap P_{k}(R)=\{1\}$, and so $e=1$. Then $a=v+1$, $a^{2}=2(v+1)=2 a$ and $a^{3}=2 a^{2}$. Hence $a^{3}=4 a$. Replacing a by $2 a$ in the $a^{2}=2 a$ and $a^{3}=4 a$. Then $4 a^{2}=4 a$ and $8 a^{3}=8 a$. Since $8 a^{3}=8 a$, $8 a\left(1-a^{2}\right)=0$. Since $1-a^{2} \in 1+J(R) \subseteq U(R), 8 a=0$. Multiplying both sides of $a^{2}=2 a$ by $4,4 a^{2}=8 a$. Then $4 a^{2}=4 a=8 a=0$. Therefore $a^{3}=4 a=0$, and so $J(R)$ is nil with index of nilpotence at most 3 .

Lemma 2.10. Let $2 \leq k \in \mathbb{N}$ and R be a ring with $u \in U(R)$ and $e \in P_{k}(R)$ such that $u^{2} e=e u^{2}=e$ and $u=e+p$, where $p \in \operatorname{Nil}(R)$. Then $e=1$.

Proof. Suppose $u=e+p$ for some $e \in P_{k}(R)$ and $p \in \operatorname{Nil}(R)$ with $p^{m}=0, m \in \mathbb{N}$. Hence $u^{2}=e+e p+p e+p^{2}$, and so $u^{2} e=e=e+e p e+p e+p^{2} e$. Then $\left(p+p^{2}\right) e=-e p e$. Similarly, $e u^{2}=e$ insures that $e\left(p+p^{2}\right)=-e p e$. Thus e commutes with the nilpotent $\left(p+p^{2}\right)^{n}=[p(1+p)]^{n}=p^{n}(1+p)^{n}$ for all $n \in \mathbb{N}$. Therefore the same is valid for u.

Furthermore, $u-\left(p+p^{2}\right)=e-p^{2}$ with $u-\left(p+p^{2}\right)=u_{2}=e-p^{2}$ being a unit, one sees that $u_{2}-\left(2 p^{3}+p^{4}\right)=e-\left(p^{2}+2 p^{3}+p^{4}\right)=e-\left(p+p^{2}\right)^{2}$. Putting $u_{3}=u_{2}+\left(p+p^{2}\right)^{2}$, we observe that u_{3} is a unit since u_{2} commutes with $\left(p+p^{2}\right)^{2}$ and that $u_{3}=e+p^{3}(2+p)$. In the same manner $u_{4}=u_{3}-2\left(p+p^{2}\right)^{3}=$ $e-p^{4}\left(5+6 p+2 p^{2}\right), u_{5}=u_{4}+5\left(p+p^{2}\right)^{4}=e+p^{5}\left(14+28 p+20 p^{2}+5 p^{3}\right)$ and $u_{6}=u_{5}-14\left(p+p^{2}\right)^{5}=e-p^{6} b$, where $a=f(p)$ is a function (polynomial) of p. Repeating the same procedure m-times, we will find a unit u_{m} such that $u_{m}=e+p^{m} \cdot b=e$ for some element b depending on $p ; b=-1=-p^{0}$ provided $m=2$. Thus $e=1$.

By using the above lemma, we have the following result.
Corollary 2.11. Let $2 \leq k \in \mathbb{N}$ and R be a ring with $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ such that $v=e+q$, where $p \in \operatorname{Nil}(R)$. Then $e=1$.

Proof. It follows from Lemma 2.10.
Proposition 2.12. Let $2 \leq k \in \mathbb{N}$ and R be an invo k-clean ring with $2 \in U(R)$. Then $\operatorname{Nil}(R)=\{0\}$.

Proof. Suppose that $p \in \operatorname{Nil}(R)$ and $p v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$. Thus $-v=-p+e$, where $-v \in \operatorname{Inv}(R)$ and $-p \in \operatorname{Nil}(R)$. By Corollary 2.11, $e=1$. Then $p=v+1$, and so $p^{2}=2+2 v=2(1+v)=2 p$. Thus $p(2-p)=0$. Since $2-p \in U(R), p=0$. Therefore $\operatorname{Nil}(R)=\{0\}$.

