OPTIMAL INEQUALITIES FOR SUBMANIFOLDS OF RIEMANN MANIFOLDS OF NEARLY QUASI-CONSTANT CURVATURE WITH QUARTER-SYMMETRIC CONNECTION

Zamrooda JABEEN ${ }^{1}$, Mehraj Ahmad LONE ${ }^{*, 2}$ and Sandeep SHARMA ${ }^{3}$

Abstract

In this paper, we obtain Chen inequalities for submanifolds in Riemannian manifolds of nearly quasi-constant curvature with a special kind of quartersymmetric connection and discuss the equality case of the inequalities. We also obtain some Casorati inequalities for submanifolds in Riemannian manifolds of nearly quasi-constant curvature with the quarter-symmetric connection.

2000 Mathematics Subject Classification: 53B05, 53B20, 53C40.
Key words: Casorati curvature, Chen inequalities, Riemannian manifolds of nearly quasi-constant curvature, quarter-symmetric connection, scalar curvature.

1 Introduction

A challenging question concerning the existence of minimal immersions into a Euclidean space of arbitrary dimension was raised by Chern [8]. To answer the question, Chen[6] obtained a necessary condition for the existence of minimal isometric immersion from a given Riemannian manifold into Euclidean space and established a sharp inequality for a submanifold in a real space form using the scalar curvature and the sectional curvature (intrinsic invariants) and squared mean curvature (extrinsic invariant). The inequalities in this direction are known

[^0]as Chen inequalities $[4,5,6]$. Afterwards, distinguished geometers studied similar problems for different submanifolds in various ambient spaces with different connections; see, for example, $[20,25,32,33,35]$.

Hayden [15] introduced the notion of a semi-symmetric metric connection on a Riemannian manifold. Nakao [21] studied submanifolds of a Riemannian manifold with semi-symmetric metric connections. Agashe and Chafle[1, 2] introduced the notion of a semi-symmetric non-metric connection and studied some of its properties and submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. In [20, 25], Mihai and Özgür studied Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection and a semi-symmetric non-metric connection, respectively. The concept of "quartersymmetric" connection was originally introduced by S. Golab[12]. Recently, in [26], the authors investigated Einstein warped products and multiply warped products with a quarter-symmetric connection. In 2019, Yang[30] obtained Chen inequalities for submanifolds of complex space forms and Sasakian space forms with quarter-symmetric connections.

Chen and yano[7] introduced the generalized notion of real space forms to quasi constant curvature manifolds. De and Gazi[9] extended the quasi constant curvature to nearly quasi-constant curvature manifolds. Özgür[23] studied Chen inequalities for submanifolds of Riemannian manifolds of quasi-constant curvature. Özgür and $\operatorname{De}[24]$ generalize these inequalities to submanifolds of Riemannian manifolds of nearly quasi-constant curvature. In the same way, some other basic inequalities were investigated for submanifolds of Riemannian manifolds of quasi-constant curvature and nearly quasi-constant curvature $[32,33,34,35]$

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian manifold introduced by Casorati defined as the normalized square length of the second fundamental form [3]. The notion of Casorati curvature gives a better intuition of the curvature compared to Gaussian curvature. The concept of Casorati curvature extends the concept of the principal direction of a hypersurface of a Riemannian manifold [13]. The geometrical meaning and the importance of the Casorati curvature discussed by some distinguished geometers [10, 11, 17, 28, 29]. Therefore it attracts the attention of geometers to obtain the optimal inequalities for the Casorati curvatures of the submanifolds of different ambient spaces [18, 19].

In this paper, we obtain Chen's inequalities for submanifolds of Riemannian manifolds of nearly quasi-constant curvature with quarter-symmetric connection. The chronology of the paper is as follows. In Section 2, we give a brief introduction about the quarter-symmetric connection. In Section 3, we establish first Chen inequality for submanifolds of Riemannian manifolds of nearly quasi-constant curvature endowed with the quarter-symmetric connection and in the last section, we obtain some inequalities for generalized normalized δ-Casorati curvatures for submanifolds of Riemannian manifolds of nearly quasi-constant curvatures.

2 Preliminaries

Chen and K. Yano[7] introduced the notion of quasi-constant curvature. A Riemannian manifold (\widetilde{M}, g) is called a Riemannian manifold of quasi-constant curvature if its curvature tensor $\widetilde{\bar{R}}$ satisfies the condition

$$
\begin{aligned}
\tilde{\bar{R}}(X, Y, Z, W)= & p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
& +q[g(X, W) \pi(Y) \pi(Z)-g(X, Z) \pi(Y) \pi(W) \\
& +g(Y, Z) \pi(X) \pi(W)-g(Y, W) \pi(X) A(Z)],
\end{aligned}
$$

where p, q are scalar functions and π is a 1 -form given by

$$
g(X, P)=\pi(X)
$$

P is a fixed unit vector field. It is straightforward to see that if $q=0$, then (\widetilde{M}, g) reduces to a Riemannian manifold of constant curvature.

For $n>2$, a non-flat Riemannian manifold (\widetilde{M}, g) is said to be a quasi-Einstein manifold if its Ricci tensor satisfies the condition

$$
S(X, Y)=p g(X, Y)+q \pi(X) \pi(Y)
$$

where p, q are scalar functions and π is 1 -form acting same as above. It can be easily verified that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold.

In 2009, Gazi and De [9] generalized the notion of Riemannian manifold of quasi-constant curvature to Riemannian manifold of nearly quasi-constant and the curvature tensor satisfies

$$
\begin{align*}
\tilde{\bar{R}}(X, Y, Z, W)= & p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
& +q[g(X, W) B(Y, Z)-g(X, Z) B(Y, W) \\
& +g(Y, Z) B(X, W)-g(Y, W) B(X, Z)], \tag{1}
\end{align*}
$$

where p, q are scalar functions and B is a non-vanishing $(0,2)$ type symmetric tensor.

