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RICCI SOLITONS ON PSEUDO RIEMANNIAN
GENERALIZED SYMMETRIC SPACES

Amel BOUHARIS∗,1

Abstract

We study the geometry of four-dimensional pseudo Riemannian general-
ized symmetric spaces of type D; whose metric was explicitly described by
Cerny and Kowalski. After describing their curvature properties; we classify
the Killing vectors field of these spaces and more particularly, we study the
existence of non-trivial (i.e., not Einstein) Ricci solitons; we show that these
spaces are shrinking or expanding Ricci solitons but never steady. Moreover
this Ricci soliton is not a gradient one.
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1 Introduction

Ricci soliton are self-similar solutions of Hamilton’s Ricci flow, they can also
be viewed as its fixed points, they are a natural generalization of Einstein metrics.
A pseudo-Riemannian manifold (M, g) is said to be a Ricci soliton if there exists
a smooth vector field X on M such as the following equation is satisfied

LXg + ϱ = αg, (1)

where LX denotes the Lie derivative with respect to X, ϱ is the Ricci tensor and α
is a real number. Moreover, we say that a Ricci soliton (M, g) is a gradient Ricci
soliton if it admits a vector field X satisfying : X = grad h, for some potential
function h.

A Ricci soliton is said to be shrinking, steady or expanding if α > 0, α = 0 or
α < 0 respectively.

Pseudo Riemannian Ricci solitons were severely studied from different per-
spectives, it has been shown that there are many essential differences between the
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Riemannian case [1], [15] and the Lorentzian case [3], [16]. In [12], the author have
proved that there are three-dimensional Riemannian homogeneous Ricci solitons
but in [17], it has been shown that there are no left-invariant Riemannian Ricci
solitons on three-dimensional Lie groups; although there are soliton metrics for
nilpotent Lie groups. Many other authors have investigated the Lorentzian case;
as the existence of non-trivial Ricci solitons on conformally flat pr-waves manifolds
[2], and on several classes of three-manifolds admitting a parallel degenerate line
field [7], as well as the existence of three-dimensional Lorentzian homogeneous left-
invariant Ricci solitons [6]. In the dimension 4; Calvaruso and Fino proved, the
existence of non-compact homogeneous pseudo-Riemannian Ricci solitons which
are not isometric to solvmanifolds [9].

A generalized symmetric space is a pseudo-Riemannian manifold (M, g) which
admits at least a regular s−structure, those spaces where studied by different au-
thors, from several different points of view. All 2−dimensional generalized sym-
metric spaces are symmetric. In dimension 3, they may be identified with R3

equipped with a metric with all possible signatures. Cerny and Kowalski proved
in [13] that four-dimensional proper (that is, non-symmetric) pseudo-Riemannian
generalized symmetric spaces may be identified with R4 equipped with a particular
metric and are classified into four classes, named A, B, C and D, and the pseudo-
Riemannian metrics can have any signature: the metric of type A is either Rie-
mannian or neutral of signature (2,2), the metric of type C is Lorentzian and the
metrics of type B and D are of signature (2,2). In [14]; Kowalski has proved the ex-
istence of generalized symmetric Riemannian spaces of arbitrary order, in [8] Cal-
varuso and De Leo have studied their curvature properties on the algebraic side us-
ing the Lie algebras, with respect to suitable pseudo-orthonormal bases and in [11],
the authors showed that these spaces can naturally be equipped with some struc-
tures defined by their curvature tensors used to characterize symmetric spaces,
as the existence of almost Hermitian and almost para-Hermitian structures. A
complete classification up to isometry, of non-symmetric simply-connected four-
dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic
Ricci solitons was been given in [4]; where unlike type B, only types A, C and D
are algebraic Ricci solitons. In [10], the authors proved that three dimensional
generalized symmetric spaces of any signature and four-dimensional generalized
symmetric spaces of type B are Ricci solitons and recently, a complete classi-
fication of Ricci solitons on Lorentzian four-dimensional generalized symmetric
spaces of type C was proved in [5]. In this paper we find the general solution to
the equation (1) for four-dimensional generalized symmetric spaces of type D.

The paper is organized in the following way, in Section 2, we will report
the basic description of four-dimensional generalized symmetric spaces. In Sec-
tion 3, the Levi Civita connection, the curvature tensor and the Ricci tensor
of pseudo-Riemannian four-dimensional generalized symmetric spaces of type D
will be described in terms of components with respect to coordinate vector fields{
∂i =

∂
∂xi

}
. This provides the needed information for the study, which we make

in Section 5. In Section 4, we shall introduce the system of 10 PDEs of Killing
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vectors and give it’s general solution.
In Section 5, Ricci solitons on generalized symmetric spaces of type D are

characterized by a system of 10 PDEs. In particular, we show that these spaces
admit different vector fields resulting in expanding and shrinking, but never steady
Ricci solitons. Finally, it is proved that those Ricci solitons are not gradient.

2 Four-dimensional generalized symmetric spaces

First, we recall the definition of a generalized symmetric space. Let (M, g)
be a pseudo-Riemannian manifold. A regular s-structure on M is a family of
isometries {sx | x ∈ M} of (M, g) such that

� the mapping
M ×M → M
(x, y) 7→ sx(y)

is smooth,

� for all x in M ; sx has x as an isolated fixed point.

� for any pair of points x and y in M : sx ◦ sy = ssx(y) ◦ sx.

