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CATMULL-ROM SPLINE APPROACH AND THE ORDER OF
CONVERGENCE OF GREEN’S FUNCTION METHOD FOR

FUNCTIONAL DIFFERENTIAL EQUATIONS

Alexandru Mihai BICA∗,1 and Diana CURILĂ (POPESCU)2

Abstract

The purpose of this work is to investigate the convergence properties of
Green’s function method applied to boundary value problems for functional
differential equations. Recently, involving Picard and Mann iterations, a
Green’s function technique was developed (in Int. J. Computer Math. 95,
no. 10 (2018) 1937-1949) for third order functional differential equations, but
without specifying the order of convergence of the proposed method. In order
to improve this aspect, here we establish the maximal order of convergence
of Green’s function method applied to two-point boundary value problems
associated to second and third order functional differential equations. In this
context, by using suitable quadrature rule and appropriate spline interpola-
tion procedure, the Picard iterations are approximated by a sequence of cubic
splines on uniform mesh. Some numerical experiments are presented in or-
der to test the theoretical results and to illustrate the accuracy of the method

2000 Mathematics Subject Classification: 34K28 .
Key words: Two-point boundary value problems, Functional differential

equations, Green’s function method, Catmull-Rom splines, Order of conver-
gence .

1 Introduction

The main task of this work is to construct an effective iterative algorithm
within the framework of Green’s function method such that the order of con-
vergence to be maximal for second and third order two point boundary value
problems associated to functional differential equations.

The study of functional differential equations is motivated by their applica-
tions in electrodynamics, astrophysics, quantum mechanics, cell growth, electrical
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networks, engineering (see [10] and [14]) and third order differential equations are
important for various applications including the behavior of three-layer beams,
draining flows over solid surfaces, electromagnetic waves, the transport of vis-
coelastic fluids and others (see [5] and [17]). An extensive study of functional
differential equations is presented in [14] and the numerical methods developed
for two-point boundary value problems associated to functional differential equa-
tions can be found in [7], [8], [18], [19], [20], [21] and references therein.

The existence of solutions for two point boundary value problems associated
to third order differential equations was investigated in [2], [3], [13] and the Green
function method for third order differential equations with various type of iterative
approximations was developed in [1], [4], and [16].

The numerical solution of two-point boundary value problems for third-order
functional differential equations is investigated in few works and we can mention
the iterative schemes based on Green’s function method with Picard and Mann’s
iterations developed in [15] and the novel iterative technique proposed in [11].
Unfortunately, the order of convergence of Green’s function method is not spec-
ified in [15] and the corresponding order of convergence obtained in [11] is not
the best possible. Therefore we try to respond to this question in the present
work specifying that the order of convergence of Picard-Green’s function method
applied to the following two-point boundary value problem

{
x′′′ (t) = f(t, x (t) , x (φ (t))), t ∈ [0, T ]

x (0) = c, x (T ) = d, x′ (T ) = r
(1)

with φ : [0, T ] → [0, T ], 0 ≤ φ (t) ≤ t, ∀t ∈ [0, T ], and to related third order
boundary value problems, is O

(
h3
)
. On the other hand, we improve the order of

convergence of Green’s function method specified in [11] for a class of boundary
value problems that includes (1). More precisely, the authors from [11] have
obtained an order of convergence O

(
h2
)
by using the trapezoidal quadrature

rule and piecewise linear interpolation, while here we prove that this order is
better and the order O

(
h3
)
, obtained by us, cannot be improved. In order to

prove that the maximal order is O
(
h3
)
, we use suitable quadrature rule and

Catmull-Rom splines as interpolation procedure. The Catmull-Rom splines will
be used both for second and third order boundary value problems. The paper
is organized as follows: in Section 2 we present the convergence properties of
the Catmull-Rom spline interpolation procedure, while Section 3 is devoted to
the convergence analysis of the iterative method generated by the combination
of Green’s function technique with Catmull-Rom splines applied to second order
two-point boundary value problems with deviating argument. Section 4 contains
the main result regarding the order of convergence of Green’s function method
that involves the corrected trapezoidal rule and Catmull-Rom splines applied to
the boundary value problem (1). Some numerical examples are presented in the
last section in order to test the obtained theoretical results and to illustrate the
accuracy of this method.
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2 The Catmull-Rom spline interpolation

