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NEW RESULTS ON SEMICLOSEDNESS WITH
ILLUSTRATION OF THE SOLUTION OF FEEDBACK

CONTROL PROBLEMS

Abdellah GHERBI1, Bekkai MESSERDI∗ ∗∗2 and Sanaa MESSERDI3

Abstract

We study in this paper the concept of closable-semiclosed operators in a
Hilbert space and their algebraic and topological structures are investigated.
We establish a non-trivial correspondence between closable and semiclosed
operators. We also provide some necessary and/or sufficient conditions un-
der which semiclosed operaors are closable. Interesting examples are provided
and as an illustration, we investigate existence and uniqueness of solutions
of feedback control problems where the characteristic operator is semiclosed.
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1 Introduction and motivations

We begin this introduction by establishing some notations and terminologies
as well as certain specific details about closed and closable operators. We are
usually concerned with a complex Banach space E with norm ∥.∥ , or with an
infinite dimensional complex Hilbert space H with inner product ⟨., .⟩ and A a
linear operator acting in E or in H. ⊥ is the orthogonality with respect to the
inner product of H. We use D(A), N(A), R(A) and σ(A) to denote the domain,
the kernel, the range and the spectrum of A, respectively, and write d(A) for
the codimension of the range R(A). If A is densely defined linear operator (D(A)
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dense in E), the operator A∗, adjoint of A, is defined on the dual space E∗ of E
by:

⟨A∗f, x⟩ = ⟨f,Ax⟩ , for all x ∈ D(A) and f ∈ D(A∗)

with domain D(A∗) = {f ∈ E∗ : x 7→ ⟨f,Ax⟩ is continuous on D(A)} .
Operators that are symmetric, ⟨Af, x⟩ = ⟨f,Ax⟩ , for all f, x ∈ D(A), play a

particularly important role, as they correspond to the observables in the theory
of quantum mechanics. A is said to be closed if for any sequence (xn)n∈N in D(A)
such that lim

n→∞
xn = x and lim

n→∞
Axn = y exist in E, one has x ∈ D(A) and

Ax = y. Or, since (xn, Axn) belongs to the graph G(A) = {(x,Ax) : x ∈ D(A)}
of A, it’s clear that A is closed if and only if G(A) is a closed subspace of E ×E.
If D(A) is closed in E, then the closed graph theorem asserts that A is bounded
if and only if A is closed. We denote by B(E) the algebra of bounded linear
operators on E. C(E) is the set of closed operators in E. We will be mainly
interested in unbounded operators with dense domain, it is these operators who
admit an adjoint. ∥x∥A = ∥x∥ + ∥Ax∥ defines a norm on D(A) which we call
the graph norm. The operator A is closed if and only if (D(A), ∥.∥A) is a Banach
space.

An operator A on E is called closable if there exists a closed operator B such
that A ⊂ B, i.e. B is an extension of A or D(A) ⊂ D(B) and Ax = Bx for
all x ∈ D(A), which still implies that G(A) ⊂ G(B). In that case, there exists
a smallest closed extension A of A which is called the closure of A. Thus, A is
closable if and only if for (xn)n∈N in D(A), y ∈ E such that lim

n→∞
xn = 0 and

lim
n→∞

Axn = y one has y = 0. So, if A is closable G(A) = G(A).

An operator may be not closed for two different reasons. The first reason
is that the domain had been chosen too small, but the operator has a closed
extension. The second possible reason is that an operator may not have any
closed extensions. Let’s remember that if E is reflexive and A is densely defined
and closable, then A∗ is closed and densely defined and A∗∗ = A. Hence, A is
continuous if and only if D(A) = E, and in this case D(A∗) = E∗, A∗ : E∗ −→ E∗

is continuous and ∥A∥ = ∥A∗∥ . In addition, if A ⊂ B then B∗ ⊂ A∗ and all densely
defined symmetric operator A, i.e. A ⊂ A∗, is closable and A ⊂ A∗∗ ⊂ A∗.

On the other hand, the importance of essential self-adjointness (symmetric,
densely defined operators that have a self-adjoint extension) is that it often leads
to a non-closed but closable symmetric operator. Therefore, the non-density of
the domain of the adjoint makes clear why an operator may not have a closed
extension!. Note that there exist non closable operators. Fortunately enough, such
operators do not play an essential role in mathematical formulations of quantum
mechanics, but their mathematical interest remains proven.