The map sx is called the symmetry centered at x. The order of a regular
s-structure is the smallest integer k ⩾ 2 such that(sx)

k = idM for all x ∈ M . If
such an integer does not exist, we say that the regular s-structure has order infin-
ity. A generalized symmetric space is a connected, pseudo-Riemannian manifold,
carrying at least one regular s-structure. In particular, a generalized symmetric
space is a pseudo-Riemannian symmetric space if and only if it admits a regular s-
structure of order 2. The order of a generalized symmetric space is the minimum
of orders of all possible s-structures on it. Moreover, a generalized symmetric
space is homogeneous, that is, the full isometry group I (M) of M acts transi-
tively on it, such as (M, g) can be identified with (G/H, g), where G ⊂ I (M) is
a subgroup of I (M) acting transitively on M and H is the isotropy group at a
fixed point o ∈ M .

In 1986, Cerny and Kowalski have completely classified generalized symmetric
spaces of low dimension. We recall the classification of non-symmetric simply-
connected four-dimensional pseudo-Riemannian generalized symmetric spaces by
the following theorem.

Theorem 1. (Cerny and Kowalski [13]) Non-symmetric, simply-connected gen-
eralized symmetric spaces (M, g) of dimension 4 are of order either 3 or 4, or
infinity. All these spaces are indecomposable, and belong, up to isometry, to one
of the following four types.

� Type A. The underlying homogeneous space is G/H, where

G =

 a b x3

c d x4

0 0 1

 , H =

 cos t − sin t 0

sin t cos t 0

0 0 1

 ,
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with ad − bc = 1. (M, g) is the space R4 (x1, x2, x3, x4) with the pseudo-
Riemannian metric

g = λ
[(
1 + x22

)
dx21 +

(
1 + x21

)
dx22 − 2x1x2 dx1 dx2

]
/
(
1 + x21 + x22

)
±
[(
−x1 +

√
1 + x21 + x22

)
dx23 (1)

+
(
x1 +

√
1 + x21 + x22

)
dx24 − 2x22dx3 dx4

]
,

where λ ̸= 0 is a real constant. The order is k = 3 and the possible signatures
are (4, 0), (2, 2) and (0, 4).

� Type B. The underlying homogeneous space is G/H, where

G =


e−(x1+x2) 0 0 a

0 ex1 0 b

0 0 ex2 c

0 0 0 1

 , H =


1 0 0 −w

0 1 0 −2w

0 0 1 2w

0 0 0 1

 .

(M, g) is the space R4 (x1, x2, x3, x4) with the pseudo-Riemannian metric

g = λ
(
dx21 + dx22 + dx1dx2

)
+e−x2 (2dx1 + dx2) dx4+e−x1 (dx1 + 2dx2) dx3,

(2)
where λ is a real constant. The order is k = 3 and the signature is always
(2, 2).

� Type C. The underlying homogeneous space G/H is the matrix group

G =


e−x4 0 0 x1

0 ex4 0 x2

0 0 1 x3

0 0 0 1

 .

(M, g) is the space R4 (x1, x2, x3, x4) with the Lorentzian metric

g = ε
(
e−2x4dx21 + e2x4dx22

)
+ dx3dx4 with ε = ±1. (3)

The order is k = 4 and the possible signatures are (1, 3) , (3, 1).

� Type D. The underlying homogeneous space is G/H where

G =

 a b x1

c d x2

0 0 1

 , H =

 ex4 0 0

0 e−x4 0

0 0 1

 ,
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with ad − bc = 1. (M, g) is the space R4 (x1, x2, x3, x4) with the pseudo-
Riemannian metric

g = −2 cosh (2x3) cos (2x4) dx1 dx2 + λ
(
dx23 − cosh2 (2x3) dx

2
4

)
+(sinh (2x3)− cosh (2x3) sin (2x4)) dx

2
1 (4)

+ (sinh (2x3) + cosh (2x3) sin (2x4)) dx
2
2,

where λ ̸= 0 is a real constant. The order is infinite and the signature is
(2, 2).

3 Curvature of four-dimensional generalized symmet-
ric space of type D

Let (M, g) be a four-dimensional generalized symmetric space of type D and
denote by ∇ and R the Levi-Civita connection and the Riemann curvature tensor
of M , respectively. Throughout this paper, we will always use the sign convention

R (X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] .

The Ricci tensor of (M, g) is defined by ϱ(X,Y ) = tr{Z → R(X,Z)Y }.
We shall report the nonvanishing Levi-Civita connection, the Riemann curva-

ture tensor, and the corresponding Ricci tensor with respect to the coordinates

vector fields
{
∂1 =

∂
∂x1

, ∂2 =
∂

∂x2
, ∂3 =

∂
∂x3

, ∂4 =
∂

∂x4

}
.

Lemma 1. Let M be a four-dimensional generalized symmetric space of type D.
Then the non-vanishing components of the Levi-Civita connection ∇ of M are
given by

∇∂1∂1 =
1
λ(− cosh(2x3) + sinh(2x3) sin(2x4))∂3 − cos(2x4)

λ cosh(2x3)
∂4,

∇∂1∂2 = ∇∂2∂1 =
1
λ sinh(2x3) cos(2x4)∂3 +

sin(2x4)
λ cosh(2x3)

∂4,

∇∂1∂3 = ∇∂3∂1 = − sin(2x4)∂1 − cos(2x4)∂2,
∇∂1∂4 = ∇∂4∂1 = sinh(2x3) cosh(2x3) cos(2x4)∂1

− cosh(2x3)(− cosh(2x3) + sinh(2x3) sin(2x4))∂2,

∇∂2∂2 = − 1
λ(cosh(2x3) + sinh(2x3) sin(2x4))∂3 +

cos(2x4)
λ cosh(2x3)