The Catmull-Rom splines were introduced in [9] for parametric curves regard-
ing shape preserving properties in the context of computer aided geometric design,
but can be used for uniform approximation, too, as will be viewed in the follow-
ing. A Catmull-Rom cubic spline is based on interpolating piecewise Hermite
cubic polynomials and on a partition ∆ of an interval [a, b],

∆ : a = x0 < x1 < ... < xn−1 < xn = b

has in each subinterval [xi−1, xi], i = 1, n, the following expression:

S (x) = (1− t)2 (2t+ 1) yi−1 + t2 (3− 2t) yi + hit (1− t)2mi−1 − hit
2 (1− t)mi.

(2)
Here hi = xi − xi−1, i = 1, n, yi = S (xi) , i = 0, n are given, t = x−xi−1

hi
, and the

derivatives on the knots mi = S′ (xi) , i = 0, n are obtained by using formula

mi =
(xi+1 − xi)

2 (yi − yi−1) + (xi − xi−1)
2 (yi+1 − yi)

(xi+1 − xi) (xi − xi−1) (xi+1 − xi−1)
, i = 1, n− 1. (3)

We will use the Catmull-Rom splines as interpolation procedure on uniform par-
tition, that is hi = h = b−a

n , ∀i = 1, n, and in this case formula (3) becomes

mi =
yi+1−yi−1

2h , i = 1, n− 1, being completed with special treatment for m0 and
mn at endpoints. More precisely, if S interpolates a function f on the knots xi,
i = 0, n, that is S (xi) = yi = f (xi) , i = 0, n, then if f ′ (a) and f ′ (b) are known
we can take m0 = f ′ (a) , mn = f ′ (b), otherwise we can propose

m0 =
−3y0 + 4y1 − y2

2h
, mn =

yn−2 − 4yn−1 + 3yn
2h

(4)

inspired from numerical differentiation generated by quadratic Lagrange interpo-
lation.

In order to estimate the interpolation error, if f ∈ C3[a, b] we see that Taylor

expansion on [xi−1, xi] and [xi, xi+1] roud about xi gives us
∣∣∣f ′ (xi)− yi+1−yi−1

2h

∣∣∣ ≤
h2

6 · ∥f ′′′∥∞ , for i = 1, n− 1, where ∥f ′′′∥∞ = max{|f ′′′ (x)| : x ∈ [a, b]}. On the
other hand, the usual error estimate of Lagrange interpolation provides∣∣∣∣f ′ (x0)−

−3y0 + 4y1 − y2
2h

∣∣∣∣ ≤ h2 ∥f ′′′∥∞
3

,

∣∣∣∣f ′ (xn)−
yn−2 − 4yn−1 + 3yn

2h

∣∣∣∣
≤ h2∥f ′′′∥∞

3 .

Considering H (f) be the piecewise two-point cubic Hermite polynomial inter-
polation on each interval [xi−1, xi], i = 1, n, if f ′ (a) and f ′ (b) are known then

max
x∈[a,b]

|S (x)−H (f) (x)|≤ max
x∈[xi−1,xi],i=1,n

(
(xi − x)2 (x− xi−1)

h2i

∣∣mi−1 − f ′ (xi−1)
∣∣+
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+
(x− xi−1)

2 (xi − x)

h2i

∣∣mi − f ′ (xi)
∣∣) ≤ 4h3 ∥f ′′′∥∞

81

and if at least one of f ′ (a) and f ′ (b) are unknown it obtains max
x∈[a,b]

|S (x)−H (f) (x)|

≤ 2h3

27 ·∥f ′′′∥∞ . Since in the case f ∈ C4[a, b], the error estimate for piecewise Her-

mite cubic polynomial interpolation is max
x∈[a,b]

|H (f) (x)− f (x)| ≤ h4

384 ·
∥∥f (4)

∥∥
∞,

we can consider the Catmull-Rom spline operator CR : C4[a, b] → C1[a, b], given
by CR (f) = S (f) and obtain the following result.