Adding the condition for a lack of non-trivial k-potents in the ring, we derive the following.

Theorem 2.13. Let $2 \leq k \in \mathbb{N}$ and R be an invo k-clean ring with $P_{k}(R)=\{0,1\}$ and $2 \in U(R)$. Then $R \cong \mathbb{Z}_{3}$.

Proof. Suppose that $a \in R$. Then $a=v+1$ or $a=v$, where $v \in \operatorname{Inv}(R)$. Since $\frac{1-v}{2}$ is a k-potent element of R, whence $\frac{1-v}{2}=1$ or $\frac{1-v}{2}=0$. Thus $v=-1$ or $v=1$. Hence $R=\{0,-1,1,2\}$. But it must be that $2=-1$, because only $2 \cdot(-1)=1$ or $2 \cdot 2=1$ is possible. Therefore $3=0$, and so $R=\{0,1,2\}$. Then $R \cong \mathbb{Z}_{3}$.

Definition 2.14. Let R be a ring and $2 \leq k \in \mathbb{N}$. Then an element $a \in R$ is called strongly invo k-clean if there exist $v \in \operatorname{Inv}(R)$ and $e \in P_{k}(R)$ of R such that $a=v+e$ and $v e=e v . A$ ring R is called strongly invo k-clean if every element of R is strongly invo k-clean.

Lemma 2.15. Let R be a strongly invo k-clean ring. Then each homomorphic image of R is strongly invo k-clean.

Proof. Assume that $h: R \longrightarrow R^{\prime}$ be a ring homomorphism and R be a strongly invo k-clean ring. By Lemma $2.6 h(R)$ is invo k-clean. Also $h(v) h(e)=h(v e)=$ $h(e v)=h(e) h(v)$. Hence $h(R)$ is strongly invo k-clean.

Definition 2.16. A ring R is said to satisfy k-invo property $k \geq 2$ if $1+v+v^{2}+$ $\cdots+v^{k-2} \in \operatorname{Inv}(R)$ for every $v \in \operatorname{Inv}(R)$.

Theorem 2.17. Let $2 \leq k \in \mathbb{N}$ be a prime number, R be a strongly invo k-clean ring with k-invo property and $\operatorname{Char}(R)=k$. Then k-potents lift modulo every ideal of R.

Proof. Suppose that $2 \leq k \in \mathbb{N}$ be a prime number, R be a strongly invo k-clean ring with k-invo property and $C h a r(R)=k$. Assume that I is an ideal of R such that $a-a^{k} \in I$. Since R is strongly invo k-clean, $a=v+e$, where $v \in \operatorname{Inv}(R)$, $e \in P_{k}(R)$ and $v e=e v$. Since $a-a^{k} \in I, v+e-(v+e)^{k} \in I$. Since $v e=e v$,

$$
v+e-\left(v^{k}+k v^{k-1} e+\frac{k(k-1)}{2!} v^{k-2} e^{2}+\cdots+k v e^{k-1}+e^{k}\right) \in I
$$

Since $\operatorname{Char}(R)=k$ and $e^{k}=e, v-v^{k} \in I$. Now, assume that $f=1+e$. Since $\operatorname{Char}(R)=k$ and $e^{k}=e$,

$$
f^{k}=(1+e)^{k}=1+k e+\frac{k(k-1)}{2!} e^{2}+\cdots+k e^{k-1}+e^{k}=1+e=f
$$

Thus $f \in P_{k}(R)$. Again, $f-a=1+e-(v+e)=1-v$. Since I is an ideal, $v \in \operatorname{Inv}(R)$ and $v-v^{k} \in I, 1-v^{k} \in I$. Thus

$$
(1-v)\left(1+v+v^{2}+\cdots+v^{k-2}\right) \in I
$$

Since R has k-invo-property, $1-v \in I$, and so $f-a \in I$. Therefore k-potents lift modulo every ideal of R.