∂4,

∇∂2∂3 = ∇∂3∂2 = − cos(2x4)∂1 + sin(2x4)∂2,
∇∂2∂4 = ∇∂4∂2 = − cosh(2x3)(cosh(2x3) + sinh(2x3) sin(2x4))∂1

− sinh(2x3) cosh(2x3) cos(2x4)∂2,
∇∂3∂4 = ∇∂4∂3 = 2 tanh(2x3)∂4,
∇∂4∂4 = 2 cosh(2x3) sinh(2x3)∂3.
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The only non-zero components of the Riemann curvature tensor R, are

R∂1,∂2∂1 = [2 cosh(2x3) cos(2x4)
λ ]∂1 + [2 sinh(2x3)−2 cosh(2x3) sin(2x4)

λ ]∂2,

R∂1,∂2∂2 = [−2 sinh(2x3)−2 cosh(2x3) sin(2x4)
λ ]∂1 − [2 cosh(2x3) cos(2x4)

λ ]∂2,
R∂1,∂2∂3 =

−2
λ cosh(2x3)

∂4,

R∂1,∂2∂4 =
−2 cosh(2x3)

λ ∂3,

R∂1,∂3∂1 =
− sinh(2x3)+cosh(2x3) sin(2x4)

λ ∂3,

R∂1,∂3∂2 =
cosh(2x3) cos(2x4)

λ ∂3 − 1
λ cosh(2x3)

∂4,

R∂1,∂3∂3 = ∂1,
R∂1,∂3∂4=cosh2(2x3) cos(2x4)∂1+cosh (2x3) [sinh (2x3)−cosh (2x3) sin (2x4)] ∂2,

R∂1,∂4∂1 =
[cosh(2x3) sin(2x4)−sinh(2x3)]

λ ∂4,

R∂1,∂4∂2 =
− cosh(2x3)

λ ∂3 +
[cosh(2x3) cos(2x4)]

λ ∂4,
R∂1,∂4∂3 = − cosh2(2x3) cos(2x4)∂1 − cosh(2x3)(sinh(2x3)

− cosh(2x3) sin(2x4))∂2,
R∂1,∂4∂4 = − cosh2(2x3)∂1,

R∂2,∂3∂1 =
cosh(2x3) cos(2x4)

λ ∂3 +
1

λ cosh(2x3)
∂4,

R∂2,∂3∂2 =
− sinh(2x3)−cosh(2x3) sin(2x4)

λ ∂3,
R∂2,∂3∂3 = ∂2,
R∂2,∂3∂4 = − cosh(2x3)(sinh(2x3) + cosh(2x3) sin(2x4))

−[cosh2 (2x3) cos (2x4)]∂2,

R∂2,∂4∂1 =
cosh(2x3)

λ ∂3 +
[cosh(2x3) cos(2x4)]

λ ∂4,

R∂2,∂4∂2 =
[
− sinh(2x3)−cosh(2x3) sin(2x4)

λ

]
∂4,

R∂2,∂4∂3=cosh(2x3)(sinh(2x3)+cosh(2x3) sin(2x4))∂1+cosh2(2x3) cos(2x4)∂2,
R∂2,∂4∂4 = − cosh2 (2x3) ∂2,
R∂3,∂4∂1 = −2 cosh2(2x3) cos(2x4)∂1 − 2 cosh(2x3)(sinh(2x3)

− cosh(2x3) sin(2x4))∂2,
R∂3,∂4∂2 = 2 cosh(2x3)(sinh(2x3)

+ cosh(2x3) sin(2x4))∂1 + 2 cosh2(2x3) cos(2x4)∂2,
R∂3,∂4∂3 = −4∂4,
R∂3,∂4∂4 = −4 cosh2 (2x3) ∂3,

and the ones obtained by them using the symmetries of the curvature tensor.
The non-zero components of the Ricci curvature tensor are given by

ϱ33 = −6, ϱ44 = 6 cosh2(2x3).
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4 Killing vectors on four-dimensional generalized sym-
metric space of type D

In this section we give the Killing vectors on the four-dimensional generalized

symmetric spaces (M, g) of type D. Let X =
4∑

i=1
fi∂i be an arbitrary vector field

on (M, g), where f1, .., f4 are smooth functions on M of the variables x1, x2, x3, x4.

The Lie derivative of the metric (4) with respect to X is given by:

(LXg)∂1,∂1 = 2(sinh(2x3)− cosh(2x3) sin(2x4))∂1f1
−2 cosh(2x3) cos(2x4)∂1f2+2(cosh(2x3)−sinh(2x3) sin(2x4))f3
−2 cosh(2x3) cos(2x4)f4,

(LXg)∂1,∂2 = −cosh(2x3) cos(2x4)∂1f1+(sinh(2x3)−cosh(2x3) sin(2x4))∂2f1
+(sinh(2x3) + cosh(2x3) sin(2x4))∂1f2 − 2 sinh(2x3) cos(2x4)f3
− cosh(2x3) cos(2x4)∂2f2 + 2 cosh(2x3) sin(2x4)f4,

(LXg)∂1,∂3 = λ∂1f3 + (sinh(2x3)− cosh(2x3) sin(2x4))∂3f1
− cosh(2x3) cos(2x4)∂3f2,

(LXg)∂1,∂4 = −λ cosh2(2x3)∂1f4 + (sinh(2x3)− cosh(2x3) sin(2x4))∂4f1
− cosh(2x3) cos(2x4)∂4f2,