For $n>2$, a non-flat Riemannian manifold (\widetilde{M}, g) is said to be a nearly quasi-Einstein manifold if its Ricci tensor satisfy

$$
S(X, Y)=p g(X, Y)+q B(X, Y)
$$

It can be easily verified that every Riemannian manifold of nearly quasi-constant curvature is a nearly quasi-Einstein manifold.

We know that the outer product of two convariant vectors is a covariant $(0,2)$ tensor, but converse in not true. Hence nearly quasi-constant Riemannian manifolds act as a bigger class of Riemannian manifolds in the sense that every Riemannian manifold of quasi-constant curvature is nearly quasi-constant Riemannian manifold, but there are plenty of examples where the converse is not true.

Example 1. ([g]) Let $\left(\mathbb{R}^{4}, g\right)$ be a Riemannian manifold with the metric g defined as follows

$$
d s^{2}=\left(x^{4}\right)^{\frac{4}{5}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+\left(d x^{4}\right)^{2} .
$$

This is a nearly quasi-constant Riemannian manifold but not a quasi-constant Riemannian manifold.

Let \widetilde{M} be an $(n+m)$-dimensional Riemannian manifold with nearly quasiconstant curvature with Riemannian metric g and $\widetilde{\bar{\nabla}}$ be the Levi-Civita connection on \widetilde{M}. Let $\bar{\nabla}$ be a linear connection defined by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\tilde{\bar{\nabla}}_{X} Y+\Lambda_{1} \pi(Y) X-\Lambda_{2} g(X, Y) P, \tag{2}
\end{equation*}
$$

for X, Y on $\widetilde{M}, \Lambda_{1}, \Lambda_{2}$ are real constants and P the vector field on \widetilde{M} such that $\pi(X)=g(X, P)$, where π are one form. If $\bar{\nabla} g=0$, then $\bar{\nabla}$ is known as quarter -symmetric metric connection and if $\bar{\nabla} g \neq 0$, then $\bar{\nabla}$ is known as quarter -symmetric non-metric connection.

The special cases of (2) can be obtained as
(i) when $\Lambda_{1}=\Lambda_{2}=1$, then the above connection reduces to semi-symmetric metric connection.
(ii) when $\Lambda_{1}=1$ and $\Lambda_{2}=0$, then the above connection reduces to semisymmetric non metric connection.

The curvature tensor with respect to $\bar{\nabla}$ is defined as

$$
\begin{equation*}
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z \tag{3}
\end{equation*}
$$

Similarly, we can define the curvature tensor with respect to $\tilde{\nabla}$.
Now, using (2), the curvature tensor takes the following form[30]

$$
\begin{align*}
\bar{R}(X, Y, Z, W) & =\widetilde{\bar{R}}(X, Y, Z, W)+\Lambda_{1} \alpha(X, Z) g(Y, W)-\Lambda_{1} \alpha(Y, Z) g(X, W) \\
& +\Lambda_{2} g(X, Z) \alpha(Y, W)-\Lambda_{2} g(Y, Z) \alpha(X, W) \\
& +\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right) g(X, Z) \beta(Y, W) \tag{4}\\
& -\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right) g(Y, Z) \beta(X, W),
\end{align*}
$$

where

$$
\alpha(X, Y)=\left(\tilde{\bar{\nabla}}_{X} \pi\right)(Y)-\Lambda_{1} \pi(X) \pi(Y)+\frac{\Lambda_{2}}{2} g(X, Y) \pi(P)
$$

and

$$
\beta(X, Y)=\frac{\pi(P)}{2} g(X, Y)+\pi(X) \pi(Y)
$$

are $(0,2)$-tensors. For simplicity, we denote by $\operatorname{tr}(\alpha)=a$ and $\operatorname{tr}(\beta)=b$.
Let M^{n} be an n-dimensional submanifold of an $(n+m)$-dimensional Riemannian manifolds with nearly quasi-constant curvature \widetilde{M}. On the submanifold M,
we consider the induced quarter-symmetric connection denoted by ∇ and the induced Levi-Civita connection denoted by $\widetilde{\nabla}$. Let R and \widetilde{R} be the curvature tensors of ∇ and $\widetilde{\nabla}$. Decomposing the vector field P on M uniquely into its tangent and normal components P^{\top} and P^{\perp}, respectively, then we have $P=P^{\top}+P^{\perp}$. The Gauss formulas with respect to ∇ and $\widetilde{\nabla}$ can be written as:

$$
\begin{aligned}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \quad X, Y \in \Gamma(T M), \\
& \widetilde{\nabla}_{X} Y=\widetilde{\nabla}_{X} Y+\widetilde{\sigma}(X, Y), \quad X, Y \in \Gamma(T M),
\end{aligned}
$$

where $\widetilde{\sigma}$ is the second fundamental form of M in \widetilde{M} and

$$
\sigma(X, Y)=\widetilde{\sigma}(X, Y)-\Lambda_{2} g(X, Y) P^{\perp}
$$

In \widetilde{M}^{n+m} we can choose a local orthonormal frame $\left\{E_{1}, \cdots, E_{n}, E_{n+1}, \cdots, E_{n+m}\right\}$ such that, restricting to $M,\left\{E_{1}, \cdots, E_{n}\right\}$ are tangent to M^{n}. We write $\sigma_{i j}^{r}=$ $g\left(\sigma\left(E_{i}, E_{j}\right), E_{r}\right)$. The squared length of σ is $\|\sigma\|^{2}=\sum_{i, j=1}^{n} g\left(\sigma\left(E_{i}, E_{j}\right), \sigma\left(E_{i}, E_{j}\right)\right)$ and the mean curvature vector of M associated to ∇ is $H=\frac{1}{n} \sum_{i=1}^{n} \sigma\left(E_{i}, E_{i}\right)$. Similarly, the mean curvature vector of M associated to $\widetilde{\nabla}$ is $\widetilde{H}=\frac{1}{n} \sum_{i=1}^{n} \widetilde{\sigma}\left(E_{i}, E_{i}\right)$. Let \widetilde{M}^{n+m} be an $(n+m)$-dimensional Riemannian manifolds of nearly quasiconstant curvature endowed with a quarter-symmetric connection satisfying (2). The curvature tensor $\widetilde{\bar{R}}$ with respect to the Levi-Civita connection $\widetilde{\bar{\nabla}}$ on \widetilde{M}^{n+m} is expressed by

$$
\begin{align*}
\widetilde{\bar{R}}(X, Y, Z, W)= & p\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +q\{g(X, W) B(Y, Z)-g(X, Z) B(Y, W) \\
& +g(Y, Z) B(X, W)-g(Y, W) B(X, Z)\} \tag{5}
\end{align*}
$$

