Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 2(64), No. 2 - 2022, 67-74 https://doi.org/10.31926/but.mif.2022.2.64.2.5

REFINED INEQUALITIES FOR THE DISTANCE IN METRIC SPACES

Silvestru Sever DRAGOMIR^{*,1}

Abstract

In this note we prove among others that

$$\sum_{1 \le i < j \le n} p_i p_j d^s (x_i, x_j)$$

$$\leq \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x) \right], s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x) \right], 0 < s < 1, \end{cases}$$

where (X, d) is a metric space, $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$ and s > 0. This generalizes and improves some early upper bounds for the sum $\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j)$.

2000 Mathematics Subject Classification: 54E35; 26D15.

Key words: metric spaces, normed spaces, metric inequalities, inequalities for norms.

1 Introduction

Let X be a nonempty set. A function $d: X \times X \to [0, \infty)$ is called a *distance* on X if the following properties are satisfied:

- (d) d(x, y) = 0 if and only if x = y;
- (dd) d(x, y) = d(y, x) for any $x, y \in X$ (the symmetry of the distance);
- (ddd) $d(x,y) \leq d(x,z) + d(z,y)$ for any $x, y, z \in X$ (the triangle inequality).

The pair (X, d) is called in the literature a *metric space*.

Important examples of metric spaces are normed linear spaces. We recall that, a linear space E over the real or complex number field \mathbb{K} endowed with a function $\|\cdot\|: E \to [0, \infty)$, is called a *normed space* if $\|\cdot\|$, the *norm*, satisfies the properties:

^{1*} Corresponding author, Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia, e-mail: sever.dragomir@vu.edu.au

- (n) ||x|| = 0 if and only if x = 0;
- (nn) $\|\alpha x\| = |\alpha| \|x\|$ for any scalar $\alpha \in \mathbb{K}$ and any vector $x \in E$;

(nnn) $||x + y|| \le ||x|| + ||y||$ for each $x, y \in E$ (the triangle inequality).

Further, we recall that, the linear space H over the real or complex number field \mathbb{K} endowed with an application $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{K}$ is called an *inner product space*, if the function $\langle \cdot, \cdot \rangle$, called the *inner product*, satisfies the following properties:

- (i) $\langle x, x \rangle \ge 0$ for any $x \in H$ and $\langle x, x \rangle = 0$ if and only if x = 0;
- (ii) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for any scalars α, β and any vectors x, y, z;
- (iii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for any $x, y \in H$.

It is well know that the function $||x|| := \sqrt{\langle x, x \rangle}$ defines a norm on H and thus an important example of normed spaces are the inner product spaces.

A fundamental inequality in metric spaces, which obviously follows by the triangle inequality and mathematical induction, is the generalized triangle inequality, or the polygonal inequality which states that: for any points $x_1, x_2, ..., x_{n-1}, x_n$ $(n \ge 3)$ in a metric space (X, d), we have the inequality

$$d(x_1, x_n) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n).$$
(1.1)

The following result in the general setting of metric spaces holds [2].

Theorem 1. Let (X, d) be a metric space and $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality

$$\sum_{1 \le i < j \le n} p_i p_j d\left(x_i, x_j\right) \le \inf_{x \in X} \left[\sum_{i=1}^n p_i d\left(x_i, x\right)\right].$$
(1.2)

The inequality is sharp in the sense that the multiplicative constant c = 1 in front of "inf" cannot be replaced by a smaller quantity.

We have:

Corollary 1. Let (X,d) be a metric space and $x_i \in X$, $i \in \{1,...,n\}$. If there exists a closed ball of radius r > 0 centered in a point x containing all the points x_i , i.e., $x_i \in \overline{B}(x,r) := \{y \in X : d(x,y) \le r\}$, then for any $p_i \ge 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^n p_i = 1$ we have the inequality

$$\sum_{1 \le i < j \le n} p_i p_j d\left(x_i, x_j\right) \le r.$$
(1.3)

The inequality (1.2) and its consequences were extended to the case of *b*-metric spaces in [3] and for natural powers of the distance in [1].

In this note we provide some new and improved upper and lower bounds for the sum

$$\sum_{\leq i < j \leq n} p_i p_j d^s \left(x_i, x_j \right)$$

where (X, d) is a metric space, $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$ and s > 0.

2 Main Results

We have the following generalization of the inequality (1.2).