A synthetic example of operator that not have any closed extensions is intro-
duced as follows, let H = l2 the space of square-summable sequences, let A be
the operator with domain:

D(A) =
{
x = (xn)n∈N ⊂ l2 : xn ̸= 0, for finitely many n

}
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and

Ax =

 ∞∑
j=0

xj , 0, 0, 0, ...

 .

Let’s determine A∗. Let en be the standard unit vector. Pick y ∈ D(A∗), then:

1.y1 = ⟨Aen, y⟩ = ⟨en, A∗y⟩ = 1.(A∗y)n, n ∈ N.

This yields that A∗y = 0, and we obtain y1 = 0. So, for any y ∈ D(A∗) we
have y1 = 0 and A∗y = 0. Now consider the linear operator B given by:

D(B) =
{
y = (yn)n∈N ⊂ l2 : y1 = 0

}
, By = 0.

Let y ∈ D(B), ⟨Ax, y⟩ = ⟨x,By⟩ , for all x ∈ D(A). Therefore, y ∈ D(A∗) and
A∗y = By. So, D(A∗) =

{
y = (yn)n∈N ⊂ l2 : y1 = 0

}
, A∗y = 0, for all y ∈ D(A∗).

Since D(A∗) is not dense in l2, the operator A is not closable.

While unbounded operators cannot be continuous, for some unbounded oper-
ators there is some important properties that play a role similar to continuity in
a bounded operator such as closedness and closability of operators. Furthermore,
every infinite-dimensional normed space admits a non-closable linear operator.
The proof requires the axiom of choice and so it is in general non-constructive
[15]. In particular, non-closable operators have as spectrum the whole of C. In-
deed, if A is non-closable then σ(A) = C and we can check that neither is A− λ,
λ ∈ C. We then have to see that A is not invertible. Suppose that A is boundedly
invertible. If xn ∈ D(A) for all n ∈ N, such that xn → 0 and Axn = yn −→ y ̸= 0
as n → ∞, then A−1Axn = A−1yn −→ A−1y but A−1Axn = xn → 0, as n → ∞,
thus A−1y = 0 ∈ D(A) since D(A) has to be a linear space and A(0) = 0, since
A is linear, this is a contradiction.

If A is a closed operator on E , then N(A) is a closed subspace of E, this is
generally not true for closable operators. Let A : D(A) −→ E be a densely defined
closable operator with closure A, then N(A) ⊊ N(A). The inclusion is simple to
verify, let’s show that it can be strict. Indeed, let E = l2 (N∗) and {ek : k ∈ N∗}
the canonical basis of l2 (N∗) . Define:

A(x1, x2, x3, ...) = (0, x2, x3, ...)

withD(A) the subspace of l2 (N∗) spanned by {f1, e2, e3, ...} where f1 =
(
1
1 ,

1
2 ,

1
3 , ...

)
.

Then A is densely defined and e1 /∈ D(A). Hence, N(A) = N(A) = {0} but
N(A) = Ce1.

For similar results on the non-closedness of the kernel we can cite the following
interesting theorem:

Theorem 1. Let f : E −→ C be a linear functional on E. Then f is a bounded
linear functional if and only if N(f) is closed in E.

Proof. If f is bounded, then N(f) = f−1 ({0}) is closed since {0} is closed in E.
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Conversely, Suppose that N(f) is closed and f is unbounded, f not identically
zero on E. Then, for each n ∈ N, there exists xn ∈ E, ∥xn∥ = 1, such that

|f(xn)| ≥ n. Let x ∈ E, with f(x) ̸= 0 and yn = x − f(x)
f(xn)

xn, n ∈ N∗. Note that

yn ∈ N(f), for all n ∈ N∗, and that the sequence (yn)n∈N∗ converges to x in E :

∥yn − x∥ =

∣∣∣∣ f(x)f(xn)

∣∣∣∣ ≤ |f(x)|
n

−→ 0 as n→ ∞.

So, x ∈ N(f) which is a contradiction. Therefore, the assumption that f is
unbounded is false and then f is bounded on E.

In fact, there exists an unbounded linear functional f : E −→ C iff dimE =
∞. Indeed, choose a normalized countably infinite set of linearly independent
vectors B′ = {ek : k ∈ N} in E. Extend B′ to a Hamel basis B for E. Now define,
f : B −→ C by setting, f(B\B′) = 0 and f(ek) = k, k ∈ N. Extend f linearly
to whole E, call the extended functional f. Check that f is unbounded and its
kernel N(f) is necessarily not closed in E.