By (2) and (5), we get

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & p\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +q\{g(X, W) B(Y, Z)-g(X, Z) B(Y, W)+g(Y, Z) B(X, W) \\
& -g(Y, W) B(X, Z)\}+\lambda_{1} \alpha(X, Z) g(Y, W)-\lambda_{1} \alpha(Y, Z) g(X, W) \\
& +\lambda_{2} g(X, Z) \alpha(Y, W)-\lambda_{2} g(Y, Z) \alpha(X, W) \\
& +\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right) g(X, Z) \beta(Y, W) \\
& -\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right) g(Y, Z) \beta(X, W) \tag{6}
\end{align*}
$$

Similar to [30], we have the Gauss equation

$$
\begin{align*}
\bar{R}(X, Y, Z, W) & =R(X, Y, Z, W)-g(\sigma(X, W), \sigma(Y, Z))+g(\sigma(Y, W), \sigma(X, Z)) \\
& +\left(\lambda_{1}-\lambda_{2}\right) g(\sigma(Y, Z), P) g(X, W)+\left(\lambda_{2}-\lambda_{1}\right) g(\sigma(X, Z), P) g(Y, W) . \tag{7}
\end{align*}
$$

Let Π be a 2-plane section at a point $p \in M$ and spanned by orthonormal basis E_{1} and E_{2} i:e $\Pi=\operatorname{span}\left\{E_{1}, E_{2}\right\}$. As $R(X, Y, Z, W) \neq R(X, Y, W, Z)$, we can define the sectional curvature $K(\Pi)$ of M with respect to induced connection ∇ as

$$
\begin{equation*}
K(\Pi)=\frac{1}{2}\left[R\left(E_{1}, E_{2}, E_{2}, E_{1}\right)-R\left(E_{1}, E_{2}, E_{1}, E_{2}\right)\right], \tag{8}
\end{equation*}
$$

where $K(\Pi)$ is independent choice of the orthonormal basis E_{1}, E_{2}. If $\left\{E_{1}, \ldots, E_{n}\right\}$ and $\left\{E_{n+1}, \ldots, E_{n+m}\right\}$ are orthonormal basis of $T_{p} M$ and $T_{p}^{\perp} M$ at any $p \in M$, then the scalar curvature τ at that point is given by

$$
\tau(p)=\sum_{1 \leq i<j \leq n} K\left(E_{i} \wedge E_{j}\right) .
$$

The normalized scalar curvature ρ is defined as

$$
\rho=\frac{2 \tau}{n(n-1)} .
$$

The norm of the squared mean curvature of the submanifold is defined by

$$
\|H\|^{2}=\frac{1}{n^{2}} \sum_{\gamma=n+1}^{n+m}\left(\sum_{i=1}^{n} \sigma_{i i}^{\gamma}\right)^{2},
$$

and the squared norm of second fundamental form h is denoted by \mathcal{C} defined as

$$
\mathcal{C}=\frac{1}{n} \sum_{\gamma=n+1}^{n+m} \sum_{i, j=1}^{n}\left(\sigma_{i j}^{\gamma}\right)^{2}
$$

known as Casorati curvature of the submanifold.
If we suppose that L is an s-dimensional subspace of $T M, s \geq 2$, and $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ is an orthonormal basis of L. then the scalar curvature of the s-plane section L is given as

$$
\tau(L)=\sum_{1 \leq \gamma<\beta \leq s} K\left(E_{\gamma} \wedge E_{\beta}\right)
$$

and the Casorati curvature \mathcal{C} of the subspace L is as follows

$$
\mathcal{C}(L)=\frac{1}{s} \sum_{\gamma=n+1}^{n+m} \sum_{i, j=1}^{s}\left(\sigma_{i j}^{\gamma}\right)^{2} .
$$

A point $p \in M$ is said to be an invariantly quasi-umbilical point if there exist m mutually orthogonal unit normal vectors $\xi_{n+1}, \ldots, \xi_{n+m}$ such that the shape operators with respect to all directions ξ_{γ} have an eigenvalue of multiplicity $n-1$ and that for each ξ_{γ} the distinguished Eigen direction is the same. The submanifold is said to be an invariantly quasi-umbilical submanifold if each of its points is an invariantly quasi-umbilical point.

The normalized δ-Casorati curvature $\delta_{c}(n-1)$ and $\widetilde{\delta}_{c}(n-1)$ are defined as

$$
\begin{equation*}
\left[\delta_{c}(n-1)\right]_{p}=\frac{1}{2} \mathfrak{C}_{p}+\frac{n+1}{2 n} \inf \left\{\mathcal{C}(L) \mid L: \text { a hyperplane of } T_{p} M\right\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\widetilde{\delta}_{c}(n-1)\right]_{p}=2 \mathcal{C}_{p}+\frac{2 n-1}{2 n} \sup \left\{\mathcal{C}(L) \mid L: \text { a hyperplane of } T_{p} M\right\} . \tag{10}
\end{equation*}
$$