(LXg)∂2,∂2 = −2 cosh(2x3) cos(2x4)∂2f1 + 2(sinh(2x3)

+ cosh(2x3) sin(2x4))∂2f2 + 2(sinh(2x3) sin(2x4)
+ cosh(2x3))f3 + 2 cosh(2x3) cos(2x4)f4,

(LXg)∂2,∂3 = λ∂2f3 − cosh(2x3) cos(2x4)∂3f1
+(sinh(2x3) + cosh(2x3) sin(2x4))∂3f2,

(LXg)∂2,∂4 = −λ cosh2(2x3)∂2f4 − cosh(2x3) cos(2x4)∂4f1
+(sinh(2x3) + cosh(2x3) sin(2x4))∂4f2,

(LXg)∂3,∂3 = 2λ∂3f3,

(LXg)∂3,∂4 = λ∂4f3 − λ cosh2(2x3)∂3f4,

(LXg)∂4,∂4 = −2λ cosh2(2x3)∂4f4 − 4λ cosh(2x3) sinh(2x3)f3.

(1)

So X is a Killing vector field on M if and only if the following system of 10
PDEs holds
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2(sinh(2x3)− cosh(2x3) sin(2x4))∂1f1 − 2 cosh(2x3) cos(2x4)∂1f2
+2(cosh(2x3)− sinh(2x3) sin(2x4))f3 − 2 cosh(2x3) cos(2x4)f4 = 0,

− cosh(2x3) cos(2x4)∂1f1 + (sinh(2x3)− cosh(2x3) sin(2x4))∂2f1
− cosh(2x3) cos(2x4)∂2f2 + (sinh(2x3) + cosh(2x3) sin(2x4))∂1f2
−2 sinh(2x3) cos(2x4)f3 + 2 cosh(2x3) sin(2x4)f4 = 0,

λ∂1f3 + (sinh(2x3)− cosh(2x3) sin(2x4))∂3f1
− cosh(2x3) cos(2x4)∂3f2 = 0,

−λ cosh2(2x3)∂1f4 + (sinh(2x3)− cosh(2x3) sin(2x4))∂4f1
− cosh(2x3) cos(2x4)∂4f2 = 0,

−2 cosh(2x3) cos(2x4)∂2f1 + 2(sinh(2x3)
+ cosh(2x3) sin(2x4))∂2f2 + (sinh(2x3) sin(2x4)
+ cosh(2x3))f3 + cosh(2x3) cos(2x4)f4 = 0,

λ∂2f3 − cosh(2x3) cos(2x4)∂3f1 + (sinh(2x3)
+ cosh(2x3) sin(2x4))∂3f2 = 0,

−λ cosh2(2x3)∂2f4 − cosh(2x3) cos(2x4)∂4f1 + (sinh(2x3)
+ cosh(2x3) sin(2x4))∂4f2 = 0,

λ∂3f3 = 0,

λ∂4f3 − λ cosh2(2x3)∂3f4 = 0,

−λ cosh2(2x3)∂4f4 − 2λ cosh(2x3) sinh(2x3)f3 = 0.

(2)

Therefore, we give the solution of this system by:
f1 = c1x1 + (c2 + c3)x2 + c4,
f2 = −c1x2 + (c2 − c3)x1 + c5,
f3 = c1 sin(2x4) + c2 cos(2x4),
f4 = [c1 cos(2x4)− c2 sin(2x4)] tanh (2x3) + c3.

with c1, ..., c5 real constants.
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Then the general solution of Killing vectors field system (2) , holds for the
vector field

X = [c1x1 + (c2 + c3)x2 + c4]
∂

∂x1
+ [−c1x2 + (c2 − c3)x1 + c5]

∂

∂x2

+ [c1 sin(2x4) + c2 cos(2x4)]
∂

∂x3

+[[c1 cos(2x4)− c2 sin(2x4)] tanh (2x3) + c3]
∂

∂x4
, (3)

with c1, ..., c5 real constants.

Hence, the following vectors form a basis of the Lie Algebra of Killing vector
fields i (M) on generalized symmetric spaces of type D, whose dimension is 5.



V1 = x1
∂

∂x1
− x2

∂
∂x2

+ sin(2x4)
∂

∂x3
+ cos(2x4) tanh (2x3)

∂
∂x4

,

V2 = x2
∂

∂x1
+ x1

∂
∂x2

+ cos(2x4)
∂

∂x3
− sin(2x4) tanh (2x3)

∂
∂x4

,

V3 = x2
∂

∂x1
− x1

∂
∂x2

+ ∂
∂x4

,

V4 =
∂

∂x1
,

V5 =
∂

∂x2
.

5 Ricci solitons on four-dimensional generalized sym-
metric space of type D

In this section we study the existence of Ricci solitons on the four-dimensional
generalized symmetric spaces (M, g) of type D. Let X = f1∂1+f2∂2+f3∂3+f4∂4
be an arbitrary vector field on (M, g), where f1, .., f4 are smooth functions of the
variables x1, x2, x3, x4.