1

Theorem 2. Let (X, d) be a metric space and $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality

$$\sum_{1 \le i < j \le n} p_i p_j d^s (x_i, x_j) \le \begin{cases} 2^{s-1} \sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x), \ s \ge 1\\ \sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x), \ 0 < s < 1, \end{cases}$$

$$\le \frac{1}{4} \begin{cases} 2^{s-1} \sum_{k=1}^n d^s (x_k, x), \ s \ge 1\\ \sum_{k=1}^n d^s (x_k, x), \ 0 < s < 1. \end{cases}$$
(2.1)

Proof. We know that, by the convexity property of the power function $f(t) = t^s$, $s \ge 1$ on $[0, \infty)$, we have for $a, b \ge 0$ that

$$(a+b)^s \le 2^{s-1} (a^s + b^s).$$

We consider the function $f_s: [0,\infty) \to \mathbb{R}$, $f_s(t) = (t+1)^s - t^s$ we have $f'_s(t) = s\left[(t+1)^{s-1} - t^{s-1}\right]$. Observe that for 0 < s < 1 and t > 0 we have that $f'_s(t) < 0$ showing that f_s is strictly decreasing on the interval $[0,\infty)$. Now for $t_0 = \frac{a}{b}$ $(b > 0, a \ge 0)$ we have $f_s(t_0) < f_s(0)$ giving that $\left(\frac{a}{b} + 1\right)^s - \left(\frac{\alpha}{b}\right)^s < 1$, i.e., the inequality

$$(a+b)^s \le a^s + b^s.$$

Using the triangle inequality, we have for any $x \in X$ and $i, j \in \{1, ..., n\}$, that

$$d(x_i, x_j) \le d(x_i, x) + d(x, x_j).$$
 (2.2)

If we take the power s > 0 in (2.2) we get

$$d^{s}(x_{i}, x_{j}) \leq [d(x_{i}, x) + d(x, x_{j})]^{s}$$

$$\leq \begin{cases} 2^{s-1} (d^{s}(x_{i}, x) + d^{s}(x_{j}, x)), s \geq 1 \\ d^{s}(x_{i}, x) + d^{s}(x_{j}, x), 0 < s < 1 \end{cases}$$
(2.3)

for any $x \in X$ and $i, j \in \{1, ..., n\}$.

If we multiply (2.3) by $p_i p_j \ge 0$ and sum over $1 \le i < j \le n$ from 1 to n, we get

$$\sum_{1 \le i < j \le n} p_i p_j d^s (x_i, x_j)$$

$$\leq \begin{cases} 2^{s-1} \sum_{1 \le i < j \le n} p_i p_j (d^s (x_i, x) + d^s (x_j, x)), s \ge 1 \\ \sum_{1 \le i < j \le n} p_i p_j (d^s (x_i, x) + d^s (x_j, x)), 0 < s < 1. \end{cases}$$
(2.4)

Observe that, in general, if $a_{ij}=a_{ji}$ for $1\leq i,j\leq n$ then

$$\sum_{1 \le i,j \le n} a_{ij} = \sum_{1 \le i < j \le n} a_{ij} + \sum_{1 \le j < i \le n} a_{ij} + \sum_{k=1}^n a_{kk} = 2 \sum_{1 \le i < j \le n} a_{ij} + \sum_{k=1}^n a_{kk},$$

which implies that

$$\sum_{1 \le i < j \le n} a_{ij} = \frac{1}{2} \left(\sum_{1 \le i, j \le n} a_{ij} - \sum_{k=1}^n a_{kk} \right).$$

Therefore

$$\sum_{1 \le i < j \le n} p_i p_j \left(d^s \left(x_i, x \right) + d^s \left(x_j, x \right) \right)$$

= $\frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j \left(d^s \left(x_i, x \right) + d^s \left(x_j, x \right) \right) - 2 \sum_{k=1}^n p_k^2 d^s \left(x_k, x \right) \right)$
= $\sum_{k=1}^n p_k d^s \left(x_k, x \right) - \sum_{k=1}^n p_k^2 d^s \left(x_k, x \right) = \sum_{k=1}^n p_k \left(1 - p_k \right) d^s \left(x_k, x \right)$

and by using (2.4) we deduce the first inequality in (2.1).

The second part follows by the fact that

$$p_k (1 - p_k) \le \frac{1}{4} (p_k + 1 - p_k)^2 = \frac{1}{4}$$

for all $k \in \{1, ..., n\}$.

Remark 1. By taking the infimum over $x \in X$ in (2.1), we get

$$\sum_{1 \le i < j \le n} p_i p_j d^s (x_i, x_j) \le \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x) \right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n p_k (1 - p_k) d^s (x_k, x) \right], \ 0 < s < 1, \end{cases}$$

$$\leq \frac{1}{4} \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^n d^s (x_k, x) \right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n d^s (x_k, x) \right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n d^s (x_k, x) \right], \ 0 < s < 1. \end{cases}$$