For a positive real number $t \neq n(n-1)$, the generalized normalized δ-Casorati curvatures $\delta_{c}(t ; n-1)$ and $\widetilde{\delta}_{c}(t ; n-1)$ are given as

$$
\begin{aligned}
& {\left[\delta_{c}(t ; n-1)\right]_{p} } \\
= & t \mathfrak{C}_{p}+\frac{(n-1)(n+t)\left(n^{2}-n-t\right)}{n t} \inf \left\{\mathcal{C}(L) \mid L: \text { a hyperplane of } T_{p} M\right\},
\end{aligned}
$$

if $0<t<n^{2}-n$, and

$$
\begin{aligned}
& {\left[\widetilde{\delta}_{c}(t ; n-1)\right]_{p} } \\
= & t \mathfrak{C}_{p}+\frac{(n-1)(n+t)\left(n^{2}-n-t\right)}{n t} \sup \left\{\mathbb{C}(L) \mid L: \text { a hyperplane of } T_{p} M\right\},
\end{aligned}
$$

if $t>n^{2}-n$.
Now, we recall the following lemmas, which plays an important role for the proof of the main results.
Lemma 1. [33] Let $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)(n \geq 3)$ be a function in \mathbf{R}^{n} defined by

$$
g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1}+a_{2}\right) \sum_{i=3}^{n} a_{i}+\sum_{3 \leq i<j \leq n} a_{i} a_{j} .
$$

If $a_{1}+a_{2}+\ldots+a_{n}=(n-1) \epsilon$, we have

$$
g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq \frac{(n-1)(n-2)}{2} \epsilon^{2}
$$

The equality sign holds if and only if $a_{1}+a_{2}=a_{3}=\ldots=a_{n}=\epsilon$.
Lemma 2. [33] Let $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a function in \mathbf{R}^{n} defined by

$$
g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} \sum_{i=2}^{n} a_{i}
$$

If $a_{1}+a_{2}+\ldots+a_{n}=2 \epsilon$, we have

$$
g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq \epsilon^{2}
$$

The equality sign holds if and only if $a_{1}=a_{2}+a_{3}+\ldots+a_{n}=\epsilon$.

Oprea[22] gives new direction to prove the Chen inequalities using optimization techniques. For a submanifold (M, g) of a Riemannian manifold $(\widetilde{M}, \widetilde{g})$ and \mathcal{F} : $M \rightarrow \mathbf{R}$ be a differential function. If we have a constrained problem

$$
\begin{equation*}
\min _{x \in M} \mathcal{F}(x) \tag{11}
\end{equation*}
$$

then the following result holds
Lemma 3. [22] Let $x_{\circ} \in M$ is the solution of the problem 11, then
(i) $(\operatorname{grad}(\mathcal{F}))\left(x_{\circ}\right) \in T_{x_{\circ}}^{\perp} M$
(ii) the bilinear form
$\mathcal{B}: T_{x_{0}} M \times T_{x_{0}} M \rightarrow \mathbf{R}$
$\mathcal{B}(X, Y)=\operatorname{Hess}_{\mathcal{F}}(X, Y)+\tilde{g}\left(\sigma(X, Y),(\operatorname{grad}(\mathcal{F}))\left(x_{\circ}\right)\right)$
is positive semi-definie, where σ is the second fundamental form of M in \widetilde{M} and $\operatorname{grad}(\mathcal{F})$ if the gradient of g.

3 Chen inequalities

Theorem 1. Let M is an n-dimensional submanifold of an $(n+m)$-dimensional Riemannian manifolds with nearly quasi-constant curvature \widetilde{M} endowed with a connection $\bar{\nabla}$, then

$$
\begin{aligned}
\tau(p)-K(\Pi) \leq & \frac{(n+1)(n-2)}{2} p+q(n-2) \operatorname{tr} B+\left.\operatorname{tr} B\right|_{\pi^{\perp}}-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) a \\
& -\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2}(n-1) b-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) n \pi(H) \\
& +\frac{\Lambda_{1}+\Lambda_{2}}{2} \operatorname{tr}\left(\left.\alpha\right|_{\Pi}\right)+\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2} \operatorname{tr}\left(\left.\beta\right|_{\Pi}\right) \\
& +\frac{\Lambda_{1}-\Lambda_{2}}{2} g\left(\operatorname{tr}\left(\left.\sigma\right|_{\Pi}\right), P\right)+\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} .
\end{aligned}
$$

Proof. Let $p \in M$ and $\left\{E_{1}, \cdots, E_{n}\right\}$ and $\left\{E_{n+1}, \cdots, E_{n+m}\right\}$ be orthonormal basis of $T_{p} M$ and $T_{p}^{\perp} M$ respectively. For $X=W=E_{i}, Y=Z=E_{j}, i \neq j$ by (2.11), we have

$$
\begin{align*}
& p\left\{g\left(E_{j}, E_{j}\right) g\left(E_{i}, E_{i}\right)-g\left(E_{i}, E_{j}\right) g\left(E_{j}, E_{i}\right)\right\}+q\left\{g\left(E_{i}, E_{i}\right) B\left(E_{j}, E_{j}\right)\right. \\
& \left.-g\left(E_{i}, E_{j}\right) B\left(E_{j}, E_{i}\right)+g\left(E_{j}, E_{j}\right) B\left(E_{i}, E_{i}\right)-g\left(E_{j}, E_{i}\right) B\left(E_{i}, E_{j}\right)\right\} \\
& +\Lambda_{1} \alpha\left(E_{i}, E_{j}\right) g\left(E_{j}, E_{i}\right)-\Lambda_{1} \alpha\left(E_{j}, E_{j}\right) g\left(E_{i}, E_{i}\right)+\Lambda_{2} \alpha\left(E_{i}, E_{j}\right) g\left(E_{j}, E_{i}\right) \\
& -\Lambda_{2} \alpha\left(E_{j}, E_{j}\right) g\left(E_{i}, E_{i}\right)+\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right) \beta\left(E_{i}, E_{j}\right) g\left(E_{j}, E_{i}\right) \\
& -\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right) \beta\left(E_{j}, E_{j}\right) g\left(E_{i}, E_{i}\right) \\
= & R\left(E_{i}, E_{j}, E_{j}, E_{i}\right)-g\left(\sigma\left(E_{i}, E_{i}\right), \sigma\left(E_{j}, E_{j}\right)\right)+g\left(\sigma\left(E_{j}, E_{i}\right), \sigma\left(E_{i}, E_{j}\right)\right)+\left(\Lambda_{1}\right. \\
& \left.-\Lambda_{2}\right) g\left(\sigma\left(E_{j}, E_{j}\right), P\right) g\left(E_{i}, E_{i}\right)+\left(\Lambda_{2}-\Lambda_{1}\right) g\left(\sigma\left(E_{i}, E_{j}\right), P\right) g\left(E_{j}, E_{i}\right) . \tag{12}
\end{align*}
$$