Let A be a linear operator not necessarily closed on E, the property R(A)
being closed may be characterized by means of a suitable number associated with
A. The reduced minimum modulus of A is defined by:

γ(A) = sup {γ : ∥Ax∥ ≥ γd(x,N(A)) for all x ∈ D(A)}

where d(x,N(A)) denotes the distance from x toN(A). γ(A) satisfies the following
properties ([10], [12]):

R(A) is closed ⇐⇒ R(A∗) is closed

⇐⇒ γ(A) = γ(A∗) > 0

⇐⇒ ∃r > 0, σ(A∗A) ⊂ {0} ∪ [r,+∞[ .

In addition, if in particular A is a closed operator and R(A) is complemented
in E or d(A) < ∞, then R(A) is closed. In general, for a subspace M of E
such that E = M ⊕ Y this does not imply that M is closed, because considering
a non-continuous linear functional f on E, f exists by virtue of Theorem 1.1,
and put M = N(f). Then there exists a one-dimensional subspace Y of E such
that E = M ⊕ Y but M is not closed. Consequently, we dont guarantee that
dimE/M <∞ and then M is closed. However, if M is a range of a closed linear
operator then dimE/R(A) <∞ implies that R(A) is closed.

Also, γ(A) = ∞ if and only if N(A) is dense in D(A), in particular, there
are closable operators that have non-closed infinite dimensional null space (see
[12]). Furthermore, the range space of a compact operator is closed, if and only
if it is finite-dimensional. So, the important conclusion is that if A is a compact
operator acting between infinite-dimensional Hilbert spaces, and R(A) is infinite-
dimensional (e.g., an integral operator with a non-degenerate kernel), then R(A)
is not closed. The following example shows that a large class of operators of
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practical interest having non-closed range. Let H = L2 [a, b] and consider the
integral operator K,

(Kf) (x) =

b∫
a

k(x, y)f(y)dy, a ≤ x ≤ b

where k ∈ L2 ([a, b]× [a, b]) . We know that K is compact and has non-closed
range if the kernel is non-degenerate in the sense that k is never written in the

form k(x, y) =
p∑

j=1
ϕj(x)ψj(x) where ϕj , ψj ∈ L2 [a, b] , j ∈ {1, ..., p} .

Nevertheless, note also that Filmore and Williams have studied in [[5], Theo-
rem 2.9 and its Corollary, p. 266-267] operators with non-closed range. Moreover,
linear operator equations of type Ax = y; A linear opeartor, are called ill-posed
in the sense of Nashed if the range R(A) of A is not closed but contains a closed
infinite dimensional subspace.

Cauchy problems on some Banach space E :

(P)

{
du
dt = Au(t), u(0) = x ∈ E,
t ∈ [0, T ] , 0 < T ≤ ∞.

where A is a closed or closable operator with sufficiently nice spectral properties,
were extensively studied. Under appropriate boundary conditions theses problems
are wellposed. However, there are many situations which lead inherently illposed

Cauchy problems, for example the heat problem (A = −∆ =
n∑

j=1

∂2

∂x2
j
) for a rod if

heat and flux can be observed at only one point, the solutions will not necessarily
depend continuously on the data [4]. Some examples of illposed Cauchy problems
are given by Agmon and Nirenberg in [1]. If A is sum, composition, or limit of
closed operators, existence results for the abstract Cauchy problem P depend on
the semiclosed character of operator A. Thus, the class of closed operators was
extended by Messirdi et al. [13] to a larger set of almost closed linear operators:
namely, the operators whose graph, under a convenient norm, is a Banach space
continuously embedded in E × E, these latter are called operator ranges by Fill-
more and Williams [5]; Julia operators by Dixmier [3] and semiclosed operators
by Foias [6] and Kaufman [9]. The class of semiclosed operators contains the set
of all closed linear operators and is invariant under addition, composition and
limits. From an appropriate description of different concepts of the closedness of
linear operators, Messirdi et al. were the first to note in [13], through constructive
examples, that there exists semiclosed operators which are not closable and oth-
ers closable linear operators which are not semiclosed. It then became natural to
characterize the intersection of these two classes by studying closable-semiclosed
operators.

