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Abstract

In this paper, we obtain Chen inequalities for submanifolds in Riemannian
manifolds of nearly quasi-constant curvature with a special kind of quarter-
symmetric connection and discuss the equality case of the inequalities. We
also obtain some Casorati inequalities for submanifolds in Riemannian man-
ifolds of nearly quasi-constant curvature with the quarter-symmetric connec-
tion.
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1 Introduction

A challenging question concerning the existence of minimal immersions into
a Euclidean space of arbitrary dimension was raised by Chern [8]. To answer
the question, Chen[6] obtained a necessary condition for the existence of mini-
mal isometric immersion from a given Riemannian manifold into Euclidean space
and established a sharp inequality for a submanifold in a real space form using
the scalar curvature and the sectional curvature (intrinsic invariants) and squared
mean curvature (extrinsic invariant). The inequalities in this direction are known
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as Chen inequalities [4, 5, 6]. Afterwards, distinguished geometers studied sim-
ilar problems for different submanifolds in various ambient spaces with different
connections; see, for example, [20, 25, 32, 33, 35].

Hayden [15] introduced the notion of a semi-symmetric metric connection on
a Riemannian manifold. Nakao [21] studied submanifolds of a Riemannian mani-
fold with semi-symmetric metric connections. Agashe and Chafle[1, 2] introduced
the notion of a semi-symmetric non-metric connection and studied some of its
properties and submanifolds of a Riemannian manifold with a semi-symmetric
non-metric connection. In [20, 25], Mihai and Özgür studied Chen inequalities for
submanifolds of real space forms with a semi-symmetric metric connection and
a semi-symmetric non-metric connection, respectively. The concept of “quarter-
symmetric” connection was originally introduced by S. Golab[12]. Recently, in
[26], the authors investigated Einstein warped products and multiply warped
products with a quarter-symmetric connection. In 2019, Yang[30] obtained Chen
inequalities for submanifolds of complex space forms and Sasakian space forms
with quarter-symmetric connections.

Chen and yano[7] introduced the generalized notion of real space forms to
quasi constant curvature manifolds. De and Gazi[9] extended the quasi constant
curvature to nearly quasi-constant curvature manifolds. Özgür[23] studied Chen
inequalities for submanifolds of Riemannian manifolds of quasi-constant curva-
ture. Özgür and De[24] generalize these inequalities to submanifolds of Rieman-
nian manifolds of nearly quasi-constant curvature. In the same way, some other
basic inequalities were investigated for submanifolds of Riemannian manifolds of
quasi-constant curvature and nearly quasi-constant curvature[32, 33, 34, 35]

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian
manifold introduced by Casorati defined as the normalized square length of the
second fundamental form [3]. The notion of Casorati curvature gives a better
intuition of the curvature compared to Gaussian curvature. The concept of Caso-
rati curvature extends the concept of the principal direction of a hypersurface of
a Riemannian manifold [13]. The geometrical meaning and the importance of the
Casorati curvature discussed by some distinguished geometers [10, 11, 17, 28, 29].
Therefore it attracts the attention of geometers to obtain the optimal inequali-
ties for the Casorati curvatures of the submanifolds of different ambient spaces
[18, 19].

In this paper, we obtain Chen’s inequalities for submanifolds of Riemannian
manifolds of nearly quasi-constant curvature with quarter-symmetric connection.
The chronology of the paper is as follows. In Section 2, we give a brief introduc-
tion about the quarter-symmetric connection. In Section 3, we establish first Chen
inequality for submanifolds of Riemannian manifolds of nearly quasi-constant cur-
vature endowed with the quarter-symmetric connection and in the last section,
we obtain some inequalities for generalized normalized δ-Casorati curvatures for
submanifolds of Riemannian manifolds of nearly quasi-constant curvatures.
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2 Preliminaries

Chen and K. Yano[7] introduced the notion of quasi-constant curvature. A

Riemannian manifold (M̃, g) is called a Riemannian manifold of quasi-constant

curvature if its curvature tensor R̃ satisfies the condition

R̃(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+q[g(X,W )π(Y )π(Z)− g(X,Z)π(Y )π(W )

+g(Y,Z)π(X)π(W )− g(Y,W )π(X)A(Z)],

where p, q are scalar functions and π is a 1-form given by

g(X,P ) = π(X),

P is a fixed unit vector field. It is straightforward to see that if q = 0, then (M̃, g)
reduces to a Riemannian manifold of constant curvature.