Taking the summation over i and j and simplifying, we have

$$
\begin{align*}
\tau= & {\left[\frac{n(n-1) p}{2}+(n-1) q \operatorname{tr}(B)\right]-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) a-\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2}(n-1) b } \\
& -\frac{\left(\Lambda_{1}-\Lambda_{2}\right)}{2}(n-1) n \pi(H)+\sum_{n+1}^{n+m} \sum_{1 \leq i, j=n}\left[\sigma_{i i}^{r} \sigma_{j j}^{r}-\left(\sigma_{i j}^{r}\right)^{2}\right] \tag{13}
\end{align*}
$$

From (6) and (8), we have

$$
\begin{align*}
K(\Pi)= & \left(p+q\left(\operatorname{tr}\left(\left.B\right|_{\pi}\right)+\operatorname{tr}\left(\left.B\right|_{\pi^{\perp}}\right)\right)\right)-\frac{\Lambda_{1}+\Lambda_{2}}{2} \operatorname{tr}\left(\left.\alpha\right|_{\Pi}\right)-\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2} \operatorname{tr}\left(\left.\beta\right|_{\Pi}\right) \\
& -\frac{\Lambda_{1}-\Lambda_{2}}{2} g\left(\operatorname{tr}\left(\left.\sigma\right|_{\Pi}\right), P\right)+\sum_{r=n+1}^{n+m}\left[\sigma_{11}^{r} \sigma_{22}^{r}-\left(\sigma_{12}^{r}\right)^{2}\right] \tag{14}
\end{align*}
$$

Subtracting (13) and (14), we get

$$
\begin{align*}
\tau(p)-K(\Pi)= & \frac{(n+1)(n-2)}{2} p+q(n-2) \operatorname{tr} B+\left.\operatorname{tr} B\right|_{\Pi^{\perp}}-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) a \\
& -\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2}(n-1) b-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) n \pi(H) \\
& +\frac{\Lambda_{1}+\Lambda_{2}}{2} \operatorname{tr}\left(\left.\alpha\right|_{\Pi}\right) \\
& +\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2} \operatorname{tr}\left(\left.\beta\right|_{\Pi}\right)+\frac{\Lambda_{1}-\Lambda_{2}}{2} g\left(\operatorname{tr}\left(\left.\sigma\right|_{\Pi}\right), P\right) \\
& +\sum_{r=n+1}^{n+m}\left[\sum_{1 \leq i<j \leq n} \sigma_{i i}^{r} \sigma_{j j}^{r}-\sigma_{11}^{r} \sigma_{22}^{r}-\sum_{1 \leq i<j \leq n}\left(\sigma_{i j}^{r}\right)^{2}+\left(\sigma_{12}^{r}\right)^{2}\right] . \tag{15}
\end{align*}
$$

By Lemma 1, we have

$$
\begin{equation*}
\sum_{r=n+1}^{n+m}\left[\sum_{1 \leq i<j \leq n} \sigma_{i i}^{r} \sigma_{j j}^{r}-\sigma_{11}^{r} \sigma_{22}^{r}-\sum_{1 \leq i<j \leq n}\left(\sigma_{i j}^{r}\right)^{2}+\left(\sigma_{12}^{r}\right)^{2}\right] \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} \tag{16}
\end{equation*}
$$

By (15) and (16), we get the desired result.
Corollary 1. If P is a tangent vector field on M, then $H=\widetilde{H}$. In this case, the inequality in Theorem 1 becomes

$$
\begin{align*}
\tau(p)-K(\Pi) \leq & \frac{(n+1)(n-2)}{2} p+q(n-2) \operatorname{tr} B+\left.\operatorname{tr} B\right|_{\pi^{\perp}}-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) a \\
& -\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2}(n-1) b-\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{2}(n-1) n \pi(H) \\
& +\frac{\Lambda_{1}+\Lambda_{2}}{2} \operatorname{tr}\left(\left.\alpha\right|_{\Pi}\right)+\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{2} \operatorname{tr}\left(\left.\beta\right|_{\Pi}\right) \\
& +\frac{\Lambda_{1}-\Lambda_{2}}{2} g\left(\operatorname{tr}\left(\left.\sigma\right|_{\Pi}\right), P\right)+\frac{n^{2}(n-2)}{2(n-1)}\|\widetilde{H}\|^{2} \tag{17}
\end{align*}
$$

Corollary 2. If P is a tangent vector field on M, then $\sigma=\widetilde{\sigma}$. In this case, the equality case of (17) holds at a point $p \in M$ if and only if, with respect to a suitable orthonormal basis $\left\{E_{a}\right\}$ at p, the shape operators $A_{r}=A_{E_{r}}$ take the following forms:

$$
A_{n+1}=\left(\begin{array}{ccccc}
\sigma_{11}^{n+1} & 0 & 0 & \cdots & 0 \\
0 & \sigma_{22}^{n+1} & 0 & \cdots & 0 \\
0 & 0 & \sigma_{11}^{n+1}+\sigma_{22}^{n+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & \sigma_{11}^{n+1}+\sigma_{22}^{n+1}
\end{array}\right)
$$

and

$$
A_{r}=\left(\begin{array}{ccccc}
\sigma_{11}^{r} & \sigma_{12}^{r} & 0 & \cdots & 0 \\
\sigma_{12}^{r} & -\sigma_{11}^{r} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), r=n+2, \cdots, n+m
$$