This paper concern this concept of operators and introduces some new prop-
erties of semiclosed subspaces, semiclosed operators and closable-semiclosed op-
erators. Usually these operators act on Hilbert spaces, and much attention is
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being paid here to their topological actions in operator theory, which include the
operator ranges, operators with closed range and quotients of bounded opera-
tors. However, this does not prevent us from defining semiclosedness in general
on Banach spaces. It is essentially established in this work a non-trivial cor-
respondence between closable and semiclosed operators. We also provide some
necessary and/or sufficient conditions under which semiclosed operaors are clos-
able. Interesting examples are provided, they allow readers to understand the
semiclosed character, and intuitively understand the comparison results between
closable and semiclosed operators. As an illustration, we investigate existence and
uniqueness of solutions of certain linear evolution equations with Feedback con-
trol, where the characteristic operators might be semiclosed. Laplace transform
theory provides analytic tools for a detailed study of these types of problems.

In Section 2, we investigate the class of semiclosed subspaces and semiclosed
operators. In Section 3, we characterize the set of closable-semiclosed linear op-
erators what is the main purpose of the paper. In section 4, we study existence
and uniqueness of solutions of linear evolution equations with Feedback Control,
by using Laplace transform theory for Banach space valued functions.

2 New results on semiclosedness

Definition 1. 1) For a subspace M ⊂ H, we say that it is semiclosed if it admits
an inner product ⟨., .⟩M with respect to which it becomes a Hilbert space, and the
embedding:

J : (M, ⟨., .⟩M ) −→ (H, ⟨., .⟩)
x 7→ Jx = x

is a continuous operator.

2) A linear operator A : D(A) −→ H is semiclosed if its graph G(A) is a
semiclosed subspace in H ×H. Equivalently, if there exist an inner product ⟨., .⟩∗
on G(A) such that (G(A), ⟨., .⟩∗) is Hilbert and C > 0 with ∥X∥2 ≤ C ⟨X,X⟩∗ for
all X ∈ G(A). The set of all semiclosed operators on H is denoted by SC(H).

Remark 1. This definition is naturally generalizable to Banach spaces by replac-
ing the inner product with the norm of space.

Example 1. 1) Classical Sobolev spaces Hs(Rn), n ∈ N∗, s ≥ 0, are semiclosed
subspaces in L2(Rn) with the corresponding inner product:

⟨φ,ψ⟩s =
∫
Rn

(
1 + |ξ|2

)s
Ff(ξ)Fg(ξ)dξ,

where F is the Fourier transform on L2(Rn).

2) The intersection, sum and product of closed (semiclosed) subspaces of H
are semiclosed. Indeed, if M and N are two semiclosed subspaces of H, then the
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standard inner product defined on M ×N is given by:

⟨(xM , xN ) , (yM , yN )⟩M×N = ⟨xM , yM ⟩M + ⟨xN , yN ⟩N

for all xM , yM ∈M and xN , yN ∈ N, where ⟨., .⟩M and ⟨., .⟩N are the correspond-
ing inner products on M and N, repectively, with:

∥xM∥ ≤ α
√
⟨xM , xM ⟩M , ∥xN∥ ≤ β

√
⟨xN , xN ⟩N ; α, β > 0.

It is immediate to show that
(
M ×N, ⟨., .⟩M×N

)
is complete, on the other hand

we have:

∥(xM , xN )∥H×H =

√
∥xM∥2 + ∥xN∥2 ≤ α ⟨xM , xM ⟩M + β ⟨xN , xN ⟩N

≤ max (α, β) ⟨(xM , xN ) , (xM , xN )⟩M×N .

So, M ×N is a semiclosed subspace of H×H with respect to ⟨., .⟩M×N . We check
in the same way that M +N and M ∩N are semiclosed in H.

3) Let M be a proper dense semiclosed subspace of H. Then the identity oper-
ator IM :M −→ H is not closed but it is semiclosed operator on H, since:

G(IM ) = {(x, x) : x ∈M} = (M ×M) ∩∆,

∆ = {(x, y) ∈ H ×H : x = y}

is semiclosed in H ×H as intersection of the semiclosed subspace M ×M and
the closed set ∆ in H ×H.

4) In particular, the continuous injection of Hs(Rn), s ≥ 0, into L2(Rn), is a
semiclosed operator on L2(Rn).

Remark 2. 1) The set of semiclosed subspaces of a Hilbert space forms a complete
lattice with respect to intersection and sum see [9].

2) Let A ∈ SC(H), then D(A) and R(A) are semiclosed subspaces of H. The
restriction of A to a semiclosed subspace is a semiclosed operator ([13]).

3) Semiclosed operators are also used for introducing the quotient of bounded
operators [7], [14].