By using (4) and (1) in (1), a standard calculation gives that a four-dimensional
generalized symmetric space of type D, is a Ricci soliton if and only if the following
system of 10 PDEs holds,
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2(sinh(2x3)− cosh(2x3) sin(2x4))∂1f1 − 2 cosh(2x3) cos(2x4)∂1f2
−2 cosh(2x3) cos(2x4)f4 + 2(cosh(2x3)− sinh(2x3) sin(2x4))f3
+α(cosh(2x3) sin(2x4)− sinh(2x3)) = 0,

− cosh(2x3) cos(2x4)∂1f1 + (sinh(2x3)− cosh(2x3) sin(2x4))∂2f1
+(sinh(2x3) + cosh(2x3) sin(2x4))∂1f2 − cosh(2x3) cos(2x4)∂2f2
−2 sinh(2x3) cos(2x4)f3 + 2 cosh(2x3) sin(2x4)f4
+α cosh(2x3) cos(2x4) = 0,

λ∂1f3 + (sinh(2x3)− cosh(2x3) sin(2x4))∂3f1 − cosh(2x3) cos(2x4)∂3f2 = 0,

−λ cosh2(2x3)∂1f4 + (sinh(2x3)− cosh(2x3) sin(2x4))∂4f1
− cosh(2x3) cos(2x4)∂4f2 = 0,

−2 cosh(2x3) cos(2x4)∂2f1 + 2(sinh(2x3) + cosh(2x3) sin(2x4))∂2f2
+2 cosh(2x3) cos(2x4)f4 + 2(sinh(2x3) sin(2x4)
+ cosh(2x3))f3 − α(cosh(2x3) sin(2x4) + sinh(2x3)) = 0,

λ∂2f3 − cosh(2x3) cos(2x4)∂3f1 + (sinh(2x3) + cosh(2x3) sin(2x4))∂3f2 = 0,

−λ cosh2(2x3)∂2f4 − cosh(2x3) cos(2x4)∂4f1 + (sinh(2x3)
+ cosh(2x3) sin(2x4))∂4f2 = 0,

2λ∂3f3 − αλ− 6 = 0,

∂4f3 − cosh2(2x3)∂3f4 = 0,

2λ cosh2(2x3)∂4f4 + 4λ cosh(2x3) sinh(2x3)f3 − cosh2(2x3)(αλ+ 6) = 0.
(1)

The eight equation in (1) yields

f3 (x1,x2, x3, x4) = µx3 + F 1
3 (x1, x2, x4) , (2)

where F 1
3 is a smooth function depending on x1, x2, x4 and µ = αλ+6

2λ . Deriving
the nineth equation in (1) with respect to x3, we obtain the following differential
equation of second order

∂2
3f4 + 4 tanh (2x3) ∂3f4 = 0,

hence, integrating we get

f4 (x1,x2, x3, x4) =
1

2
F 1
4 (x1, x2, x4) tanh (2x3) + F 2

4 (x1, x2, x4) , (3)

where F 1
4 and F 2

4 are smooth functions depending on x1, x2, x4.
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Next, from the tenth equation in (1), we get

∂4f4 = µ− 2 tanh(2x3)f3, (4)

and deriving the nineth equation in (1) with respect to x4, we have

∂2
4f3 − cosh2(2x3)∂3∂4f4 = 0, (5)

so replacing (2) and (4) into equation (5) ; we find the following differential equa-
tion of second order

∂2
4F

1
3 + 4F 1

3 = µ [−4x3 − 2 sinh(2x3) cosh(2x3)] , (6)

but F 1
3 is depending on x1, x2, x4 only, then this is only possible if

µ = 0, (7)

then we deduce that

α =
−6

λ
. (8)

Therefore, a four-dimensional pseudo-Riemannian generalized symmetric space
of type D, can be shrinking or expanding Ricci soliton but never steady one, be-
cause α ̸= 0.

Replacing µ into (6) then integrating; we find

F 1
3 (x1, x2, x4) = F 2

3 (x1, x2) cos (2x4) + F 3
3 (x1, x2) sin (2x4) , (9)

where F 2
3 and F 3

3 are smooth functions depending on x1, x2 and since µ = 0 then
f3 is independant of x3 and we have

f3 (x1, x2, x4) = F 2
3 (x1, x2) cos (2x4) + F 3

3 (x1, x2) sin (2x4) , (10)

and (4) becomes
∂4f4 = −2 tanh(2x3)f3, (11)

which by derivation with respect to x3 gives

∂3∂4f4 = − 4

cosh2(2x3)
F 1
3 . (12)

On the other hand; deriving f4 twice from (3) with respect to x3, then to x4
we obtain

∂4∂3f4 =
∂4F

1
4

cosh2(2x3)
, (13)

so, substituting (9) and (13) into (12) , hence integrating we get

F 1
4 (x1, x2, x4) = 2

[
F 3
3 (x1, x2) cos (2x4)− F 2

3 (x1, x2) sin (2x4)
]
+H (x1, x2) ,

(14)
where H is a smooth function depending on x1, x2.
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Deriving f4 from (3) with respect to x4, then replacing into (11) and by taking
(10) and (14) into account; we have

∂4F
2
4 = 0,

so F 2
4 is depending only on x1, x2, then because of (14) we get

f4 (x1,x2, x3, x4)

=

(
F 3
3 (x1, x2) cos (2x4)− F 2

3 (x1, x2) sin (2x4) +
1

2
H (x1, x2)

)
tanh (2x3)

+F 2
4 (x1, x2) .

We replace in the ninth equation in (1) , by using (10) , we have

H = 0,

so

f4 (x1,x2, x3, x4) =
[
F 3
3 (x1, x2) cos (2x4)−F 2

3 (x1, x2) sin (2x4)
]
tanh (2x3)(15)

+F 2
4 (x1, x2) .

