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Abstract
In this note we prove among others that
> pipid (@i, ;)
1<i<j<n

25 Vinfaex [Dop_y pe (1 —pr) d (zg,@)], s >1
<

infrex [Zzzl Pk (1 _pk) d? ('Tkﬂx)] , 0<s <1,

where (X, d) is a metric space, x; € X, p; > 0,7 € {1,...,n} with > ;p; =1
and s > 0. This generalizes and improves some early upper bounds for the
suin Z1Si<]‘gn pipjd (4, l'j) .
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1 Introduction

Let X be a nonempty set. A function d : X x X — [0,00) is called a distance
on X if the following properties are satisfied:

(d) d(z,y) =0if and only if z = y;
(dd) d(z,y) = d(y,z) for any x,y € X (the symmetry of the distance);
(ddd) d(z,y) < d(x,z)+ d(z,y) for any z,y,z € X (the triangle inequality).

The pair (X, d) is called in the literature a metric space.

Important examples of metric spaces are normed linear spaces. We recall that,
a linear space E over the real or complex number field K endowed with a function
|- : B — [0,00), is called a normed space if ||-|| , the norm, satisfies the properties:
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(n) ||z|]| = 0 if and only if z = 0;
(nn) |lax|| = |a||z|| for any scalar a € K and any vector x € E;

(nnn) [Jz 4+ y|| < ||z|| + ||y|| for each x,y € E (the triangle inequality).

Further, we recall that, the linear space H over the real or complex number
field K endowed with an application (-,-) : H xH — K is called an inner prod-
uct space, if the function (-,-), called the inner product, satisfies the following
properties:

(i) (z,z) >0 for any x € H and (x,z) = 0 if and only if x = 0;

(ii)) (ax + By, z) = a{x, z) + B (y, z) for any scalars a, 8 and any vectors z, y, z;

(iii) (y,z) = (x,y) for any =,y € H.

It is well know that the function |z| := +/(x,z) defines a norm on H and
thus an important example of normed spaces are the inner product spaces.

A fundamental inequality in metric spaces, which obviously follows by the tri-
angle inequality and mathematical induction, is the generalized triangle inequality,
or the polygonal inequality which states that: for any points x1,z9,...,Tp_1, Tn
(n > 3) in a metric space (X, d), we have the inequality

d(x1,2,) < d(x1,22) + ... + d(Tp—1,24) . (1.1)

The following result in the general setting of metric spaces holds [2].

Theorem 1. Let (X,d) be a metric space and z; € X, p; > 0, i € {1,...,n} with
Yoy pi = 1. Then we have the inequality

Z pip;d (x5, ;) < xlg)f( [;Pid(l’ux)] : (1.2)

1<i<j<n

The inequality is sharp in the sense that the multiplicative constant ¢ = 1 in front
of 7inf 7 cannot be replaced by a smaller quantity.

We have:

Corollary 1. Let (X,d) be a metric space and z; € X, i € {1,...,n}. If there
exists a closed ball of radius r > 0 centered in a point x containing all the points
xi, i.e., x; € B(x,r) :={y € X : d(x,y) <r}, then for any p; >0, i € {1,....,n}
with Y1 pi = 1 we have the inequality

> pipid (wiyay) <. (1.3)

1<i<j<n
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The inequality (1.2) and its consequences were extended to the case of b-metric
spaces in [3] and for natural powers of the distance in [1].
In this note we provide some new and improved upper and lower bounds for

Z pzpj ':E’Lax])

1<i<j<n

the sum

where (X, d) is a metric space, z; € X, p; > 0,4 € {1,...,n} with > ; p; = 1 and
s> 0.

2 Main Results

We have the following generalization of the inequality (1.2).

Theorem 2. Let (X,d) be a metric space and z; € X, p; > 0, i € {1,...,n} with
St pi = 1. Then we have the inequality

25y i ok (1 —pi) dF (zp, ), s > 1
> pipid® (i ;) < (2.1)
1<i<j<n > k=1 Pk (1= pr) d® (g, ), 0<s <1,
1 25715 df (wp,a), s> 1
S —
4 Yo df (zg, ), 0<s<1.

