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INVO-k-CLEAN RINGS

Fatemeh RASHEDI∗,1

Abstract

In this paper, we offer a new generalization of the invo-clean ring that is
called invo k-clean ring. Let 2 ≤ k ∈ N. Then a ring R is called invo k-clean
if for each a ∈ R there exist v ∈ Inv(R) and e ∈ Pk(R) such that a = u+ e.
We obtain some properties of invo k-clean rings.
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1 Introduction

Let R be an associative ring with identity. As usual, U(R) denotes the set
of all units of R, Inv(R) the subset of U(R) consisting of all involutions of R,
Id(R) the set of all idempotents of R and Nil(R) the set of all nilpotents of R.
Traditionally, J(R) stands for the Jacobson radical of R. Let 2 ≤ k ∈ N. Then
an element e ∈ R is said to be k-potent if ek = e. Assume that Pk(R) is the set
of k-potent elements of ring R. A ring R is said to be clean if for each a ∈ R
there exist u ∈ U(R) and e ∈ Id(R) such that a = u + e [1, 7]. A ring R is
said to be invo-clean if for each a ∈ R there exist v ∈ Inv(R) and e ∈ Id(R)
such that a = v + e. If, in addition, ve = ev, R is said to be strongly invo-clean
[2, 3, 4, 5]. In [3, Theorem 2.2] it is shown that, if R is an invo-clean ring and e
is an idempotent, then the corner subring eRe is also invo-clean. In particular, if
for any n ∈ N the full matrix n× n ring Mn(R) is invo-clean, then so is R. In [4,
Corollary 2.16 ] it is shown that, if R is an invo-clean ring, then J(R) is nil with
index of nilpotence not exceeding 3. In [5, Corollary 3.2] it is proved that, a ring
R of characteristic 2 is strongly invo-clean if and only if R is strongly nil-clean
with index of nilpotence at most 2. In this paper, we introduce the notion of a
invo k-clean ring as a new generalization of a invo-clean ring. Let 2 ≤ k ∈ N.
Then a ring R is said to be a invo k-clean if for each a ∈ R there exist v ∈ Inv(R)
and e ∈ Pk(R) such that a = v+e. We obtain an element-wise characterization of
invo k-clean rings. The proofs of the obtained results in this article imitate those
from the articles [2, 5].
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2 Main results

We start in this section with the following notion, which motivates the writing
of this short note.

Definition 2.1. Let R be a ring and 2 ≤ k ∈ N. Then an element a ∈ R is called
invo k-clean if there exist v ∈ Inv(R) and e ∈ Pk(R) such that a = v + e. A ring
R is called invo k-clean if every element of R is invo k-clean.

Every idempotent element of a ring R is an invo k-clean element, because
e = (2e − 1) + (1 − e), (2e − 1)2 = 1 and (1 − e)2 = 1 − e. Hence every Boolean
ring is invo k-clean. Moreover, Z2, Z3, Z4, Z6 and Z8 are invo k-clean.
A ring R is said to be invo-clean if every a ∈ R can be written as a = v + e,
where v ∈ Inv(R) and e ∈ Id(R) [2, 3, 4, 5]. It is clear that every invo-clean is
an invo k-clean ring. However, invo k-clean rings are not invo-clean, in general.
For example Z5 is invo k-clean but not invo-clean.
Let 2 ≤ k ∈ N. A ring R is said to be k-clean if there exist u ∈ U(R) and
e ∈ Pk(R) such that a = u+ e [8]. It is easy to see that every invo k-clean ring is
k-clean.

Lemma 2.2. Let R be a ring in which every element is k-potent. Then R is invo
k-clean.

Proof. Assume that a ∈ R. Hence a = 1 + (1 − a), where 1 ∈ Inv(R) and
1− a ∈ Pk(R). Therefore R is invo k-clean.

Lemma 2.3. Let 2 ≤ k ∈ N and R be a ring in which every element is involution.
Then R is invo k-clean.

Proof. Assume that a ∈ R. Hence a = 1 + (1− a), where 1 ∈ Pk(R) and 1− a ∈
Inv(R). Therefore R is invo k-clean.