We combine the first, the second and the fifth equation of the system (1) ,
hence we get

∂1f1 + ∂2f2 = α. (16)

By using the third and the sixth equation of the system (1) , we have

∂3f1 = λ [sinh (2x3) + cosh (2x3) sin (2x4)] ∂1f3+λ cosh (2x3) cos (2x4) ∂2f3, (17)

∂3f2 = λ cosh (2x3) cos (2x4) ∂1f3+λ [sinh (2x3)− cosh (2x3) sin (2x4)] ∂2f3, (18)

and by using the fourth and the seventh equation of the system (1) , we get

∂4f1 = −λ cosh2 (2x3) [(sinh (2x3) + cosh (2x3) sin (2x4)) ∂1f4

+cosh (2x3) cos (2x4) ∂2f4], (19)

∂4f2 = −λ cosh2 (2x3) [cosh (2x3) cos (2x4) ∂1f4

+(sinh (2x3)− cosh (2x3) sin (2x4) ∂2f4)]. (20)

Then, deriving (17) with respect to x1 and (18) with respect to x2; next
replacing f3 and taking into account (16); we obtain

∂1∂2F
2
3 (x1, x2)

(
2 cosh (2x3) cos

2 (2x4)
)

+∂1∂2F
3
3 (x1, x2) (2 cosh (2x3) cos (2x4) sin (2x4))

+∂2
1F

2
3 (x1, x2) cos (2x4) (sinh (2x3) + cosh (2x3) sin (2x4))

+∂2
1F

3
3 (x1, x2) sin (2x4) (sinh (2x3) + cosh (2x3) sin (2x4))

+∂2
2F

2
3 (x1, x2) cos (2x4) (sinh (2x3)− cosh (2x3) sin (2x4))

+∂2
2F

3
3 (x1, x2) sin (2x4) (sinh (2x3)− cosh (2x3) sin (2x4)) = 0,
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for any values of x3, x4. Since F 2
3 , F

3
3 are independent of x3 and x4 and since the

family
{cosh (2x3) cos2 (2x4) , cosh (2x3) cos (2x4) sin (2x4) ,
cos (2x4) (sinh (2x3) + cosh (2x3) sin (2x4)),
sin (2x4) (sinh (2x3) + cosh (2x3) sin(2x4)),
cos (2x4) (sinh (2x3)− cosh (2x3) sin (2x4)),
sin (2x4) (sinh (2x3) − cosh (2x3) sin(2x4))} is linearly independant, we have

then
∂1∂2F

2
3 (x1, x2) = ∂2

1F
2
3 (x1, x2) = ∂2

2F
2
3 (x1, x2) = 0,

∂1∂2F
3
3 (x1, x2) = ∂2

1F
3
3 (x1, x2) = ∂2

2F
3
3 (x1, x2) = 0,

therefore

f3 (x1, x2, x4) =
(
a13x1 + a23x2 + a

)
cos (2x4) +

(
a33x1 + a43x2 + b

)
sin (2x4) , (21)

with a, b, a13, a
2
3, a

3
3, a

4
3 real constants.

Next, replacing f4 and deriving the fourth and the seventh equation of the
system (1) , with respect to x1 and with respect to x2; we get

∂1∂2F
2
4 (x1, x2) = ∂2

1F
2
4 (x1, x2) = ∂2

2F
2
4 (x1, x2) = 0,

therefore

f4 (x1, x2, x3, x4)

=
[(
a33x1 + a43x2 + b

)
cos (2x4)−

(
a13x1 + a23x2 + a

)
sin (2x4)

]
tanh (2x3)

+
(
b14x1 + b24x2 + c

)
, (22)

with b14, b
2
4 and c real constants.

Now, by using (21) , (22) and deriving (17), (18) , (19) and (20) with respect
to x1 and with respect to x2, a standard calculation yields

∂1∂3f1 = ∂2∂3f1 = 0,
∂1∂3f2 = ∂2∂3f2 = 0,
∂1∂4f1 = ∂2∂4f1 = 0,
∂1∂4f2 = ∂2∂4f2 = 0,

and deriving twice (17) and (18) with respect to x3, yields

∂3
3f1 = 4∂3f1

∂3
3f2 = 4∂3f2

so, integrating gives

∂3f1 = A1 (x4) e
2x3 +A2 (x4) e

−2x3

and
∂3f2 = B1 (x4) e

2x3 +B2 (x4) e
−2x3
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where A1, A2, B1 and B2 are smooth functions depending on x4, hence integrating
we obtain

f1 (x1, x2, x3, x4) =
1

2

[
A1 (x4) e

2x3 +A2 (x4) e
−2x3

]
+G1 (x1, x2) , (23)

f2 (x1, x2, x3, x4) =
1

2

[
B1 (x4) e

2x3 −B2 (x4) e
−2x3

]
+G2 (x1, x2) ,

with G1 and G2 smooth functions depending on x1, x2, which give by (16) that

∂1G1 + ∂2G2 = α, (24)

Adding the first and the fifth equation of the system (1) and using (23), we
obtain the following system{

∂1G2 + ∂2G1 = 2
(
a13x1 + a23x2 + a

)
,

∂1G1 − α
2 = a33x1 + a43x2 + b.

(25)

The second equation in (25) yields

G1 (x1, x2) =
a33
2
x21 + a43x1x2 +

(
b+

α

2

)
x1 +H1 (x2) ,

whereH1 is a smooth function. Next, in the system (25) deriving the first equation
with respect to x1 and the second equation with respect to x2, we get

G2 (x1, x2) =
(
2a13 − a43

) x21
2

+ x1H2 (x2) +H3 (x2) ,

where H2 and H3 are smooth functions and by using (24) , it becomes

G2 (x1, x2) =
(
2a13 − a43

) x21
2

+ θ1x1 − a33x1x2 +
(α
2
− b

)
x2 −

a43
2
x22 + γ, (26)

with γ a real constant.