For n > 2, a non-flat Riemannian manifold (M̃, g) is said to be a quasi-Einstein
manifold if its Ricci tensor satisfies the condition

S(X,Y ) = pg(X,Y ) + qπ(X)π(Y ),

where p, q are scalar functions and π is 1-form acting same as above. It can be
easily verified that every Riemannian manifold of quasi-constant curvature is a
quasi-Einstein manifold.

In 2009, Gazi and De [9] generalized the notion of Riemannian manifold of
quasi-constant curvature to Riemannian manifold of nearly quasi-constant and
the curvature tensor satisfies

R̃(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+q[g(X,W )B(Y,Z)− g(X,Z)B(Y,W )

+g(Y,Z)B(X,W )− g(Y,W )B(X,Z)], (1)

where p, q are scalar functions and B is a non-vanishing (0, 2) type symmetric
tensor.

For n > 2, a non-flat Riemannian manifold (M̃, g) is said to be a nearly
quasi-Einstein manifold if its Ricci tensor satisfy

S(X,Y ) = pg(X,Y ) + qB(X,Y ).

It can be easily verified that every Riemannian manifold of nearly quasi-constant
curvature is a nearly quasi-Einstein manifold.

We know that the outer product of two convariant vectors is a covariant (0, 2)
tensor, but converse in not true. Hence nearly quasi-constant Riemannian mani-
folds act as a bigger class of Riemannian manifolds in the sense that every Rieman-
nian manifold of quasi-constant curvature is nearly quasi-constant Riemannian
manifold, but there are plenty of examples where the converse is not true.



112 Zamrooda Jabeen, Mehraj Ahmad Lone and Sandeep Sharma

Example 1. ([9]) Let (R4, g) be a Riemannian manifold with the metric g defined
as follows

ds2 = (x4)
4
5 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

This is a nearly quasi-constant Riemannian manifold but not a quasi-constant
Riemannian manifold.

Let M̃ be an (n + m)-dimensional Riemannian manifold with nearly quasi-

constant curvature with Riemannian metric g and ∇̃ be the Levi-Civita connection
on M̃ . Let ∇ be a linear connection defined by

∇XY = ∇̃XY + Λ1π(Y )X − Λ2g(X,Y )P, (2)

for X,Y on M̃ , Λ1, Λ2 are real constants and P the vector field on M̃ such
that π(X) = g(X,P ), where π are one form. If ∇g = 0, then ∇ is known as
quarter -symmetric metric connection and if ∇g ̸= 0, then ∇ is known as quarter
-symmetric non-metric connection.

The special cases of (2) can be obtained as
(i) when Λ1 = Λ2 = 1, then the above connection reduces to semi-symmetric
metric connection.
(ii) when Λ1 = 1 and Λ2 = 0, then the above connection reduces to semi-
symmetric non metric connection.

The curvature tensor with respect to ∇ is defined as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (3)

Similarly, we can define the curvature tensor with respect to ∇̃.
Now, using (2), the curvature tensor takes the following form[30]

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + Λ1α(X,Z)g(Y,W )− Λ1α(Y,Z)g(X,W )

+ Λ2g(X,Z)α(Y,W )− Λ2g(Y,Z)α(X,W )

+ Λ2(Λ1 − Λ2)g(X,Z)β(Y,W ) (4)

− Λ2(Λ1 − Λ2)g(Y,Z)β(X,W ),

where

α(X,Y ) = (∇̃Xπ)(Y )− Λ1π(X)π(Y ) +
Λ2

2
g(X,Y )π(P ),

and

β(X,Y ) =
π(P )