There are, among others, some examples showing that all semiclosed subspaces
or semiclosed operators are not necessarily closed and that every subspace or
every operator is not necessarily semiclosed. In fact, it is indicated in [15] that
considering proper dense subspaces, one can construct non semiclosed operators
via the axiom of choice and Theorem 1.1.

We start with a number of new characterizations of semiclosed operators.
First, semiclosed operators are induced by positive bounded operators.

Proposition 1. Let A ∈ SC(H), then there is a unique operator T ∈ B(H ×H),
T positive and self-adjoint, such that ⟨X,Y ⟩H×H = ⟨X,TY ⟩∗ for all X ∈ G(A)
and Y ∈ H ×H, where ⟨., ⟩H×H is the natural inner product on H ×H.
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Proof. Let Y ∈ H×H and define fY : H×H −→ C by fY (X) = ⟨X,Y ⟩H×H . The
restriction of fY to G(A) is bounded on (G(A), ⟨., .⟩∗) , because for X ∈ G(A),

|fY (X)| ≤
√
C ∥X∥∗ ∥Y ∥H×H

where ∥.∥H×H =
√

⟨., .⟩H×H and ∥.∥∗ =
√
⟨., .⟩∗. By Riesz representation theorem,

there exists a unique Z ∈ G(A) such that fY (X) = ⟨X,Z⟩∗ .
Define T :

(
H ×H, ⟨., .⟩H×H

)
−→ (G(A), ⟨., .⟩∗) by TY = Z. Then ⟨X,Y ⟩H×H =

⟨X,TY ⟩∗ for all X ∈ G(A), Y ∈ H ×H. Clearly, T (H ×H) ⊂ G(A) and for each
Y ∈ H ×H,

∥TY ∥H×H ≤
√
C ∥TY ∥∗ ≤

√
C ′ ∥Y ∥H×H ; C ′ > 0.

Furthermore, for all X,Y ∈ H ×H,

⟨TY,X⟩H×H = ⟨TY, TX⟩∗ = ⟨TX, TY ⟩∗ = ⟨TX, Y ⟩H×H = ⟨Y, TX⟩H×H ,

⟨TY, Y ⟩H×H = ⟨TY, TY ⟩∗ = ∥TY ∥2∗ ≥ 0.

So, T is bounded positive self-adjoint operator on H ×H.

Remark 3. 1) It can be deduced from the proof of the previous proposition that
G(A) is invariant under T, and for all semiclosed subspace M of H, and for each
Hilbert inner product ⟨., .⟩M on M such that (M, ⟨., .⟩M ) is continuously embedded
in (H, ⟨., .⟩) , there is a unique bounded positive selfadjoint operator S on H such
that ⟨x, y⟩ = ⟨x, Sy⟩M , for all x ∈ M and y ∈ H. M is invariant under S. In
addition, by virtue of uniqueness of the Riesz vector, T (M ×{0}) = S(M)×{0} ,
T ({0}×M) = {0}×S(M) and T (M×M) = S(M)×S(M). So, M×{0} , {0}×M
and M ×M are invariant under T.

2) Unlike closed operators, we have already mentioned that if A ∈ SC(H),
N(A) is not necessarely closed in H, nevertheless it is in D(A)∗, where D(A)∗
is the domain D(A) equipped with Hilbert structure induced by the inner product
⟨., .⟩∗ .

3) Proposition 2.5 also shows that each semiclosed subspace of H possesses a
unique topology in the sense that if ⟨., .⟩1,M and ⟨., .⟩2,M are inner products on

M semiclosed subspace of H such that
(
M, ⟨., .⟩j,M

)
is continuously embedded in

(H, ⟨., .⟩) , j ∈ {1, 2} , then the topology induced on M by ⟨., .⟩1,M coincides with
that induced by ⟨., .⟩2,M .

We know that sum and product of two semiclosed operators is also a semiclosed
operator which is not the case for closed operators (see [13]).

Proposition 2. Let A,B ∈ SC(H) such that D(A) ∩D(B) and B−1 (D(A)) are
not trivial, then A+B ∈ SC(H) and AB ∈ SC(H).

Hence, the set SC(H) is closed under addition and multiplication, but it is
not a vector space (see [9], [13]). In fact, SC(H) is the smallest family containing
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all closed operators and itself closed under sum and product, precisely if Cl(H))
denotes the set of all closable operators in H, then C(H) ⊂ Cl(H) and C(H) ⊂
Cl(H)∩SC(H). However, only Messirdi et al. have shown in [13] and [15] that the
classes Cl(H) and SC(H) are not comparable, since there is semiclosed operators
that are not closable and others closable that are not semiclosed. Constructive
examples are given in [13].