Replacing in the first equation of the system (25) gives

G1 (x1, x2) =
a33
2
x21+a43x1x2+

(
b+

α

2

)
x1+

(
2a23 + a33

) x22
2
+(2a− θ1)x2+β, (27)

with β a real constant.

Replacing f1 and f2, in the second equation of the system (1) , by taking into
account of (26) and (27) , we obtain

G1 (x1, x2) =
a33
2 x

2
1 + a43x1x2 +

(
b+ α

2

)
x1 +

(
2a23 + a33

) x2
2
2 + (a+ c)x2 + β,

G2 (x1, x2) =
(
2a13 − a43

) x2
1
2 + (a− c)x1 − a33x1x2 +

(
α
2 − b

)
x2 −

a43
2 x

2
2 + γ.

(28)
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Hence, replacing f3 in the equations (17) and (18), by taking into account
(28) , we get

A1 (x4) =
λ

2

[
a13 cos (2x4) + a33 sin (2x4) (1 + sin (2x4)) + a23 cos

2 (2x4)

+
(
a13 + a43

)
cos (2x4) sin (2x4)

]
A2 (x4) =

λ

2

[
a13 cos (2x4) + a33 sin (2x4) (1− sin (2x4))− a23 cos

2 (2x4)

−
(
a13 + a43

)
cos (2x4) sin (2x4)

]
B1 (x4) =

λ

2

[
cos (2x4) sin (2x4)

(
a33 − a23

)
+ cos (2x4)

(
a13 cos (2x4) + a23

)
+a43 sin (2x4) (1− sin (2x4))

]
B2 (x4) =

λ

2

[
cos (2x4) sin (2x4)

(
a33 − a23

)
+ cos (2x4)

(
a13 cos (2x4)− a23

)
−a43 sin (2x4) (1 + sin (2x4))

]
Therefore, we have

f1 (x1, x2, x3, x4) =
λ

4
{[a13 cos (2x4) + a33 sin (2x4) (1 + sin (2x4)) + a23 cos

2 (2x4)

+
(
a13 + a43

)
cos (2x4) sin (2x4)]e

2x3 + [a13 cos (2x4)

+a33 sin (2x4) (1− sin (2x4))− a23 cos
2 (2x4)

−
(
a13 + a43

)
cos (2x4) sin (2x4)]e

−2x3}+ a33
2
x21 + a43x1x2

x22
2

+
(
b+

α

2

)
x1 +

(
2a23 + a33

)
+ (a+ c)x2 + β,

f2 (x1, x2, x3, x4) =
λ

4
{[cos (2x4) sin (2x4)

(
a33−a23

)
+cos (2x4)

(
a13 cos (2x4)+a23

)
+a43 sin (2x4) (1−sin (2x4))]e

2x3−[cos (2x4) sin (2x4)
(
a33−a23

)
+cos (2x4)

(
a13 cos (2x4)−a23

)
−a43 sin (2x4) (1 + sin (2x4))]e

−2x3} − a43
2
x22

+
(
2a13 − a43

) x21
2

+ (a− c)x1 − a33x1x2 +
(α
2
− b

)
x2 + γ,

f3 (x1, x2, x4) =
(
a13x1 + a23x2 + a

)
cos (2x4) +

(
a33x1 + a43x2 + b

)
sin (2x4) ,

f4 (x1, x2, x3, x4) = [
(
a33x1 + a43x2 + b

)
cos (2x4)

−
(
a13x1 + a23x2 + a

)
sin (2x4)] tanh (2x3)

+
[(
a43 − a13

)
x1 +

(
a23 + a33

)
x2 + c

]
.

Finally, by replacing in the fourth and the seventh equation of the system (1),
we prove that

a43 +
(
a33 − a23

)
cos (2x4) sin (2x4)−

(
a13 + a43

)
(sin (2x4))

2 = 0

a33 −
(
a13 + a43

)
cos (2x4) sin (2x4)−

(
a33 − a23

)
(sin (2x4))

2 = 0
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which gives since the family
{
1, cos (2x4) sin (2x4) , (sin (2x4))

2
}

is linearly inde-

pendant that

a13 = a23 = a33 = a43 = 0.

The calculations above proved that the general solution of the Ricci soliton
system (1) is explicitly given by X = f1∂1 + f2∂2 + f3∂3 + f4∂4 where

f1 =
(
b+

α

2

)
x1 + (a+ c)x2 + β, (29)

f2 = (a− c)x1 +
(α
2
− b

)
x2 + γ ,

f3 = a cos (2x4) + b sin (2x4) ,

f4 = [b cos (2x4)− a sin (2x4)] tanh (2x3) + c,

for arbitrary real constants a, b, c, β, γ.

Then, the Ricci soliton equation (1) holds for the metric g described in (4)
with the vector field

X =
[
1
2 (α+ 2b)x1 + (a+ c)x2 + β

]
∂1 +

[
(a− c)x1 +

1
2 (α− 2b)x2 + γ

]
∂2

+ [a cos (2x4) + b sin (2x4)] ∂3 + [(b cos (2x4)− a sin (2x4)) tanh (2x3) + c] ∂4,
(30)

for arbitrary real constants a, b, c, β, γ.

Therefore, the four-dimensional pseudo-Riemannian generalized symmetric
spaces of type D, admit appropriate vector fields for which (1) holds.