Lemma 2.18. Let I be an ideal of a ring R with $I \subseteq J(R)$. Then $v+I \in \operatorname{Inv}(R / I)$ if and only if $v \in \operatorname{Inv}(R)$.

Proof. Clearly.
Definition 2.19. Let I be an ideal of a ring R. We say that R has modulo commutative property if for any two elements $a+I, b+I \in R / I,(a+I)(b+I)=$ $(b+I)(a+I)$ implies that $a b=b a$ in R.

Theorem 2.20. Let $2 \leq k \in \mathbb{N}$ be a prime number, R be a ring satisfying k-invo property, modulo commutative property and $\operatorname{Char}(R)=k$. If I is an ideal of R such that $I \subseteq J(R)$. Then R is strongly invo k-clean if and only if R / I is strongly invo k-clean and k-potents lift modulo I.

Proof. Assume that R is a strongly invo k-clean ring satisfying k-invo property, modulo commutative property and $\operatorname{Char}(R)=k$. Let I be an ideal of R such that $I \subseteq J(R)$. Then $R . I$ is strongly invo k-clean, by Lemma 2.15. Also by Theorem 2.17, k-potents lift modulo I. Conversely, let R / I be strongly invo k-clean and k-potents lift modulo I. Suppose that $a \in R$. Thus $a+I \in R / I$. Since R / I is strongly invo k-clean, $a+I=(v+I)+(e+I)$, where $v+I \in \operatorname{Inv}(R / I)$, $e+I \in P_{k}(R / I)$ and $(v+I)(e+I)=(e+I)(v+I)$. Since $I \subseteq J(R)$, by Lemm $2.18 v \in \operatorname{Inv}(R)$. Now $e+I \in P_{k}(R / I)$ which implies that $e-e^{m} \in I$. Since
k-potents lift modulo I, there exists an k-potent $f \in R$ such that $f-e \in I$, and so $f+I=e+I$. Since $a+I=(v+I)+(f+I),(v+I)=(a-f)+I$. Hence $(a-f)+I \in \operatorname{Inv}(R / I)$. Then $a-f \in \operatorname{Inv}(R)$, by Lemma 2.18. Therefore $a=(a-f)+f$, where $a-f \in \operatorname{Inv}(R)$ and $f \in P_{k}(R)$. Since $(v+I)(e+I)=$ $(e+I)(v+I),((a-f)+I)(f+I)=(f+I)((a-f)+I)$. Since R satisfies the modulo commutative property, $(a-f) f=f(a-f))$. Therefore R is strongly invo k-clean.

Here we shall formulate two questions of interest.
Problem 2.21. When is a matrix ring invo k-clean?
Problem 2.22. Let R be a ring and $e \in P_{k}(R)$ such that the subrings $e^{k-1} R e^{k-1}$ and $\left(1-e^{k-1}\right) R\left(1-e^{k-1}\right)$ are invo k-clean. Is R also invo k-clean?

Acknowledgement

The author would like to thank the referee for the careful reading of the manuscript and the constructive suggestion made.

References

[1] Anderson, D.D. and Camillo, V.P., Commutative rings whose elements are a sum of a unit and an idempotent, Comm. Algebra 30 (2002), 3327-3336.
[2] Danchev, P.V., Quasi invo-clean rings, Bull. Transilv. Univ. Bra,sov Ser. III 63 (2021), 71-80.
[3] Danchev, P.V., Corners of invo-clean unital rings, Pure Mathematical Sciences 7 (2018), 27-31.
[4] Danchev, P.V., Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), 19-27.
[5] Danchev, P.V., Weakly invo-clean unital rings, Afr. Mat. 28 (2017), 1285-1295.
[6] Hirano, Y. and Tominaga, H., Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (1988) 161-164.
[7] Nicholson, W.K., Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229 (1977), 269-278.
[8] Purkait, S., Dutta, T.K. and Kar, S., On m-clean and strongly m-clean rings, Comm. Algebra 48 (2019) 218-227.

[^0]: 1* Corresponding author, Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran, e-mail: f-rashedi@tvu.ac.ir