S

Proof. We know that, by the convexity property of the power function f (t) = ¢*,
s> 1 on [0,00), we have for a, b > 0 that

(a+0)° <2571 (a® +0%).

We consider the function f : [0,00) = R, fs(t) = (t +1)° — t* we have f(t)
s|(t+1)"1 = ts_l} . Observe that for 0 < s < 1 and t > 0 we have that f. (t) <0

showing that f; is strictly decreasing on the interval [0,00). Now for ¢ty = %
(b>0,a > 0) we have f, (tg) < fs(0) giving that (¢+1)" — (%) < 1, i.e., the
inequality

(a+0)° <a®+0b°.

Using the triangle inequality, we have for any € X and i, j € {1,...,n}, that
d(zi,xj) < d(zj,z)+d(z,z;). (2.2)
If we take the power s > 0 in (2.2) we get

d® (x5, ) < [d(xi, ) +d (2, z;5)]° (2.3)

251 (d® (w4, 2) + d° (zj,x)), s>1
<
d® (xs,x) +d° (zj,2), 0<s<1
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for any z € X and 4, j € {1,...,n}.

If we multiply (2.3) by p;p; > 0 and sum over 1 < i < j < n from 1 to n, we
get

Z pzpj xl?'r]) (2.4)
1<i<j<n

251 D i<icj<n Pipj (d° (i, @) + d° (2, 7)), s > 1
<

Zl§i<j§npipj (d° (x4, ) + d° (zj,2)), 0<s<1.
Observe that, in general, if a;; = aj; for 1 <14, j < n then
dow= D ap+ Y ay +Zakk =2 >, ay +Zakk7
1<4,5<n 1<i<j<n 1<j<i<n 1<i<j<n

which implies that

Y oa=g | X w zakk

1<i<j<n 1<4,5<n
Therefore

> iy (@ (i, 2) + d° (25, 2))

1<i<j<n
1

:i Z pzp] 37@7 )‘|‘d Tj, T _QZpkd Ly T

1<i,5<n

n

= (zh, @ Zpkds Ty, T Z;Dk (1 —pi) & (zp, )
k= k=1

and by using (2.4) we deduce the first inequality in (2.1).
The second part follows by the fact that
1 1
pe(L=pi) < < (pr+1—pp)* =~
4 4
for all k € {1,...,n}. O
Remark 1. By taking the infimum over x € X in (2.1), we get

2571

infeex D p_y ok (1 —pi)d® (zg, )], s>1

IN

Z pzp] xumj)
1<i<j<n infrex D opoy ok (1 —pi) d° (x5, 2)], 0<s<1,
(2.5)
25 Vinfaex Dope & (zg, )], s>1

IN
N

infrex [ p_y d° (25, z)], 0 <s<1.
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For s =1 we derive

Z plp] (mth) < lnf Zpk’ 1_pk)d($ka$) )

1<i<j<n

which is a better inequality than (1.2) since

n
> e (1= pp)d(zp, 2 sz T, x
k=1

Corollary 2. Let (X,d) be a metric space and z; € X, i € {1,...,n}. Then we
have the inequality

227 Y & (zk, @), s> 1
> & (wiay) < (n-1) (2.6)

1<i<j<n 22:1 d® ($k,l‘) , 0<s < 1.
Follows by the first inequality in (2.1) for py, = =, k € {1,...,n}.

Corollary 3. Let (X,d) be a metric space and x; € X, i € {1,...,n}. If there
exists a closed ball of radius v > 0 centered in a point x containing all the points
zy, d.e., x; € B(w,r) = {y € X : d(x,y) <7}, then for any p; >0, i € {1,....,n}
with Y7 | pi = 1 we have the inequalities

257 1ps g >1

Z p’Lp] :Z:l?x_] Z 1 _pk (27)

1<i<j<n k=1 r’, 0<s<1.