For any value of α not zero, we have the following result :

Theorem 2. A four-dimensional pseudo-Riemannian generalized symmetric space
of type D is expanding and shrinking Ricci solitons but never steady.

Comparing between the general solution (3) of the Killing vectors field system
and the general solution (30) of the Ricci soliton system; we notice that this last
one can not be a Killing vector field, otherwise α = 0; while four-dimensional
pseudo-Riemannian generalized symmetric space of type D can not be a steady
Ricci soliton.

Now, let X = grad h be an arbitrary gradient vector field on four-dimensional
pseudo-Riemannian generalized symmetric space of type D with potential function
h.

X is then given by

grad h=[− (cosh (2x3) sin (2x4)+sinh (2x3)) (∂1h)−cosh (2x3) cos (2x4) (∂2h)] ∂1
+ [− cosh (2x3) cos (2x4) ∂1h+ (cosh (2x3) sin (2x4)− sinh (2x3)) ∂2h] ∂2
+ 1

λ (∂3h) ∂3 − 1
λ cosh2(2x3)

(∂4h) ∂4.

(31)

By a standard calculation we prove, using (29) that the four-dimensional
pseudo-Riemannian generalized symmetric space of type D is gradient Ricci soli-
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ton, if and only if the following system yields

− (cosh (2x3) sin (2x4) + sinh (2x3)) ∂1h
− cosh (2x3) cos (2x4) ∂2h−

(
b+ α

2

)
x1 − (a+ c)x2 − β = 0,

(cosh (2x3) sin (2x4)− sinh (2x3)) ∂2h
− cosh (2x3) cos (2x4) ∂1h− (a− c)x1 −

(
α
2 − b

)
x2 − γ = 0,

∂3h− λ [a cos (2x4) + b sin (2x4)] = 0,
∂4h+ λ cosh (2x3) sinh (2x3) [b cos (2x4)− a sin (2x4)]

+cλ cosh2 (2x3) = 0.

(32)

Hence, by using the derivative of the last equation in (32) with respect to x3
and the derivative of the third one with respect to x4, we obtain

a sin (2x4)− b cos (2x4)− c tanh (2x3) = 0,

for every x3 and x4, which gives since the family {sin (2x4) , cos (2x4) , tanh (2x3)}
is linearly independant, that

a = b = c = 0,

consequently, we obtain that

∂3h = ∂4h = 0,

thus, h is independant of x3 and x4, so the first and the second equation in (32) ,
become{

[cosh (2x3) sin (2x4)+sinh (2x3)] ∂1h+cosh (2x3) cos (2x4) ∂2h+
1
2αx1+β =0,

cosh (2x3) cos (2x4) ∂1h−[cosh (2x3) sin (2x4)−sinh (2x3)] ∂2h+
1
2αx2 + γ = 0.

Finally, by using the derivative of the two equations above with respect to x3,
we prove that

∂1h = ∂2h = 0.

We deduce that h is a real constant, but in this case; h does not verify the first
and the second equation in (32). Thus, we have shown the following corollary.

Corollary 1. A four-dimensional pseudo-Riemannian generalized symmetric space
of type D is not a gradient Ricci soliton.

Conclusion
Generalized symmetric spaces has been studied by different authors, and in

this paper we were interested by the four-dimensionnal ones of type D, equipped
with a pseudo-Riemannian metric g. We described their curvature properties as
the Levi-Civita connection, the Riemann curvature tensor and the Ricci curvature
tensor, next we classify the Killing vectors field of these spaces then we studied
the existence of non-trivial, i.e., not Einstein Ricci solitons; we showed that these
spaces are shrinking or expanding Ricci solitons but never steady. Moreover we
proved that this Ricci soliton is not a gradient one.
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S., Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math.
188 (2012), 385–403.

[7] Calvaruso, G. and De Leo, B., Ricci solitons on Lorentzian Walker three-
manifolds, Acta Math. Hungar. 132 (2011), no. 3, 269–293.

[8] Calvaruso, G. and de Leo, B., Curvature properties of four-dimensional gen-
eralized symmetric spaces. J. Geom. 90 (2008) 30–46.

[9] Calvaruso, G. and Fino, A., Four-dimensional pseudo-Riemannian homoge-
neous Ricci solitons, Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 5,
1550056, 21 pp.

[10] Calvaruso, G. and Rosado, E., Ricci solitons on low-dimensional generalized
symmetric spaces, J. Geom. Phys. 112 (2017), 106-117.

[11] Calvino-Louzao, E., Garcia-Rio, E., Vazquez-Abal, a M E. and Vazquez-
Lorenzo, R., Geometric properties of generalized symmetric spaces, Proc. R.
Soc. Edinb. 145A, 47–71, (2015).

[12] Cerbo, L., F., Generic properties of homogeneous Ricci solitons. Adv. Geom.
14 (2014), no. 2, 225–237.

[13] Cerny, J. and Kowalski, O., Classification of generalized symmetric pseudo-
Riemannian spaces of dimension n 4, Tensor N. S. 38 (1982), 256–267.

[14] Kowalski, O., The existence of generalized symmetric Riemannian spaces of
arbitrary order, J. Diff. Geom. 12 (1977), 203-208.



Ricci solitons on pseudo Riemannian generalized symmetric spaces 65

[15] Lauret, J., Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011),
1–21.

[16] Onda, K., Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedi-
cata. 147 (2010), 313–322.

[17] Payne, T., L., The existence of soliton metrics for nilpotent Lie groups, Geom.
Dedicata. 145 (2010), 71–88.



66 Amel Bouharis