Recall that an element a of a ring R is said to be tripotent if the equality
a3 = a holds. If each element of R is tripotent, the ring R is said to be tripotent
[6].

Proposition 2.4. Let 2 ≤ k ∈ N. Then every tripotent ring is invo k-clean.

Proof. Suppose that R is a tripotent ring and a ∈ R. So a3 = a. Thus 1 − a2 ∈
Pk(R) and a2 + a − 1 ∈ Inv(R). Since a = (1 − a2) + (a2 + a − 1), R is invo
k-clean.

The following example shows that the converse of Proposition 2.4 is not true
in general.

Example 2.5. Let 2 ≤ k ∈ N and R be the group ring BG, where B ≇ Z2 is a
Boolean ring and G is a group consisting only of elements of order at most 2. Since
char(R) = 2, a4 = a2 for every a ∈ R. Since 1+a2 ∈ Pk(R), a2+a+1 ∈ Inv(R)
and a = (1+a2)+(a2+a+1), R is an invo k-clean. Since B contains non-trivial
idempotents, a3 ̸= a2 and a3 ̸= a for every a ∈ R. Therefore R is not a tripotent
ring.
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Lemma 2.6. Let 2 ≤ k ∈ N and R be an invo k-clean ring. Then each homo-
morphic image of R is invo k-clean.

Proof. Assume that h : R −→ R′ be a ring homomorphism and R be an invo
k-clean ring. Let a′ ∈ h(R). Then a′ = h(a) for some a ∈ R. Since R is invo
k-clean, there exist v ∈ Inv(R) and e ∈ Pk(R) such that a = v + e. Since h
is a homomorphism, h(a) = h(v) + h(e) and h(e) = h(ek) = (h(e))k. Hence
h(e) ∈ Pk(h(R)).Then h(v)2 = h(v2) = h(1) = 1, and so h(v) ∈ Inv(h(R)). So
h(R) invo k-clean, as required.

Proposition 2.7. Let 2 ≤ k ∈ N and R be an invo k-clean ring. Then 30 ∈
Nil(R).

Proof. Suppose that 3 = v + e, where v ∈ Inv(R) and e ∈ Pk(R). Hence v2 =
(3− e)2 = 1, and so 8 = 5e, whence 24 = 0 and 3 · 24 = 72 = 0 by squaring both
sides. Hence 303 = 27000 = 72 · 375 = 0. Therefore 30 ∈ Nil(R).

By using the above proposition, we have the following result.

Corollary 2.8. Let 2 ≤ k ∈ N and R be an invo k-clean ring. Then the following
two equivalencies hold.

(i) 5 ∈ U(R) ⇐⇒ 6 ∈ Nil(R).

(ii) 6 ∈ U(R) ⇐⇒ 5 ∈ Nil(R)

Proof. These relations follow directly from the fact that 1 +Nil(R) ⊆ U(R) and
that 30 = 5 · 6 ∈ Nil(R) by Proposition 2.7.

As an interesting consequence, we obtain the following one.

Corollary 2.9. Let 2 ≤ k ∈ N, R be an invo k-clean ring such that U(R) ∩
Pk(R) = {1}. Then J(R) is nil with index of nilpotence at most 3.

Proof. Suppose that a ∈ J(R) and a = v+ e for some v ∈ Inv(R) and e ∈ Pk(R).
Hence a − v = e ∈ U(R) ∩ Pk(R) = {1}, and so e = 1. Then a = v + 1,
a2 = 2(v + 1) = 2a and a3 = 2a2. Hence a3 = 4a. Replacing a by 2a in
the a2 = 2a and a3 = 4a. Then 4a2 = 4a and 8a3 = 8a. Since 8a3 = 8a,
8a(1− a2) = 0. Since 1− a2 ∈ 1 + J(R) ⊆ U(R), 8a = 0. Multiplying both sides
of a2 = 2a by 4, 4a2 = 8a. Then 4a2 = 4a = 8a = 0. Therefore a3 = 4a = 0, and
so J(R) is nil with index of nilpotence at most 3.