4 Inequalities for generalized normalized δ-Casorati curvatures

Theorem 2. Let M is an n-dimensional submanifold of a Riemannian manifolds with nearly quasi-constant curvature \widetilde{M} of dimension $(n+m)$ endowed with a connection $\bar{\nabla}$, then
(i) The generalized normalized δ-Casorati curvature $\delta_{c}(t ; n-1)$ satisfies

$$
\begin{align*}
\rho \leq & \frac{\delta_{c}(t ; n-1)}{n(n-1)}+\left[p+\frac{2 q}{n} \operatorname{tr}(B)\right] \tag{18}\\
& -\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{n} a-\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{n} b-\left(\Lambda_{1}-\Lambda_{2}\right) \pi(H),
\end{align*}
$$

for any real number t such that $0<t<n(n-1)$.
(ii) The generalized normalized δ-Casorati curvature $\widehat{\delta}_{c}(t ; n-1)$ satisfies

$$
\begin{align*}
\rho \leq & \frac{\tilde{\delta}_{c}(t ; n-1)}{n(n-1)}+\left[p+\frac{2 q}{n} \operatorname{tr}(B)\right] \tag{19}\\
& -\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{n} a-\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{n} b-\left(\Lambda_{1}-\Lambda_{2}\right) \pi(H),
\end{align*}
$$

for any real number $t>n(n-1)$. Moreover, the equality holds in (18) and (19) iff M is an invariantly quasi-umbilical submanifold with trivial normal connection in \widetilde{M}, such that with respect to suitable tangent orthonormal frame $\left\{E_{1}, \ldots, E_{n}\right\}$ and normal orthonormal frame $\left\{E_{n+1}, \ldots, E_{n+m}\right\}$, the shape operator $A_{r} \equiv A_{E_{\gamma}}$,
$\gamma \in\{n+1, \ldots, n+m\}$, take the following form

$$
A_{n+1}=\left(\begin{array}{cccccc}
\sigma_{11}^{\gamma} & 0 & 0 & \ldots & 0 & 0 \tag{20}\\
0 & \sigma_{22}^{\gamma} & 0 & \ldots & 0 & 0 \\
0 & 0 & \sigma_{33}^{\gamma} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_{n-1 n-1}^{\gamma} & 0 \\
0 & 0 & 0 & \ldots & 0 & \frac{n(n-1)}{t} \sigma_{n n}^{\gamma}
\end{array}\right)
$$

Proof. Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ and $\left\{E_{n+1}, E_{n+2}, \ldots, E_{n+m}\right\}$ be the orthonormal bases of $T_{p} M$ and $T_{p}^{\perp} M$ respectively at a point $p \in M$. Using (13), we have

$$
\begin{align*}
2 \tau= & {[n(n-1) p+2(n-1) q \operatorname{tr}(B)]-\left(\Lambda_{1}+\Lambda_{2}\right)(n-1) a-\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) b } \\
& -\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) n \pi(H)+n^{2}\|H\|^{2}-n \mathrm{C} \tag{21}
\end{align*}
$$

Consider a polynomial Q in the components of second fundamental form σ defined as

$$
\begin{aligned}
\mathcal{Q}= & t \mathcal{C}+\frac{(n-1)(n+t)\left(n^{2}-n-t\right)}{n t} \mathcal{C}(L)-2 \tau(p)+[n(n-1) p+2(n-1) q \operatorname{tr}(B)] \\
& -\left(\Lambda_{1}+\Lambda_{2}\right)(n-1) a-\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) b-\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) n \pi(H)
\end{aligned}
$$

where L is hyperplane of tangent space at a point p. We assume that L is spanned by $E_{1}, E_{2}, \ldots, E_{n-1}$ and Q has an expression of the form

$$
\begin{align*}
Q= & \frac{t}{n} \sum_{\gamma=n+1}^{n+m} \sum_{i, j=1}^{n}\left(\sigma_{i j}^{\gamma}\right)^{2}+\frac{(n+t)\left(n^{2}-n-t\right)}{n t} \sum_{\gamma=n+1}^{n+m} \sum_{i, j=1}^{n-1}\left(\sigma_{i j}^{\gamma}\right)^{2} \tag{22}\\
& -2 \tau(p)+[n(n-1) p+2(n-1) q \operatorname{tr}(B)] \\
& -\left(\Lambda_{1}+\Lambda_{2}\right)(n-1) a-\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) b-\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) n \pi(H)
\end{align*}
$$

From (21) and (22), we arrive at

$$
\begin{align*}
\mathbb{Q}= & \sum_{\gamma=n+1}^{n+m} \sum_{i=1}^{n-1}\left[\left(\frac{\left(n^{2}+n r-n-2 t\right)}{t}\right)\left(\sigma_{i i}^{\gamma}\right)^{2}+\frac{2(n+t)}{n}\left(\sigma_{i n}^{\gamma}\right)^{2}\right] \\
& +\sum_{\gamma=n+1}^{m}\left[2\left(\frac{2(n+t)(n-1)}{t}\right) \sum_{(i<j)=1}^{n}\left(\sigma_{i j}^{\gamma}\right)^{2}-2 \sum_{(i<j)=1}^{n} \sigma_{i i}^{\gamma} \sigma_{j j}^{\gamma}+\frac{t}{n}\left(\sigma_{n n}^{\gamma}\right)^{2}\right] \\
\geq & \sum_{\gamma=n+1}^{n+m} \sum_{i=1}^{n-1}\left[\left(\frac{\left(n^{2}+n(r-1)-2 t\right)}{t}\right)\left(\sigma_{i i}^{\gamma}\right)^{2}-2 \sum_{(i<j)=1}^{n} \sigma_{i i}^{\gamma} \sigma_{j j}^{\gamma}+\frac{t}{n}\left(\sigma_{n n}^{\gamma}\right)^{2}\right] \cdot(23 \tag{23}
\end{align*}
$$