2
g(X,Y ) + π(X)π(Y )

are (0, 2)-tensors. For simplicity, we denote by tr(α) = a and tr(β) = b.
Let Mn be an n-dimensional submanifold of an (n+m)-dimensional Rieman-

nian manifolds with nearly quasi-constant curvature M̃ . On the submanifold M ,
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we consider the induced quarter-symmetric connection denoted by ∇ and the in-
duced Levi-Civita connection denoted by ∇̃. Let R and R̃ be the curvature tensors
of ∇ and ∇̃. Decomposing the vector field P on M uniquely into its tangent and
normal components P⊤ and P⊥, respectively, then we have P = P⊤ + P⊥. The
Gauss formulas with respect to ∇ and ∇̃ can be written as:

∇XY = ∇XY + σ(X,Y ), X, Y ∈ Γ(TM),

∇̃XY = ∇̃XY + σ̃(X,Y ), X, Y ∈ Γ(TM),

where σ̃ is the second fundamental form of M in M̃ and

σ(X,Y ) = σ̃(X,Y )− Λ2g(X,Y )P⊥.

In M̃n+m we can choose a local orthonormal frame {E1, · · · , En, En+1, · · · , En+m}
such that, restricting to M , {E1, · · · , En} are tangent to Mn. We write σr

ij =

g(σ(Ei, Ej), Er). The squared length of σ is ||σ||2 =
∑n

i,j=1 g(σ(Ei, Ej), σ(Ei, Ej))

and the mean curvature vector of M associated to ∇ is H = 1
n

∑n
i=1 σ(Ei, Ei).

Similarly, the mean curvature vector ofM associated to ∇̃ is H̃ = 1
n

∑n
i=1 σ̃(Ei, Ei).

Let M̃n+m be an (n + m)-dimensional Riemannian manifolds of nearly quasi-
constant curvature endowed with a quarter-symmetric connection satisfying (2).

The curvature tensor R̃ with respect to the Levi-Civita connection ∇̃ on M̃n+m

is expressed by

R̃(X,Y, Z,W ) = p

{
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

}
+q

{
g(X,W )B(Y,Z)− g(X,Z)B(Y,W )

+g(Y, Z)B(X,W )− g(Y,W )B(X,Z)

}
. (5)

By (2) and (5), we get

R(X,Y, Z,W ) = p

{
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

}
+q

{
g(X,W )B(Y,Z)− g(X,Z)B(Y,W ) + g(Y,Z)B(X,W )

−g(Y,W )B(X,Z)

}
+ λ1α(X,Z)g(Y,W )− λ1α(Y,Z)g(X,W )

+λ2g(X,Z)α(Y,W )− λ2g(Y, Z)α(X,W )

+λ2(λ1 − λ2)g(X,Z)β(Y,W )

−λ2(λ1 − λ2)g(Y,Z)β(X,W ). (6)
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Similar to [30], we have the Gauss equation

R(X,Y, Z,W ) = R(X,Y, Z,W )− g(σ(X,W ), σ(Y,Z)) + g(σ(Y,W ), σ(X,Z))

+ (λ1 − λ2)g(σ(Y,Z), P )g(X,W ) + (λ2 − λ1)g(σ(X,Z), P )g(Y,W ).
(7)

Let Π be a 2-plane section at a point p ∈ M and spanned by orthonormal
basis E1 and E2 i:e Π = span{E1, E2}. As R(X,Y, Z,W ) ̸= R(X,Y,W,Z), we
can define the sectional curvature K(Π) of M with respect to induced connection
∇ as

K(Π) =
1

2

[
R(E1, E2, E2, E1)−R(E1, E2, E1, E2)

]
, (8)

whereK(Π) is independent choice of the orthonormal basis E1, E2 . If {E1, . . . , En}
and {En+1, . . . , En+m} are orthonormal basis of TpM and T⊥

p M at any p ∈ M ,
then the scalar curvature τ at that point is given by

τ(p) =
∑

1≤i<j≤n

K(Ei ∧ Ej).

The normalized scalar curvature ρ is defined as

ρ =
2τ

n(n− 1)
.