Proposition 3. Let A ∈ SC(H).
1) If D(A) = H then A is bounded.
2) A still has a densely defined semiclosed extension.
3) R(A) is closed if and only if R(A)⊕N is closed for some semiclosed subspace

N of H.

For assertions (1) and (2), see [13]. On the other hand, it is clear that the
sum of two closed subspaces of an infinite dimensional Banach space E is not
necessarily closed. The following lemma due to Neubauer, see [11], gives sufficient
conditions under which semiclosed subspaces are closed, it also allows to show the
assertion (3) of the previous proposition.

Lemma 1. (Neubauer’s lemma) Let M and N be semiclosed subspaces of E. If
M +N and M ∩N are closed in E, then both M and N are closed.

Lemma 2. Let M1 and M2 be two subspaces of E such that M1 is semiclosed,
M2 and M1 +M2 are closed. Then,

1) M1 =M1 +M1 ∩M2,
2) M1 ∩M2 =M1 ∩M2.

Proof. 1) Let’s put M0 = M1 +M1 ∩M2. Thus, M0 is a semiclosed subspace of
E and since M1 ∩M2 ⊂M2 and M1 ⊂M0, we have:

M0 +M2 ⊂M1 +M2 ⊂M0 +M2.

So, M0 +M2 =M1 +M2 is closed in E. In addition,

M0 ∩M2 =
(
M1 +M1 ∩M2

)
∩M2 ⊂M1 ∩M2 ⊂M0 ∩M2.

Thus, M0∩M2 =M1 ∩M2 is also closed in E. Now, using the Neubauer’s lemma
we deduce that M0 is closed in E. Precisely, M1 ⊂M0 ⊂M1 and then M0 =M1.

2) Therefore,
M1 ∩M2 =M0 ∩M2 =M1 ∩M2.

Furthermore, if A a linear operator on E, it is simple to establish that:

Lemma 3.
(E × {0}) +G(A) = E × {0}+ {0} ×R(A),

and
(E × {0}) ∩G(A) = N(A)× {0} .
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The following result brings interesting informations about closed extensions of
a semiclosed operator.

Lemma 4. Let A ∈ SC(E) with closed range R(A) in E, then:

G(A) = G(A) +N(A)× {0} .

Proof. As R(A) is closed in E and G(A) is semiclosed in E × E, it follows from
Lemma 2.11, that (E × {0}) +G(A) = E × {0}+ {0} ×R(A) is closed in E ×E.
So, using Lemma 2.10, with M1 = G(A) and M2 = E × {0} , we obtain:

G(A) = G(A) +G(A) ∩ (E × {0}).

Thus, by virtue of Lemma 2.11, we have G(A) ∩ (E × {0}) = N(A)× {0} =
N(A)× {0} , and then the requested result.

We are now able to prove our first fundamental result:

Theorem 2. Let A ∈ SC(E).
1) If N(A) and R(A) are closed in H, then A ∈ C(E).
2) If R(A) is closed, then A is closable if and only if N(A) ∩D(A) = N(A).

Proof. 1) If N(A) and R(A) are closed in E, we deduce from Lemma 2.12, that:

G(A) = G(A) +N(A)× {0} = G(A)

so G(A) is closed in E × E, which implies that A is closed.
2) Suppose that R(A) is closed in E. If N(A)∩D(A) = N(A), show that A is

closable on E. Let (0, v) ∈ G(A) = G(A) +N(A)× {0} , then there are s ∈ D(A)
and t ∈ N(A) such that (0, v) = (s,As) + (t, 0). So,{

s+ t = 0
As = v

,

from where s = −t ∈ D(A) ∩N(A) = N(A) and v = As = 0. A = A∗∗.
Conversely, if A is closable just check that N(A) ∩ D(A) ⊂ N(A). Let u ∈

N(A)∩D(A), then there is a sequence (un)n∈N such that un belongs to N(A) for
all n ∈ N and un −→ u in E as n → ∞. Hence, A(un − u) = Au −→ Au in E as
n→ ∞ and thus Au = 0.

3 Closable-Semiclosed operators

We deduce from Theorem 2.13, two fundamental characterizations of the class,
SC(E) ∩ Cl(E), of closable-semiclosed operators.