For $t=n+1, \ldots, n+m$, lets us have a quadratic form $\mathcal{F}_{\gamma}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined as $\mathcal{F}_{\gamma}\left(\sigma_{11}^{\gamma}, \ldots, \sigma_{n n}^{\gamma}\right)=\sum_{i=1}^{n-1} \frac{n^{2}+n(r-1)-2 r}{r}\left(\sigma_{i i}^{\gamma}\right)^{2}-2 \sum_{(i<j)=1}^{n} \sigma_{i i}^{\gamma} \sigma_{j j}^{\gamma}+\frac{t}{n}\left(\sigma_{n n}^{\gamma}\right)^{2}$
and the optimization problem

$$
\begin{aligned}
& \min \mathcal{F}_{\gamma} \\
& \text { subject to } G: \sigma_{11}^{\gamma}+\cdots+\sigma_{n n}^{\gamma}=c^{\gamma}
\end{aligned}
$$

where c is a real constant. The partial derivatives of g_{γ} are

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{F}_{\gamma}}{\partial \sigma_{i i}^{\gamma}}=\frac{2(n+t)(n-1)}{t} \sigma_{i i}^{\gamma}-2 \sum_{l=1}^{n} \sigma_{l l}^{\gamma} \tag{24}\\
\frac{\partial \mathcal{F}_{\gamma}}{\partial \sigma_{n n}^{\gamma}}=\frac{2 t}{n} \sigma_{n n}^{\gamma}-2 \sum_{l=1}^{n-1} \sigma_{l l}^{\gamma}
\end{array}\right.
$$

where $i=\{1,2, \ldots, n-1\}, i \neq j$, and $\gamma \in\{n+1, \ldots, n+m\}$.
The vector $\operatorname{grad} \mathcal{F}_{\gamma}$ is normal at G for the optimal $\left(\sigma_{11}^{\gamma}, \ldots, \sigma_{n n}^{\gamma}\right)$ of the problem. that is, it is collinear with the vector $(1,1, \ldots, 1)$. Using (24), the critical point of the corresponding problem has the form

$$
\left\{\begin{array}{l}
\sigma_{i i}^{\gamma}=\frac{t}{n(n-1)} v^{\gamma}, i \in\{1, \ldots, n-1\} \tag{25}\\
\sigma_{n n}^{\gamma}=v^{\gamma}
\end{array}\right.
$$

By use of (25) and $\sum_{i=1}^{\gamma} \sigma_{i i}^{\gamma}=c^{\gamma}$, we arrive at

$$
\left\{\begin{array}{l}
\sigma_{i i}^{\gamma}=\frac{t}{(n+t)(n-1)} c^{\gamma}, i \in\{1, \ldots, n-1\} \tag{26}\\
\sigma_{n n}^{\gamma}=\frac{n}{(n+t)} c^{\gamma}
\end{array}\right.
$$

For an arbitrary fixed point $p \in G$, the 2 -form $\mathcal{B}: T_{p} G \times T_{p} G \rightarrow \mathbf{R}$ has the following form

$$
\begin{equation*}
\mathcal{B}(X, Y)=\operatorname{Hess}\left(\mathcal{F}_{\gamma}(X, Y)\right)+\left\langle h(X, Y),(\operatorname{grad}(\mathcal{F}))\left(x_{\circ}\right)\right\rangle \tag{27}
\end{equation*}
$$

where h and \langle,$\rangle are the second fundamental form of G$ in \mathbf{R}^{n} and standard inner product on \mathbf{R}^{n} respectively. The Hessian matrix of \mathcal{F}_{γ} is of the form
$\operatorname{Hess}\left(\mathcal{F}_{\gamma}\right)=\left(\begin{array}{ccccc}2 \frac{(n+t)(n-1)}{t}-2 & -2 & \ldots & -2 & -2 \\ -2 & 2 \frac{(n+t)(n-1)}{t}-2 & \ldots & -2 & -2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -2 & -2 & \ldots & 2 \frac{(n+t)(n-1)}{t}-2 & -2 \\ -2 & -2 & \cdots & -2 & \frac{2 t}{n}\end{array}\right)$
Though G is totally geodesic in \mathbf{R}^{n}, take a tangent vector $X=\left(X_{1}, \ldots, X_{n}\right)$ at any arbitrary point p on G, verifying the relation $\sum_{i=1}^{n} X_{i}=0$, we have the following

$$
\begin{align*}
\mathcal{B}(X, X) & =\frac{2\left(n^{2}-n+t n-2 t\right)}{t} \sum_{i=1}^{n-1} X_{i}^{2}+\frac{2 t}{n} X_{n}^{2}-2\left(\sum_{i=1}^{n} X_{i}\right)^{2} \tag{28}\\
& =\frac{2\left(n^{2}-n+t n-2 t\right)}{t} \sum_{i=1}^{n-1} X_{i}^{2}+\frac{2 t}{n} X_{n}^{2} \\
& \geq 0
\end{align*}
$$

Hence the point $\left(\sigma_{11}^{\gamma}, \ldots, \sigma_{n n}^{\gamma}\right)$ is the global minimum point by Lemma 3 and $\mathcal{F}_{\gamma}\left(\sigma_{11}^{\gamma}, \ldots, \sigma_{n n}^{\gamma}\right)=0$. Thus, we have $\mathcal{Q} \geq 0$ and hence

$$
\begin{aligned}
2 \tau \leq & t \mathcal{C}+\frac{(n-1)(n+t)\left(n^{2}-n-t\right)}{n t} \mathcal{C}(L)+[n(n-1) p+2(n-1) q \operatorname{tr}(B)] \\
& -\left(\Lambda_{1}+\Lambda_{2}\right)(n-1) a-\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) b-\left(\Lambda_{1}-\Lambda_{2}\right)(n-1) n \pi(H)
\end{aligned}
$$

whereby, we obtain

$$
\begin{aligned}
\rho \leq & \frac{t}{n(n-1)} \mathcal{C}+\frac{(n+t)\left(n^{2}-n-t\right)}{n^{2} t} \mathcal{C}(L)+\left[p+\frac{2}{n} q \operatorname{tr}(B)\right] \\
& -\frac{\left(\Lambda_{1}+\Lambda_{2}\right)}{n} a-\frac{\Lambda_{2}\left(\Lambda_{1}-\Lambda_{2}\right)}{n} b-\left(\Lambda_{1}-\Lambda_{2}\right) \pi(H),
\end{aligned}
$$

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L, the result trivially follows. Moreover the equality sign holds iff

$$
\begin{equation*}
\sigma_{i j}^{\gamma}=0, \forall i, j \in\{1, \ldots, n\}, i \neq j \text { and } \gamma \in\{n+1, \ldots, m\} \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma_{n n}^{\gamma}=\frac{n(n-1)}{t} \sigma_{11}^{\gamma}=\cdots & =\frac{n(n-1)}{t} \sigma_{n-1 n-1}^{\gamma}, \\
& \forall \gamma \in\{n+1, \ldots, m\} . \tag{30}
\end{align*}
$$

From (29) and (30), we obtain that the equality holds if and only if the submanifold is invariantly quasi-umbilical with normal connections in \widetilde{M}, such that the shape operator takes the form (14) with respect to the orthonormal tangent and orthonormal normal frames.