The norm of the squared mean curvature of the submanifold is defined by

∥H∥2 = 1

n2

n+m∑
γ=n+1

( n∑
i=1

σγ
ii

)2

,

and the squared norm of second fundamental form h is denoted by C defined as

C =
1

n

n+m∑
γ=n+1

n∑
i,j=1

(
σγ
ij

)2
,

known as Casorati curvature of the submanifold.
If we suppose that L is an s-dimensional subspace of TM , s ≥ 2, and

{E1, E2, . . . , Es} is an orthonormal basis of L. then the scalar curvature of the
s-plane section L is given as

τ(L) =
∑

1≤γ<β≤s

K(Eγ ∧ Eβ)

and the Casorati curvature C of the subspace L is as follows

C(L) =
1

s

n+m∑
γ=n+1

s∑
i,j=1

(
σγ
ij

)2
.
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A point p ∈ M is said to be an invariantly quasi-umbilical point if there
exist m mutually orthogonal unit normal vectors ξn+1, . . . , ξn+m such that the
shape operators with respect to all directions ξγ have an eigenvalue of multiplicity
n − 1 and that for each ξγ the distinguished Eigen direction is the same. The
submanifold is said to be an invariantly quasi-umbilical submanifold if each of its
points is an invariantly quasi-umbilical point.

The normalized δ-Casorati curvature δc(n− 1) and δ̃c(n− 1) are defined as

[δc(n− 1)]p =
1

2
Cp +

n+ 1

2n
inf{C(L)|L : a hyperplane of TpM} (9)

and

[δ̃c(n− 1)]p = 2Cp +
2n− 1

2n
sup{C(L)|L : a hyperplane of TpM}. (10)

For a positive real number t ̸= n(n − 1), the generalized normalized δ-Casorati
curvatures δc(t;n− 1) and δ̃c(t;n− 1) are given as

[δc(t;n− 1)]p

= tCp +
(n− 1)(n+ t)(n2 − n− t)

nt
inf{C(L)|L : a hyperplane of TpM},

if 0 < t < n2 − n, and

[δ̃c(t;n− 1)]p

= tCp +
(n− 1)(n+ t)(n2 − n− t)

nt
sup{C(L)|L : a hyperplane of TpM},

if t > n2 − n.
Now, we recall the following lemmas, which plays an important role for the

proof of the main results.

Lemma 1. [33] Let g(a1, a2, ..., an) (n ≥ 3) be a function in Rn defined by

g(a1, a2, ..., an) = (a1 + a2)
n∑

i=3

ai +
∑

3≤i<j≤n

aiaj .

If a1 + a2 + ...+ an = (n− 1)ϵ, we have

g(a1, a2, ..., an) ≤
(n− 1)(n− 2)

2
ϵ2.

The equality sign holds if and only if a1 + a2 = a3 = ... = an = ϵ.

Lemma 2. [33] Let g(a1, a2, ..., an) be a function in Rn defined by

g(a1, a2, ..., an) = a1

n∑
i=2

ai

If a1 + a2 + ...+ an = 2ϵ, we have

g(a1, a2, ..., an) ≤ ϵ2.

The equality sign holds if and only if a1 = a2 + a3 + ...+ an = ϵ.
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Oprea[22] gives new direction to prove the Chen inequalities using optimization

techniques. For a submanifold (M, g) of a Riemannian manifold (M̃, g̃) and F :
M → R be a differential function. If we have a constrained problem

minx∈MF(x) (11)

then the following result holds

Lemma 3. [22] Let x◦ ∈ M is the solution of the problem 11, then
(i) (grad(F))(x◦) ∈ T⊥

x◦M
(ii) the bilinear form
B : Tx◦M × Tx◦M → R
B(X,Y ) = HessF(X,Y ) + g̃(σ(X,Y ), (grad(F))(x◦))

is positive semi-definie, where σ is the second fundamental form of M in M̃ and
grad(F) if the gradient of g.