Lemma 1. If f ∈ C4[a, b], then the error estimate of the Catmull-Rom spline
operator is

∥CR (f)− f∥∞ ≤
4h3 · ∥f ′′′∥∞

81
+

h4

384
·
∥∥∥f (4)

∥∥∥
∞

= O
(
h3
)

(5)

if f ′ (a) and f ′ (b) are known, and

∥CR (f)− f∥∞ ≤
2h3 · ∥f ′′′∥∞

27
+

h4

384
·
∥∥∥f (4)

∥∥∥
∞

= O
(
h3
)

(6)

otherwise.

In that follows, we will use the error estimate (6) in the convergence analysis
of Green’s function method applied to second and third order two-point boundary
value problems with deviating argument.

3 Second order two-point boundary value problem
with deviating argument

Under the construction of Green’s function method, the second order two-point
boundary value problem with deviating argument{

x′′ (t) = f(t, x (t) , x (φ (t))), t ∈ [0, T ]
x (0) = c, x (T ) = d

(7)

is equivalent with the following Fredholm integral equation x (t) = A (x) (t) , t ∈
[0, T ], where the integral operator A : C[0, T ] → C[0, T ] is given by

A (x) (t) =
(T − t) c

T
+

td

T
−

T∫
0

G (t, s) · f (s, x (s) , x (φ (s))) ds, t ∈ [0, T ] (8)

and G : [0, T ]× [0, T ] → R, is the corresponding Green function. In this context,
(8) generates a fixed point problem and the sequence of Picard iterations is

xk (t) = g (t)−
T∫
0

G (t, s) · f (s, xk−1 (s) , xk−1 (φ (s))) ds, t ∈ [0, T ], k ∈ N∗ (9)
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with g (t) = (T−t)c
T + td

T and x0 (t) = g (t) , ∀t ∈ [0, T ].

Since

G (t, s) =

{
s(T−t)

T , s ≤ t
t(T−s)

T , t ≤ s
,

∂G

∂t
(t, s) =

{ −s
T , s ≤ t

T−s
T , t ≤ s

we see that max
t∈[0,T ]

T∫
0

|G (t, s)| ds = T 2

8 , ∥G∥∞ = max
(t,s)∈[0,T ]2

|G (t, s)| = T
4 ,
∥∥∂G

∂t

∥∥
∞ =

1,
∥∥∂G

∂s

∥∥
∞ = 1, and G (t, 0) = G (t, T ) = G (0, s) = G (T, s) = 0. By applying the

Banach’s fixed point principle to the integral operator (8) it obtains the following
result.

Theorem 1. If φ ∈ C[0, T ], f ∈ C ([0, T ]× R× R) is Lipschitzian with respect to
the second and to the third argument with corresponding Lipschitz constants α and
β, and if T 2

8 (α+ β) < 1, then the boundary value problem (7) has unique solution
x∗ ∈ C2[0, T ] and the sequence of Picard iterations uniformly converges to x∗ on
[0, T ]. Moreover this sequence and the sequences of their first two derivatives are
uniformly bounded, and the following estimates hold:

|x∗ (t)− xk (t)| ≤

(
T 2

8 (α+ β)
)k

T 2

8 M0

1− T 2

8 (α+ β)
, ∀t ∈ [0, T ], k ∈ N∗ (10)

|x∗ (t)− xk (t)| ≤
T 2

8 (α+ β)

1− T 2

8 (α+ β)
|xk (t)− xk−1 (t)| , ∀t ∈ [0, T ], k ∈ N∗ (11)

where x0 = g and M0 ≥ 0 is such that |f (t, g (t) , g (φ (t)))| ≤ M0 for all t ∈ [0, T ].