Let

ŜC(E) = {A ∈ SC(E) : N(A) and R(A) are closed} ,
and

S̃C(E) =
{
A ∈ SC(E) : R(A) is closed and N(A) ∩D(A) = N(A)

}
.
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Corollary 1.

ŜC(E) = {A ∈ C(E) : γ(A) > 0} ,

S̃C(E) = {A ∈ Cl(E) : N(A) is closed and γ(A) > 0} .

In Hilbert spaces, it is possible to obtain finer results than those established
essentially in Lemmas 2.10, 2.11 and 2.12.

Lemma 5. Let M and N be semiclosed subspaces of H. If M +N is closed in H
and M ∩N is closed in M, then:

1) N is closed in H,

2) There is a closed subspace H0 in H such that H0 ⊂M and H0+N =M+N,

3) (M ∩N)⊥ =M⊥ +N⊥.

Proof. Let H0 be the orthogonal complement of M ∩N in M. Then:

M = H0 +M ∩N, H0 ∩N ⊂ H0 ∩M ∩N = {0} ,

andH0+N =M+N sinceH0+N ⊂M+N ⊂ H0+N. Thus, H0∩N = {0} and
H0+N is closed inH. Using Neubauer’s lemma and Lemma 2.10, we obtain thatN
and H0 are closed in H andM∩N =M ∩N. In addition, it is simple to show that

M +N closed is equivalent to M⊥ +N⊥ =M
⊥
+N⊥ =

(
M ∩N

)⊥
= (M ∩N)⊥

(see [11]).

Corollary 2. Let M and N be semiclosed subspaces of H.

1) If M +N is closed in H, then:

M =M + (M ∩N), N = N + (M ∩N),

M ∩N = (M ∩N) ∩N, M ∩N = (M ∩N) ∩M,

M ∩N =M ∩N =M ∩N = (M ∩N),

(M ∩N)⊥ =M⊥ +N⊥.

2) If M + N is closed in H and M and N are dense in H, then M ∩ N is
dense in H.

Proof. 1) is an immediate consequence of Lemma 2.10 and Lemma 3.2.

2)

(M ∩N)⊥ =M⊥ +N⊥ = {0}+ {0} = {0} .

Proposition 4. Let A ∈ SC(H) be densely defined. If R(A) is closed then
R(A∗) = N(A)⊥ is closed in H.

Proof. A∗ exists sinceD(A) is assumed to be dense inH andG(A∗) = V (G(A))⊥ =
G(−A)⊥, where V is the isometry V (x, y) = (−y, x) on H ×H. Thus,

H × {0}+G(−A) = H × {0}+ {0} ×R(A)
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is closed in H ×H. Then Lemma 2.11 and Lemma 3.2 give:

(N(A)× {0})⊥ = ((H × {0}) ∩G(−A))⊥ = ({0} ×H) +G(A∗)

= ({0} ×H) + (R(A∗)× {0}) ,

which implies R(A∗) = N(A)⊥.

By using successively Neubauer’s lemma, Lemma 2.10 and Theorem 2.13, we
obtain our second main result:

Theorem 3. Let A ∈ SC(H) be densely defined. If N(A)∩R(A) and N(A)+R(A)
are closed in H, then N(A) and R(A) are closed in H. Thus, A ∈ C(H) is with
closed range.

{A ∈ SCd(H) : N(A) ∩R(A) and N(A) +R(A) are closed}
⊂ {A ∈ Cd(H) : γ(A) > 0} .

where the index ”d” means that operators are all densely defined in the corre-
sponding class.

Remark 4. Let L(H) denotes the class of densely defined semiclosed operators
A such that N(A) ∩D(A) = N(A). It is clear from the above that:

B(H) ⊂ Cd(H) ⊂ L(H),

{A ∈ SCd(H) ∩ Cld(H) : N(A) is closed in H} ⊂ L(H),

S̃Cd(H) = {A ∈ L(H) : γ(A) > 0}
= {A ∈ Cld(H) : N(A) closed and γ(A) > 0} ,

ŜCd(H) ⊂ L(H).