3 Chen inequalities

Theorem 1. Let M is an n-dimensional submanifold of an (n+m)-dimensional

Riemannian manifolds with nearly quasi-constant curvature M̃ endowed with a
connection ∇, then

τ(p)−K(Π) ≤ (n+ 1)(n− 2)

2
p+ q(n− 2)trB + trB|π⊥ − (Λ1 + Λ2)

2
(n− 1)a

−Λ2(Λ1 − Λ2)

2
(n− 1)b− (Λ1 + Λ2)

2
(n− 1)nπ(H)

+
Λ1 + Λ2

2
tr(α |Π) +

Λ2(Λ1 − Λ2)

2
tr(β |Π)

+
Λ1 − Λ2

2
g(tr(σ |Π), P ) +

n2(n− 2)

2(n− 1)
∥H∥2.

Proof. Let p ∈ M and {E1, · · · , En} and {En+1, · · · , En+m} be orthonormal basis
of TpM and T⊥

p M respectively. For X = W = Ei, Y = Z = Ej , i ̸= j by (2.11),
we have

p

{
g(Ej , Ej)g(Ei, Ei)− g(Ei, Ej)g(Ej , Ei)

}
+ q

{
g(Ei, Ei)B(Ej , Ej)

−g(Ei, Ej)B(Ej , Ei) + g(Ej , Ej)B(Ei, Ei)− g(Ej , Ei)B(Ei, Ej)

}
+Λ1α(Ei, Ej)g(Ej , Ei)− Λ1α(Ej , Ej)g(Ei, Ei) + Λ2α(Ei, Ej)g(Ej , Ei)

−Λ2α(Ej , Ej)g(Ei, Ei) + Λ2(Λ1 − Λ2)β(Ei, Ej)g(Ej , Ei)

−Λ2(Λ1 − Λ2)β(Ej , Ej)g(Ei, Ei)

= R(Ei, Ej , Ej , Ei)− g(σ(Ei, Ei), σ(Ej , Ej)) + g(σ(Ej , Ei), σ(Ei, Ej)) + (Λ1

−Λ2)g(σ(Ej , Ej), P )g(Ei, Ei) + (Λ2 − Λ1)g(σ(Ei, Ej), P )g(Ej , Ei). (12)
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Taking the summation over i and j and simplifying, we have

τ =

[
n(n− 1)p

2
+ (n− 1)qtr(B)

]
− (Λ1 + Λ2)

2
(n− 1)a− Λ2(Λ1 − Λ2)

2
(n− 1)b

−(Λ1 − Λ2)

2
(n− 1)nπ(H) +

n+m∑
n+1

∑
1≤i,j=n

[σr
iiσ

r
jj − (σr

ij)
2] (13)

From (6) and (8), we have

K(Π) =

(
p+ q(tr(B|π) + tr(B|π⊥))

)
−Λ1 + Λ2

2
tr(α |Π)−

Λ2(Λ1 − Λ2)

2
tr(β |Π)

−Λ1 − Λ2

2
g(tr(σ |Π), P ) +

n+m∑
r=n+1

[σr
11σ

r
22 − (σr

12)
2]. (14)

Subtracting (13) and (14), we get

τ(p)−K(Π) =
(n+ 1)(n− 2)

2
p+ q(n− 2)trB + trB|Π⊥ − (Λ1 + Λ2)

2
(n− 1)a

−Λ2(Λ1 − Λ2)

2
(n− 1)b− (Λ1 + Λ2)

2
(n− 1)nπ(H)

+
Λ1 + Λ2

2
tr(α |Π)

+
Λ2(Λ1 − Λ2)

2
tr(β |Π) +

Λ1 − Λ2

2
g(tr(σ |Π), P )

+
n+m∑
r=n+1

[
∑

1≤i<j≤n

σr
iiσ

r
jj − σr

11σ
r
22 −

∑
1≤i<j≤n

(σr
ij)

2 + (σr
12)

2]. (15)

By Lemma 1, we have

n+m∑
r=n+1

[ ∑
1≤i<j≤n

σr
iiσ

r
jj − σr

11σ
r
22 −

∑
1≤i<j≤n

(σr
ij)

2 + (σr
12)

2

]
≤ n2(n− 2)

2(n− 1)
∥H∥2. (16)

By (15) and (16), we get the desired result.