Proof. The Banach’s fixed point principle ensures the existence and uniqueness
of the solution x∗ ∈ C[0, T ] of (7) and the validity of the estimates (10) and
(11). After two times differentiation in the equality x∗ (t) = A (x∗) (t) we have

x∗ ∈ C2[0, T ]. Denoting λ = T 2

8 (α+ β) , by induction we get

|xk (t)− xk−1 (t)| ≤
T∫
0

(α+ β) |G (t, s)| · ∥xk−1 − xk−2∥∞ ds ≤ λk−1 · ∥x1 − x0∥∞

and

|xk (t)− x0 (t)| ≤
k∑

j=1

|xj (t)− xj−1 (t)| ≤
k−1∑
j=0

λj · ∥x1 − x0∥∞ ≤
∥x1 − x0∥∞

1− λ
.

Now, by considering Mg = max
t∈[0,T ]

|x0 (t)| = max
t∈[0,T ]

|g (t)|, it obtains

|xk (t)| ≤ |xk (t)− x0 (t)|+ |x0 (t)| ≤
T 2M0

8 (1− λ)
+Mg = R, ∀t ∈ [0, T ], k ∈ N∗
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that is the uniform boundedness of the sequence (xk)k∈N. Denoting Fk (t) =
f (t, xk (t) , xk (φ (t))) for t ∈ [0, T ], k ∈ N, we infer that (t, xk (t) , xk (φ (t))) ∈
[0, T ]× [−R,R]× [−R,R] for all t ∈ [0, T ], k ∈ N, and based on the continuity of
f , we deduce its boundedness on the compact set [0, T ]× [−R,R]× [−R,R], that
is there exists M ≥ 0 such that |Fk (t)| ≤ M, ∀t ∈ [0, T ], k ∈ N. Consequently,
the sequence (Fk)k∈N is uniformly bounded too. Moreover, since x′k (t) = g′ (t)−
T∫
0

∂G
∂t (t, s)Fk−1 (s) ds and x′′k (t) = Fk−1 (t), we have |x′k (t)| ≤

|d−c|
T + MT and

|x′′k (t)| ≤ M, ∀t ∈ [0, T ], k ∈ N∗ and the sequences (x′k)k∈N∗ and (x′′k)k∈N∗ are
uniformly bounded.

Under the conditions of Theorem 1, if f ∈ C2
(
[0, T ]× R2

)
, by the continuity

of the partial derivatives of f on the compact set [0, T ] × [−R,R] × [−R,R] we
obtain the uniform boundedness of the sequences (F ′

k)k∈N and (F ′′
k )k∈N, that is

|F ′
k (s)| ≤ M ′ and |F ′′

k (s)| ≤ M ′′, ∀s ∈ [0, T ], k ∈ N∗ for some M ′,M ′′ ≥ 0.

From these, we get x′′′k (t) = F ′
k−1 (t), x

(4)
k (t) = F ′′

k−1 (t), having |x′′′k (t)| ≤ M ′ and∣∣∣x(4)k (t)
∣∣∣ ≤ M ′′ for all t ∈ [0, T ], k ∈ N∗.

Since lim
k→∞

xk (t) = x∗ (t) , ∀t ∈ [0, T ], we have to approximate the Picard

iteration terms and for this purpose, we should to approximate the integrals in
(9). This will be done by using the trapezoidal quadrature rule with the error
estimate established in [6]:∣∣∣∣∣∣

b∫
a

F (t) dt− (b− a)

2n

n∑
i=1

[F (ti−1) + F (ti)]

∣∣∣∣∣∣ ≤ L′ (b− a)3

12n2
(12)

where ti = a+ i(b−a)
n , i = 0, n are the knots of a uniform partition and L′ ≥ 0 is

the Lipschitz constant of the derivative F ′, under the hypothesis F ∈ C1[a, b] with
Lipschitzian F ′. On the other hand, the presence of a deviating argument in (9)
impose the use of an interpolation procedure at each iterative step, and this is the
Catmull-Rom spline presented in (2)-(4) with the error estimate (6). Therefore,
we consider a uniform partition of [0, T ] with the knots ti =