The new class L(H) is caracterized by the kernel and the domain of operators.
But the kernel defines only a part of the image (Ax = 0, A ∈ L(H)), so the
behavior of the rest of the points is completely undefined. Take for example
the direct sum of an unbounded operator and a null operator, so we will have
an operator of L(H) whose only useful information it emits is that concerning
its kernel. The unbounded part of such operators is completely arbitrary and
as it does not contain any particular information. So the additional property
concerning the range had to intervene to formulate the class L(H) via SCd(H)
and Cld(H). The class L(H) undoubtedly opens other horizons of research for
interested readers...
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4 Feedback Control Problems governed by semiclosed
operators

The class of semiclosed operators is quite large. It contains basically all linear
operators appearing in applications by imposing certain conditions, such that
operators commute with the Bochner and Stieltjes integral for sufficiently regular
functions (see [8], [15]). One of the basic results of one parameter semigroup
theory is that the abstract Cauchy problem (P) is well-posed if and only if the
linear operator A generates a strongly continuous semigroup, this is not usually
the case when the operator A is assumed semiclosed. In this section, we will study
the abstract Cauchy problem (P), with A = B+CS, B and S are closed and C is
bounded in E, S is called the observation operator and C the feedback control. If
u ∈ C1 ([0, T ];E) ∩ C([0, T ]) ; (D(A), ⟨., .⟩∗) satisfies (P), then u is called a classical
solution of (P) where (D(A), ⟨., .⟩∗) is a Hilbert space continuously embedded in
H. Given an observation operator S, the control C has to be chosen such that
(P) has unique solutions for all x ∈ E. The operator A is semiclosed, then under
certain additional conditions on N(A) and R(A) the operator can be closable
and this will solve the problem. Even if the operator A is closable, we might
not want to switch to its closure, because much of the basic information on the
underlying evolution problem is contained in the domain of A and would be lost
by considering the larger, and often difficult to describe domain of the closure of
A.

In many situations A will not be closable, so none of the usual semigroup
techniques can be used to study problem (P). As a special example of (P), we
consider A = A1 +A2 on

E = C0([0,+∞[) =

{
u : [0,+∞[−→ C : continuous and lim

t→+∞
u(t) = 0

}
,

such that:

A1u(t) = t
du

dt
(t) = tu′(t)

with domain

D(A1) =

{
x ∈ E ∩ C1(]0,+∞[) : lim

t→+∞
tu′(t) = 0 and lim

t→0
tu′(t) exists

}
,

and
A2u(t) = u′(0)c(t)

where c(t) is any fixed function of E and

D(A2) = {u ∈ E : u differentiable at 0} .

Hence, Au(t) = tu′(t) + u′(0)c(t) is defined from D(A) = D(A1) ∩ D(A2) to
E. A1 generates the strongly continuous semigroup T (s)u(t) = u(tes), s, t ≥ 0,
T (s)u(0) = u(0), ∥T (s)u∥E = ∥u∥E and T (s)u(t) → 0 as s → +∞ for all t > 0.

On the other hand, let un(t) = − e−nt

n be a sequence of elements of D(A), then
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un −→ 0 and Aun −→ c in E as n → ∞, so for any control function c ̸= 0, the
operator A will not be closable in E. However, for any c ∈ E, the operator A is
semiclosed in E, with domain the completion of D(A) with respect to the graph
norm ∥u∥ + ∥A1u∥ + ∥A2u∥ . We will show next that for control functions c and
initial states x which are differentiable at 0, the problem (P) has unique solution.

The link between the generator A1 and the semigroup T (s) is given via the
Laplace transform:

(λ−A1)
−1x =

+∞∫
0

e−λtT (t)xdt, x ∈ E.

If u and c are differentiable on [0,+∞[, then an easy computation shows that the
resolvent equation (zI −A)y(z) = x has a unique solution given by:

y(z) = (z −A1)
−1x+

x′(0)

z − 1− c′(0)
(z −A1)

−1c

where 1 + c′(0) ̸= z, Re z > 1 and y(z) = û(z) for all z > max{1, Re(1 + c′(0))},

û(z) =
+∞∫
0

e−ztu(t)dt is the Laplace transform of u(t). Thus, from elementary

Laplace transform theory, we obtain:

u(t) = T (t)x+ x′(0)

t∫
0

e(1+c′(0))(t−s)T (s)cds.

For all x, c ∈ E differentiable at 0, it is clear that u ∈ L1
loc([0,+∞[;D(A)),

t∫
0

u(s)ds ∈ L1
loc([0,+∞[;E) and u(t) and

t∫
0

u(s)ds are differentiable functions.

So, by virtue of Hille-Yosida Theorem and Laplace transform method, the func-
tion u defined above is the unique solution of the problem (P) with initial data
x ∈ E. For further details, the reader may consult. [[2], [1]].
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