Corollary 1. If P is a tangent vector field on M , then H = H̃. In this case, the
inequality in Theorem 1 becomes

τ(p)−K(Π) ≤ (n+ 1)(n− 2)

2
p+ q(n− 2)trB + trB|π⊥ − (Λ1 + Λ2)

2
(n− 1)a

−Λ2(Λ1 − Λ2)

2
(n− 1)b− (Λ1 + Λ2)

2
(n− 1)nπ(H)

+
Λ1 + Λ2

2
tr(α |Π) +

Λ2(Λ1 − Λ2)

2
tr(β |Π)

+
Λ1 − Λ2

2
g(tr(σ |Π), P ) +

n2(n− 2)

2(n− 1)
∥H̃∥2. (17)
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Corollary 2. If P is a tangent vector field on M , then σ = σ̃. In this case,
the equality case of (17) holds at a point p ∈ M if and only if, with respect to
a suitable orthonormal basis {Ea} at p, the shape operators Ar = AEr take the
following forms:

An+1 =


σn+1
11 0 0 · · · 0

0 σn+1
22 0 · · · 0

0 0 σn+1
11 + σn+1

22 · · · 0
...

...
...

. . . 0

0 0 0 · · · σn+1
11 + σn+1

22


and

Ar =


σr
11 σr

12 0 · · · 0
σr
12 −σr

11 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 · · · 0

 , r = n+ 2, · · · , n+m.

4 Inequalities for generalized normalized δ-Casorati
curvatures

Theorem 2. Let M is an n-dimensional submanifold of a Riemannian manifolds
with nearly quasi-constant curvature M̃ of dimension (n + m) endowed with a
connection ∇, then

(i) The generalized normalized δ-Casorati curvature δc(t;n− 1) satisfies

ρ ≤ δc(t;n− 1)

n(n− 1)
+

[
p+

2q

n
tr(B)

]
(18)

−(Λ1 + Λ2)

n
a− Λ2(Λ1 − Λ2)

n
b− (Λ1 − Λ2)π(H),

for any real number t such that 0 < t < n(n− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂c(t;n− 1) satisfies

ρ ≤ δ̃c(t;n− 1)

n(n− 1)
+

[
p+

2q

n
tr(B)

]
(19)

−(Λ1 + Λ2)

n
a− Λ2(Λ1 − Λ2)

n
b− (Λ1 − Λ2)π(H),

for any real number t > n(n− 1). Moreover , the equality holds in (18) and (19)
iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M̃ , such that with respect to suitable tangent orthonormal frame {E1, . . . , En}
and normal orthonormal frame {En+1, . . . , En+m}, the shape operator Ar ≡ AEγ ,
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γ ∈ {n+ 1, . . . , n+m}, take the following form

An+1 =



σγ
11 0 0 . . . 0 0
0 σγ

22 0 . . . 0 0
0 0 σγ

33 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . σγ

n−1n−1 0

0 0 0 . . . 0 n(n−1)
t

σγ
nn


, (20)

An+2 = · · · = An+m = 0.

Proof. Let {E1, E2, . . . , En} and {En+1, En+2, . . . , En+m} be the orthonormal bases
of TpM and T⊥

p M respectively at a point p ∈ M . Using (13), we have

2τ =

[
n(n− 1)p+ 2(n− 1)qtr(B)

]
−(Λ1+Λ2)(n− 1)a− Λ2(Λ1 − Λ2)(n− 1)b

−(Λ1 − Λ2)(n− 1)nπ(H) + n2∥H∥2 − nC (21)

Consider a polynomial Q in the components of second fundamental form σ defined
as

Q = tC+
(n− 1)(n+ t)(n2 − n− t)

nt
C(L)− 2τ(p) +

[
n(n− 1)p+ 2(n− 1)qtr(B)

]
−(Λ1 + Λ2)(n− 1)a− Λ2(Λ1 − Λ2)(n− 1)b− (Λ1 − Λ2)(n− 1)nπ(H)

where L is hyperplane of tangent space at a point p. We assume that L is spanned
by E1, E2, . . . , En−1 and Q has an expression of the form