Lemma 2.10. Let 2 ≤ k ∈ N and R be a ring with u ∈ U(R) and e ∈ Pk(R) such
that u2e = eu2 = e and u = e+ p, where p ∈ Nil(R). Then e = 1.

Proof. Suppose u = e+p for some e ∈ Pk(R) and p ∈ Nil(R) with pm = 0, m ∈ N.
Hence u2 = e + ep + pe + p2, and so u2e = e = e + epe + pe + p2e. Then
(p + p2)e = −epe. Similarly, eu2 = e insures that e(p + p2) = −epe. Thus e
commutes with the nilpotent (p + p2)n = [p(1 + p)]n = pn(1 + p)n for all n ∈ N.
Therefore the same is valid for u.
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Furthermore, u − (p + p2) = e − p2 with u − (p + p2) = u2 = e − p2 being
a unit, one sees that u2 − (2p3 + p4) = e − (p2 + 2p3 + p4) = e − (p + p2)2.
Putting u3 = u2 + (p+ p2)2, we observe that u3 is a unit since u2 commutes with
(p+ p2)2 and that u3 = e+ p3(2+ p). In the same manner u4 = u3− 2(p+ p2)3 =
e − p4(5 + 6p + 2p2), u5 = u4 + 5(p + p2)4 = e + p5(14 + 28p + 20p2 + 5p3) and
u6 = u5 − 14(p + p2)5 = e − p6b, where a = f(p) is a function (polynomial)
of p. Repeating the same procedure m-times, we will find a unit um such that
um = e + pm · b = e for some element b depending on p; b = −1 = −p0 provided
m = 2. Thus e = 1.

By using the above lemma, we have the following result.

Corollary 2.11. Let 2 ≤ k ∈ N and R be a ring with v ∈ Inv(R) and e ∈ Pk(R)
such that v = e+ q, where p ∈ Nil(R). Then e = 1.

Proof. It follows from Lemma 2.10.

Proposition 2.12. Let 2 ≤ k ∈ N and R be an invo k-clean ring with 2 ∈ U(R).
Then Nil(R) = {0}.

Proof. Suppose that p ∈ Nil(R) and pv + e, where v ∈ Inv(R) and e ∈ Pk(R).
Thus −v = −p + e, where −v ∈ Inv(R) and −p ∈ Nil(R). By Corollary 2.11,
e = 1. Then p = v + 1, and so p2 = 2 + 2v = 2(1 + v) = 2p. Thus p(2 − p) = 0.
Since 2− p ∈ U(R), p = 0. Therefore Nil(R) = {0}.

Adding the condition for a lack of non-trivial k-potents in the ring, we derive
the following.

Theorem 2.13. Let 2 ≤ k ∈ N and R be an invo k-clean ring with Pk(R) = {0, 1}
and 2 ∈ U(R). Then R ∼= Z3.

Proof. Suppose that a ∈ R. Then a = v + 1 or a = v, where v ∈ Inv(R). Since
1− v

2
is a k-potent element of R, whence

1− v

2
= 1 or

1− v

2
= 0. Thus v = −1

or v = 1. Hence R = {0,−1, 1, 2}. But it must be that 2 = −1, because only
2 · (−1) = 1 or 2 · 2 = 1 is possible. Therefore 3 = 0, and so R = {0, 1, 2}. Then
R ∼= Z3.

Definition 2.14. Let R be a ring and 2 ≤ k ∈ N. Then an element a ∈ R is
called strongly invo k-clean if there exist v ∈ Inv(R) and e ∈ Pk(R) of R such
that a = v + e and ve = ev. A ring R is called strongly invo k-clean if every
element of R is strongly invo k-clean.

Lemma 2.15. Let R be a strongly invo k-clean ring. Then each homomorphic
image of R is strongly invo k-clean.

Proof. Assume that h : R −→ R′ be a ring homomorphism and R be a strongly
invo k-clean ring. By Lemma 2.6 h(R) is invo k-clean. Also h(v)h(e) = h(ve) =
h(ev) = h(e)h(v). Hence h(R) is strongly invo k-clean.
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Definition 2.16. A ring R is said to satisfy k-invo property k ≥ 2 if 1+ v+ v2+
· · ·+ vk−2 ∈ Inv(R) for every v ∈ Inv(R).