In the same way, we can prove (ii).

5 Conflicts of interest

The authors declare no conflict of interest.

References

[1] Agashe, N.S. and Chafle, M.R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.
[2] Agashe, N.S. and Chafle, M.R., On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor, 55 (1994), 120-130.
[3] Casorati, F., Mesure de la courbure des surface suivant 1'idee commune. Ses rapports avec les mesures de coubure gaussienne et moyenne, Acta Math. 14, (1999), 95-110.
[4] Chen, B.Y. , Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), 568-578.
[5] Chen, B.Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), 33-41.
[6] Chen, B.Y., Mean curvature and shape operator of isometric immersions in real space forms, Glasg. Math. J. 38 (1996), 87-97.
[7] Chen, B.Y., Hypersurfaces of a conformally flat space, Tensor (N. S.) 26 (1972), 318-322.
[8] Chen, B.Y., Minimal Submanifolds in a Riemannian Manifold, University of Kansas Press, Lawrence 1968.
[9] De, U. C. and Gazi, A. K., on the existance of nearly quasi-Einstien manifolds, Novi. Sad. J. Math., 39, (2009), 111-117.
[10] Decu, S., Haesen, S. and Verstralelen, L., Optimal inequalities involving Casorati curvatures, Bull. Transylv. Univ. Brasov, Ser B, 49, (2007), 85-93.
[11] Decu, S., Haesen, S. and Verstralelen, L., Optimal inequalities characterizing quasi-umbilical submanifolds, J. Inequalities Pure. Appl. Math, 9, (2008), Article ID 79, 7pp.
[12] Golab, S., On semi-symmetric and quarter-symmetric linear connections., Tensor N.S., 29 (1975), 249-254.
[13] Haesen, S., Kowalczyk, D. and Verstralelen, L., On the extrinsic principal directions of Riemannnian submanifolds, Note Math. 29 (2009), 41-53.
[14] Gülbahar, M., Kihc, E., Keles, S. and Triphati, M. M., Some basic inequalities for submanifolds of nearly quasi-constant curvature manifolds, Dynamical Systems 16 (2014), 156-167.
[15] Hayden, H.A., Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[16] Imai, T., Notes on semi-symmetric metric connections, Tensor 24 (1972), 293-296.
[17] Kowalczyk, D., Casorati curvatures, Bull. Transilvania Univ. Brasov Ser. III 50 (2008), no. 1, 2009-2013.
[18] Lee, C. W., Lee, J.W., Vilcu, G. E. and Yoon, D. Y.,Optimal inequalities for the Casorati curvatures of the submanifolds of Generalized space form endowed with seni-symmetric metric connections, Bull. Korean Math. Soc. 52 (2015), 1631-1647.

Optimal inequalities for submanifolds of Riemannian manifolds...
[19] Lee, J. W. and Vilcu, G. E., Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternion space forms, Taiwanese J. Math. 19 (2015), 691-702.
[20] Mihai, A. and Özgür, C., Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese J. Math. 14 (2010), 1465-1477.
[21] Nakao, Z., Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc., 54 (1976), 261-266.
[22] Oprea, T., Optimization methods on Riemannian manifolds. An. Univ. Bucur. Mat. 54 (2005), 127-136.
[23] Özgür, C. and Chen, B. Y., Chen inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature, Turk. J. Math. 35 (2011), 501-509.
[24] Özgür, C. and De, A., Chen inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature, Publ. Math. Debrecen 82 (2013), 439-450.
[25] Özgür, C. and Mihai, A., Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, Canad. Math. Bull. 55 (2012), 611-622.
[26] Qu, Q. and Wang, Y., Multiply warped products with a quarter-symmetric connection, J. Math. Anal. Appl. 431 (2015), 955-987.
[27] Su, M., Zhang, L. and Zhang, P., Some inequalities for submanifolds in a Riemannian manifold of nearly quasi-constant curvature, Filomat, 31 (2017), 2467-2475.
[28] Verstralelen, L., Geometry of submanifolds I, The first Casorati curvature indicatrices, Kragujevac J. Math. 37 (2013), 5-23.
[29] Verstralelen, L., The geometry of eye and brain, Soochow J. Math. 30 (2004), 367-376.
[30] Wang, Y., Chen inequalities for submanifolds of complex space forms and Sasakian space forms with quarter-symmetric connections, Int. J. Geom. Meth. Mod. Phy. 16 (2019), 1950118.
[31] Yano, K., On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl., 15 (1970), 1579-1586.
[32] P. Zhang, X. Pan, L. Zhang, Inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature with a semi-symmetric nonmetric connection, Rev. Un. Mat. Argentina, 56 (2015), 1-19.
[33] P. Zhang, L. Zhang, W. Song, Chen's inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection, Taiwanese J. Math., 18 (2014), 1841-1862.
[34] P. Zhang, Remarks on Chen's inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature, Vietnam J. Math., 43 (2015), 557-569.
[35] P. Zhang, L. Zhang, Casorati inequalities for submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection, Symmetry, 8 (2016), 19.

[^0]: ${ }^{1}$ Department of Mathematics, National Institute of Technology Srinagar, Hazratbal-190006, India, e-mail: zjabeen@gmail.com

 2* Corresponding author, Department of Mathematics, National Institute of Technology Srinagar, Hazratbal-190006, India, e-mail: mehraj.jmi@gmail.com
 ${ }^{3}$ Department of Mathematics, Shri Mata Vaishno Devi University, Katra, J\& K - 182320, India, e-mail: sandeep8022@yahoo.com