Q =
t

n

n+m∑
γ=n+1

n∑
i,j=1

(σγ
ij)

2 +
(n+ t)(n2 − n− t)

nt

n+m∑
γ=n+1

n−1∑
i,j=1

(σγ
ij)

2 (22)

−2τ(p) +
[
n(n− 1)p+ 2(n− 1)qtr(B)

]
−(Λ1 + Λ2)(n− 1)a− Λ2(Λ1 − Λ2)(n− 1)b− (Λ1 − Λ2)(n− 1)nπ(H)

From (21) and (22), we arrive at

Q =

n+m∑
γ=n+1

n−1∑
i=1

[(
(n2 + nr − n− 2t)

t

)
(σγ

ii)
2 +

2(n+ t)

n
(σγ

in)
2

]

+

m∑
γ=n+1

[
2

(
2(n+ t)(n− 1)

t

) n∑
(i<j)=1

(σγ
ij)

2 − 2

n∑
(i<j)=1

σγ
iiσ

γ
jj +

t

n
(σγ

nn)
2

]

≥
n+m∑

γ=n+1

n−1∑
i=1

[(
(n2 + n(r − 1)− 2t)

t

)
(σγ

ii)
2−2

n∑
(i<j)=1

σγ
iiσ

γ
jj+

t

n
(σγ

nn)
2

]
.(23)

For t = n+ 1, . . . , n+m, lets us have a quadratic form Fγ : Rn → R defined as

Fγ(σ
γ
11, . . . , σ

γ
nn) =

n−1∑
i=1

n2 + n(r − 1)− 2r

r
(σγ

ii)
2 − 2

n∑
(i<j)=1

σγ
iiσ

γ
jj +

t

n
(σγ

nn)
2
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and the optimization problem

min Fγ

subject to G : σγ
11 + · · ·+ σγ

nn = cγ

where c is a real constant. The partial derivatives of gγ are{
∂Fγ

∂σγ
ii
= 2(n+t)(n−1)

t σγ
ii − 2

∑n
l=1 σ

γ
ll

∂Fγ

∂σγ
nn

= 2t
n σ

γ
nn − 2

∑n−1
l=1 σγ

ll

(24)

where i = {1, 2, . . . , n− 1}, i ̸= j, and γ ∈ {n+ 1, . . . , n+m}.
The vector gradFγ is normal atG for the optimal (σγ

11, . . . , σ
γ
nn) of the problem.

that is, it is collinear with the vector (1, 1, . . . , 1). Using (24), the critical point
of the corresponding problem has the form{

σγ
ii =

t
n(n−1)v

γ , i ∈ {1, . . . , n− 1}
σγ
nn = vγ

(25)

By use of (25) and
∑γ

i=1 σ
γ
ii = cγ , we arrive at{

σγ
ii =

t
(n+t)(n−1)c

γ , i ∈ {1, . . . , n− 1}
σγ
nn = n

(n+t)c
γ .

(26)

For an arbitrary fixed point p ∈ G, the 2-form B : TpG × TpG → R has the
following form

B(X,Y ) = Hess(Fγ(X,Y )) + ⟨h(X,Y ), (grad(F))(x◦)⟩ (27)

where h and ⟨, ⟩ are the second fundamental form of G in Rn and standard inner
product on Rn respectively. The Hessian matrix of Fγ is of the form

Hess(Fγ) =


2 (n+t)(n−1)

t − 2 −2 . . . −2 −2

−2 2 (n+t)(n−1)
t − 2 . . . −2 −2

...
...

. . .
...

...

−2 −2 . . . 2 (n+t)(n−1)
t − 2 −2

−2 −2 . . . −2 2t
n

.