_		
L	-	1

For s = 1 we derive

$$\sum_{1 \le i < j \le n} p_i p_j d\left(x_i, x_j\right) \le \inf_{x \in X} \left[\sum_{k=1}^n p_k \left(1 - p_k\right) d\left(x_k, x\right) \right]$$

which is a better inequality than (1.2) since

$$\sum_{k=1}^{n} p_k (1 - p_k) d(x_k, x) \le \sum_{i=1}^{n} p_i d(x_i, x).$$

Corollary 2. Let (X,d) be a metric space and $x_i \in X$, $i \in \{1,...,n\}$. Then we have the inequality

$$\sum_{1 \le i < j \le n} d^{s}(x_{i}, x_{j}) \le (n-1) \begin{cases} 2^{s-1} \sum_{k=1}^{n} d^{s}(x_{k}, x), s \ge 1\\ \sum_{k=1}^{n} d^{s}(x_{k}, x), 0 < s < 1. \end{cases}$$
(2.6)

Follows by the first inequality in (2.1) for $p_k = \frac{1}{n}, k \in \{1, ..., n\}$.

Corollary 3. Let (X,d) be a metric space and $x_i \in X$, $i \in \{1,...,n\}$. If there exists a closed ball of radius r > 0 centered in a point x containing all the points x_i , i.e., $x_i \in \overline{B}(x,r) := \{y \in X : d(x,y) \le r\}$, then for any $p_i \ge 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^n p_i = 1$ we have the inequalities

$$\sum_{1 \le i < j \le n} p_i p_j d^s \left(x_i, x_j \right) \le \sum_{k=1}^n p_k \left(1 - p_k \right) \begin{cases} 2^{s-1} r^s, \ s \ge 1 \\ r^s, \ 0 < s < 1. \end{cases}$$
(2.7)

We also have the following lower bound:

Theorem 3. Let (X, d) be a metric space and $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality

$$2^{s-1} \left(\sum_{1 \le i < j \le n} p_i p_j d\left(x_i, x_j\right) \right)^s \le \sum_{1 \le i < j \le n} p_i p_j d^s\left(x_i, x_j\right), \ s > 1.$$
(2.8)

Proof. We use Jensen's discrete inequality for the power function $f(t) = t^s$, s > 1 to write

$$\frac{\sum_{1 \le i,j \le n} p_i p_j d^s\left(x_i, x_j\right)}{\sum_{1 \le i,j \le n} p_i p_j} \ge \left(\frac{\sum_{1 \le i,j \le n} p_i p_j d\left(x_i, x_j\right)}{\sum_{1 \le i,j \le n} p_i p_j}\right)^s.$$
(2.9)

Observe that

$$\sum_{\substack{1 \le i,j \le n}} p_i p_j = \left(\sum_{i=1}^n p_i\right)^2 = 1,$$
$$\sum_{1 \le i,j \le n} p_i p_j d^s \left(x_i, x_j\right) = 2 \sum_{\substack{1 \le i < j \le n}} p_i p_j d^s \left(x_i, x_j\right)$$

and

$$\sum_{1 \le i,j \le n} p_i p_j d\left(x_i, x_j\right) = 2 \sum_{1 \le i < j \le n} p_i p_j d\left(x_i, x_j\right).$$

By (2.9) we get

$$2\sum_{1\leq i< j\leq n} p_i p_j d^s\left(x_i, x_j\right) \geq \left(2\sum_{1\leq i< j\leq n} p_i p_j d\left(x_i, x_j\right)\right)^s$$

$$= 2^s \left(\sum_{1\leq i< j\leq n} p_i p_j d\left(x_i, x_j\right)\right)^s,$$

$$(2.10)$$

and the inequality (2.8) is proved.

Corollary 4. Let (X,d) be a metric space and $x_i \in X$, $i \in \{1,...,n\}$. Then we have the inequality

$$\left(\frac{2}{n^2}\right)^{s-1} \left(\sum_{1 \le i < j \le n} d\left(x_i, x_j\right)\right)^s \le \sum_{1 \le i < j \le n} d^s\left(x_i, x_j\right), \ s > 1.$$
(2.11)

3 Applications

If $(E, \|\cdot\|)$ is a normed linear space and $x_i \in E$, $i \in \{1, ..., n\}$, $p_i \ge 0$ $(i \in \{1, ..., n\})$ with $\sum_{i=1}^{n} p_i = 1$, then by (2.1) we have the inequality

$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|^s$$

$$\leq \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^n p_k \left(1 - p_k\right) \|x_k - x\|^s\right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n p_k \left(1 - p_k\right) \|x_k - x\|^s\right], \ 0 < s < 1, \end{cases}$$

$$\leq \frac{1}{4} \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^n \|x_k - x\|^s\right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n \|x_k - x\|^s\right], \ s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^n \|x_k - x\|^s\right], \ 0 < s < 1. \end{cases}$$
(3.1)