We also have the following lower bound:

Theorem 3. Let (X,d) be a metric space and x; € X, p; >0, i € {1,...,n} with
Y pi = 1. Then we have the inequality

S

251 Z pip;d (x5, ;) Z pip;d® (x5, 25), s > 1. (2.8)
1<i<j<n 1<2<j<n

Proof. We use Jensen’s discrete inequality for the power function f (t) =¢%, s > 1

to write s
Zlgi,jgn pip;d® (i, ;) > Z1gi,j§npipjd($ivl’j)
21<ij<n PiPs B > 1<ij<n PiPj

(2.9)

Observe that

n 2
Z pip; = (Zm) =1,
i=1

1<ij<n

Z plp] xhxj —2 Z pzp] (xial‘j)

1<i,5<n 1<i<j<n
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and

Y. pipgd(@iz) =2 Y pipgd (zi, 7))

1<i,j<n 1<i<j<n
By (2.9) we get
s
2 Z pipid’® (x;,z5) > | 2 Z pipjd (x;, ;) (2.10)
1<i<j<n I<i<j<n

and the inequality (2.8) is proved. O

Corollary 4. Let (X,d) be a metric space and z; € X, i € {1,...,n}. Then we
have the inequality

S

s—1
(le> Yo d@miz) | < ) d(wry), s> 1 (2.11)

1<i<j<n 1<i<j<n

3 Applications

If (E,||||) is a normed linear space and x; € E, i € {1,...,n}, p; > 0
(i € {1,...,n}) with > | p; =1, then by (2.1) we have the inequality

Z pipj || — %‘jHS (3.1)
1<i<j<n
25 linf,cx D> h=1 ok (1= pk) |2k — 2|7, s > 1
<
infeex [Py ok (1 —pr) lzk — )], 0<s <1,
[ 2 infeex D05 ok —2l°], s > 1
=7

infrex [ p_y llze — 2], 0<s < 1.
In particular, for the uniform distribution p; = %, we have

2571 (n — 1) infeex Do e — )], s> 1,

Yo llzi— gl < (3-2)

1<i<j<n (n—1)infex Do lzi — 2], 0<s < 1.
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Denote T := Y., pi;, then we have the inequalities

> vl — ol (3.3)

1<i<j<n
257 ok (L =) [l — 7|7, s> 11

IN

Sohei e (L—pi) lzr — 7|7, 0<s <1,

257150 e — 77, s> 1
<

W=

ZZ:1 |21 — $7;”8, 0<s<l.

By triangle inequality we have that

n n n
Y opjllzi =l = D pj (@i —a)|| = ||z = D pjz;
J=1 j=1 J=1

v

= ||z — T .
Therefore
n n n
> 0y pjll =zl =D pillwi — Tl (3.4)
i=1 j=1 i=1
and since
S S
1 n n
270 Y pwgllri- gl =27 5 Y pi ) e —
1<i<j<n i—=1 j=1
1 n n s
=5 | Dopi vy llwi =l
=1 =1

vV
DO | =

n S
(Zpi (| —:va)
i=1

and by (2.8) we derive

S
1 [ _
Q(Zpiuxi—xpu) < 3 gl
i=1 1<i<j<n
If
1+ ... +xp
n

denotes the gravity center of the vectors z;, i € {1,...,n}, then we have the
inequality

28_1 (TL - 1) Z?:l ||xl 75"8) if s > 1a

Y lzi— gl < (3.5)

1<i<j<n (n—1)>"" [Jla; — |7, if 0 < s < 1.
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Proposition 1. Let (H,(-,-)) be an inner product space, x; € H, (i € {1,...,n})
and assume that there exists the vectors a, A € H so that either

Re (A —xzj,x; —a) >0, forie{l,..n},

or, equivalently,

A 1
ot H < - ||A—gdal, forie{l,..,n}.

xXr; —

Then for any p; > 0, i € {1,...,n} with > ;" pi = 1 one has the inequality

sllA=all" Y5 ok (L —pr), 521
> ol — ) < (3.6)
1<i<j<n ElA=all’SXr o (l—pp), 0<s <1

In particular, if p; = %, i € {1,...,n} then by (3.6) we get

%(n—l) |A—al®, s>1
>l — ) < (3.7)

1<i<j<n -1 [A—a|’, 0<s<1
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