Though G is totally geodesic in Rn, take a tangent vector X = (X1, . . . , Xn)
at any arbitrary point p on G, verifying the relation

∑n
i=1Xi = 0, we have the

following

B(X,X) =
2(n2 − n+ tn− 2t)

t

n−1∑
i=1

X2
i +

2t

n
X2

n − 2

( n∑
i=1

Xi

)2

(28)

=
2(n2 − n+ tn− 2t)

t

n−1∑
i=1

X2
i +

2t

n
X2

n

≥ 0
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Hence the point (σγ
11, . . . , σ

γ
nn) is the global minimum point by Lemma 3 and

Fγ(σ
γ
11, . . . , σ

γ
nn) = 0. Thus, we have Q ≥ 0 and hence

2τ ≤ tC+
(n− 1)(n+ t)(n2 − n− t)

nt
C(L) +

[
n(n− 1)p+ 2(n− 1)qtr(B)

]
−(Λ1 + Λ2)(n− 1)a− Λ2(Λ1 − Λ2)(n− 1)b− (Λ1 − Λ2)(n− 1)nπ(H),

whereby, we obtain

ρ ≤ t

n(n− 1)
C+

(n+ t)(n2 − n− t)

n2t
C(L) +

[
p+

2

n
qtr(B)

]
−(Λ1 + Λ2)

n
a− Λ2(Λ1 − Λ2)

n
b− (Λ1 − Λ2)π(H),

for every tangent hyperplane L of M . If we take the infimum over all tangent
hyperplanes L, the result trivially follows. Moreover the equality sign holds iff

σγ
ij = 0, ∀ i, j ∈ {1, . . . , n}, i ̸= j and γ ∈ {n+ 1, . . . ,m} (29)

and

σγ
nn =

n(n− 1)

t
σγ
11 = · · · = n(n− 1)

t
σγ
n−1n−1,

∀γ ∈ {n+ 1, . . . ,m}. (30)

From (29) and (30), we obtain that the equality holds if and only if the subman-

ifold is invariantly quasi-umbilical with normal connections in M̃ , such that the
shape operator takes the form (14) with respect to the orthonormal tangent and
orthonormal normal frames.

In the same way, we can prove (ii).
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[25] Özgür, C. and Mihai, A., Chen inequalities for submanifolds of real space
forms with a semi-symmetric non-metric connection, Canad. Math. Bull. 55
(2012), 611-622.

[26] Qu, Q. and Wang, Y., Multiply warped products with a quarter-symmetric
connection, J. Math. Anal. Appl. 431 (2015), 955-987.

[27] Su, M., Zhang, L. and Zhang, P., Some inequalities for submanifolds in a
Riemannian manifold of nearly quasi-constant curvature, Filomat, 31 (2017),
2467- 2475.

[28] Verstralelen, L., Geometry of submanifolds I, The first Casorati curvature
indicatrices, Kragujevac J. Math. 37 (2013), 5-23.

[29] Verstralelen, L., The geometry of eye and brain, Soochow J. Math. 30 (2004),
367-376.

[30] Wang, Y., Chen inequalities for submanifolds of complex space forms and
Sasakian space forms with quarter-symmetric connections, Int. J. Geom.
Meth. Mod. Phy. 16 (2019), 1950118.

[31] Yano, K., On semi-symmetric metric connection. Rev. Roumaine Math.
Pures Appl., 15 (1970), 1579-1586.

[32] P. Zhang, X. Pan, L. Zhang, Inequalities for submanifolds of a Rieman-
nian manifold of nearly quasi-constant curvature with a semi-symmetric non-
metric connection, Rev. Un. Mat. Argentina, 56 (2015), 1-19.



124 Zamrooda Jabeen, Mehraj Ahmad Lone and Sandeep Sharma

[33] P. Zhang, L. Zhang, W. Song, Chen’s inequalities for submanifolds of a Rie-
mannian manifold of quasi-constant curvature with a semi-symmetric metric
connection, Taiwanese J. Math., 18 (2014), 1841-1862.

[34] P. Zhang, Remarks on Chen’s inequalities for submanifolds of a Riemannian
manifold of quasi-constant curvature, Vietnam J. Math., 43 (2015), 557-569.

[35] P. Zhang, L. Zhang, Casorati inequalities for submanifolds in a Riemannian
manifold of quasi-constant curvature with a semi-symmetric metric connec-
tion, Symmetry, 8 (2016), 19.



Optimal inequalities for submanifolds of Riemannian manifolds... 125