In particular, for the uniform distribution $p_i = \frac{1}{n}$, we have

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^s \le \begin{cases} 2^{s-1} (n-1) \inf_{x \in X} \left[\sum_{i=1}^n \|x_i - x\|^s\right], \ s \ge 1, \\ (n-1) \inf_{x \in X} \left[\sum_{i=1}^n \|x_i - x\|^s\right], \ 0 < s < 1. \end{cases}$$
(3.2)

Denote $\overline{x_p} := \sum_{i=1}^n p_i x_i$, then we have the inequalities

$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|^s$$

$$\leq \begin{cases} 2^{s-1} \sum_{k=1}^n p_k (1 - p_k) \|x_k - \overline{x_p}\|^s, \ s \ge 1 \\ \sum_{k=1}^n p_k (1 - p_k) \|x_k - \overline{x_p}\|^s, \ 0 < s < 1, \end{cases}$$

$$\leq \frac{1}{4} \begin{cases} 2^{s-1} \sum_{k=1}^n \|x_k - \overline{x_p}\|^s, \ s \ge 1 \\ \sum_{k=1}^n \|x_k - \overline{x_p}\|^s, \ 0 < s < 1. \end{cases}$$
(3.3)

By triangle inequality we have that

$$\sum_{j=1}^{n} p_j \|x_i - x_j\| \ge \left\| \sum_{j=1}^{n} p_j (x_i - x_j) \right\| = \left\| x_i - \sum_{j=1}^{n} p_j x_j \right\|$$
$$= \|x_i - \overline{x_p}\|.$$

Therefore

$$\sum_{i=1}^{n} p_i \sum_{j=1}^{n} p_j \|x_i - x_j\| \ge \sum_{i=1}^{n} p_i \|x_i - \overline{x_p}\|$$
(3.4)

and since

$$2^{s-1} \left(\sum_{1 \le i < j \le n} p_i p_j \| x_i - x_j \| \right)^s = 2^{s-1} \left(\frac{1}{2} \sum_{i=1}^n p_i \sum_{j=1}^n p_j \| x_i - x_j \| \right)^s$$
$$= \frac{1}{2} \left(\sum_{i=1}^n p_i \sum_{j=1}^n p_j \| x_i - x_j \| \right)^s$$
$$\ge \frac{1}{2} \left(\sum_{i=1}^n p_i \| x_i - \overline{x_p} \| \right)^s$$

and by (2.8) we derive

$$\frac{1}{2} \left(\sum_{i=1}^{n} p_i \left\| x_i - \overline{x_p} \right\| \right)^s \le \sum_{1 \le i < j \le n} p_i p_j \left\| x_i - x_j \right\|^s$$

 \mathbf{If}

$$\overline{x} := \frac{x_1 + \dots + x_n}{n}$$

denotes the gravity center of the vectors $x_i, i \in \{1, ..., n\}$, then we have the inequality

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^s \le \begin{cases} 2^{s-1} (n-1) \sum_{i=1}^n \|x_i - \overline{x}\|^s, & \text{if } s \ge 1, \\ (n-1) \sum_{i=1}^n \|x_i - \overline{x}\|^s, & \text{if } 0 < s < 1. \end{cases}$$
(3.5)

Proposition 1. Let $(H, \langle \cdot, \cdot \rangle)$ be an inner product space, $x_i \in H, (i \in \{1, ..., n\})$ and assume that there exists the vectors $a, A \in H$ so that either

$$Re \langle A - x_i, x_i - a \rangle \ge 0, \text{ for } i \in \{1, ..., n\},$$

or, equivalently,

$$\left\|x_i - \frac{a+A}{2}\right\| \le \frac{1}{2} \left\|A - a\right\|, \text{ for } i \in \{1, ..., n\}.$$

Then for any $p_i \ge 0, i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$ one has the inequality

$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|^s \le \begin{cases} \frac{1}{2} \|A - a\|^s \sum_{k=1}^n p_k (1 - p_k), \ s \ge 1\\ \frac{1}{2^s} \|A - a\|^s \sum_{k=1}^n p_k (1 - p_k), \ 0 < s < 1. \end{cases}$$
(3.6)

In particular, if $p_i = \frac{1}{n}$, $i \in \{1, ..., n\}$ then by (3.6) we get

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^s \le \begin{cases} \frac{1}{2} (n-1) \|A - a\|^s, \ s \ge 1\\ \frac{1}{2^s} (n-1) \|A - a\|^s, \ 0 < s < 1. \end{cases}$$
(3.7)

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the manuscript.

References

- Aydi, H. and Samet, B., On some metric inequalities and applications, Preprint, 2020.
- [2] Dragomir, S.S. and Goşa, A.C., An inequality in metric spaces, J. Indones. Math. Soc. 11 (2005), no. 1, 33–38.
- [3] Karapınar, E., Noorwali, M., Dragomir and Goşa type inequalities on b-metric spaces, J. Inequal. Appl. 2019, paper no. 29, 7 pp.