Theorem 2.17. Let 2 ≤ k ∈ N be a prime number, R be a strongly invo k-clean
ring with k-invo property and Char(R) = k. Then k-potents lift modulo every
ideal of R.

Proof. Suppose that 2 ≤ k ∈ N be a prime number, R be a strongly invo k-clean
ring with k-invo property and Char(R) = k. Assume that I is an ideal of R such
that a − ak ∈ I. Since R is strongly invo k-clean, a = v + e, where v ∈ Inv(R),
e ∈ Pk(R) and ve = ev. Since a− ak ∈ I, v + e− (v + e)k ∈ I. Since ve = ev,

v + e− (vk + kvk−1e+
k(k − 1)

2!
vk−2e2 + · · ·+ kvek−1 + ek) ∈ I.

Since Char(R) = k and ek = e, v − vk ∈ I. Now, assume that f = 1 + e. Since
Char(R) = k and ek = e,

fk = (1 + e)k = 1 + ke+
k(k − 1)

2!
e2 + · · ·+ kek−1 + ek = 1 + e = f.

Thus f ∈ Pk(R). Again, f − a = 1 + e − (v + e) = 1 − v. Since I is an ideal,
v ∈ Inv(R) and v − vk ∈ I, 1− vk ∈ I. Thus

(1− v)(1 + v + v2 + · · ·+ vk−2) ∈ I.

Since R has k-invo-property, 1− v ∈ I, and so f − a ∈ I. Therefore k-potents lift
modulo every ideal of R.

Lemma 2.18. Let I be an ideal of a ring R with I ⊆ J(R). Then v+I ∈ Inv(R/I)
if and only if v ∈ Inv(R).

Proof. Clearly.

Definition 2.19. Let I be an ideal of a ring R. We say that R has modulo
commutative property if for any two elements a+ I, b+ I ∈ R/I, (a+ I)(b+ I) =
(b+ I)(a+ I) implies that ab = ba in R.

Theorem 2.20. Let 2 ≤ k ∈ N be a prime number, R be a ring satisfying k-invo
property, modulo commutative property and Char(R) = k. If I is an ideal of R
such that I ⊆ J(R). Then R is strongly invo k-clean if and only if R/I is strongly
invo k-clean and k-potents lift modulo I.

Proof. Assume that R is a strongly invo k-clean ring satisfying k-invo property,
modulo commutative property and Char(R) = k. Let I be an ideal of R such that
I ⊆ J(R). Then R.I is strongly invo k-clean, by Lemma 2.15. Also by Theorem
2.17, k-potents lift modulo I. Conversely, let R/I be strongly invo k-clean and
k-potents lift modulo I. Suppose that a ∈ R. Thus a + I ∈ R/I. Since R/I
is strongly invo k-clean, a + I = (v + I) + (e + I), where v + I ∈ Inv(R/I),
e + I ∈ Pk(R/I) and (v + I)(e + I) = (e + I)(v + I). Since I ⊆ J(R), by Lemm
2.18 v ∈ Inv(R). Now e + I ∈ Pk(R/I) which implies that e − em ∈ I. Since
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k-potents lift modulo I, there exists an k-potent f ∈ R such that f − e ∈ I,
and so f + I = e + I. Since a + I = (v + I) + (f + I), (v + I) = (a − f) + I.
Hence (a− f) + I ∈ Inv(R/I). Then a− f ∈ Inv(R), by Lemma 2.18. Therefore
a = (a − f) + f , where a − f ∈ Inv(R) and f ∈ Pk(R). Since (v + I)(e + I) =
(e+ I)(v + I), ((a− f) + I)(f + I) = (f + I)((a− f) + I). Since R satisfies the
modulo commutative property, (a−f)f = f(a−f)). Therefore R is strongly invo
k-clean.

Here we shall formulate two questions of interest.

Problem 2.21. When is a matrix ring invo k-clean?

Problem 2.22. Let R be a ring and e ∈ Pk(R) such that the subrings ek−1Rek−1

and (1− ek−1)R(1− ek−1) are invo k-clean. Is R also invo k-clean?
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