iT
n = ih, i = 0, n and

stepsize h = T
n , n ∈ N∗. In this way we arrive to the iterative procedure:

xk (t0) = c, xk (tn) = d, k ∈ N, x0 (ti) = g (ti) , i = 0, n, (13)

and

xk (ti) = g (ti)+
T

2n

n∑
j=1

[G (ti, tj−1) ·Fk−1 (tj−1)+G (ti, tj) ·Fk−1 (tj)]+Rk,i (14)

for i = 1, n− 1, k ∈ N∗, with |Rk,i| ≤ L′Th2

12 . Denoting Fk−1,i (s) = G (ti, s) ·
Fk−1 (s) , the Lipschitz constant of ∂

∂s (G (ti, s) · Fk−1 (s)) = F ′
k−1,i (s) , i = 0, n,
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k ∈ N∗, is L′ = 2M ′ + T
4M

′′, based on the inequality∣∣F ′
k−1,i (s)− F ′

k−1,i

(
s′
)∣∣

≤
∣∣F ′

k−1

(
s′
)∣∣ ∣∣G (ti, s)−G

(
ti, s

′)∣∣+ |G (ti, s)|
∣∣F ′

k−1 (s)− F ′
k−1

(
s′
)∣∣

+

∣∣∣∣∂G (ti, s)

∂s

∣∣∣∣ ∣∣Fk−1 (s)− Fk−1

(
s′
)∣∣ ≤ 2M ′ ∣∣s− s′

∣∣+ T

4
M ′′ ∣∣s− s′

∣∣ , ∀s, s′ ∈ [0, T ].

For approximating the third argument in Fk−1 (s) = f (s, xk−1 (s) , xk−1 (φ (s)))
we use the Catmull-Rom spline interpolation procedure (2)-(4) and it obtains the
following iterative algorithm:

The first iterative step is x0 (t) = g (t) , ∀t ∈ [0, T ], and at endpoint we have

xk (t0) = c, xk (tn) = d, ∀k ∈ N∗ (15)

and denote Sk(t0) := c, Sk (tn) := d for k ∈ N∗. Taking k = 1 in (14) we get

x1 (ti) = S1 (ti) +R1,i, ∀i = 1, n− 1 (16)

with

S1 (ti) = g (ti) +
T

2n

n∑
j=1

[G (ti, tj−1) · F0 (tj−1) +G (ti, tj) · F0 (tj)], i = 1, n− 1

and construct the Catmull-Rom spline interpolating the values S1 (ti) , i = 0, n,
where S1(t0) = c, S1(tn) = d. By induction for k ∈ N∗, k ≥ 2 it obtains

xk (ti) = g (ti) +
T

2n

n∑
j=1

[G (ti, tj−1) · Fk−1 (tj−1) +G (ti, tj) · Fk−1 (tj)] +Rk,i =

= g (ti) +
T

2n

n∑
j=1

[G (ti, tj−1) · f
(
tj−1, Sk−1 (tj−1) , Sk−1 (φ (tj−1))

)
+

+G (ti, tj) · f
(
tj , Sk−1 (tj) , Sk−1 (φ (tj))

)
] +Rk,i = Sk (ti) +Rk,i, i = 1, n− 1,

(17)
where Sk−1 is the Catmull-Rom spline interpolating the values Sk−1 (ti), i = 0, n,
computed at the previous iterative step. This spline is described by the expression

Sk−1 (τ) = (1− τ)2 (2τ + 1)Sk−1 (ti−1) + τ2 (3− 2τ)Sk−1 (ti)+

+hτ (1− τ)2mk−1 (i− 1)− hτ2 (1− τ)mk−1 (i) , t ∈ [ti−1, ti], i = 1, n (18)

under the notation τ = t−ti−1

h , where

mk−1 (0) =
−3c+ 4Sk−1 (t1)− Sk−1 (t2)

2h
,

mk−1 (n) =
Sk−1 (tn−2)− 4Sk−1 (tn−1) + 3d

2h
(19)

mk−1 (i) =
Sk−1 (ti+1)− Sk−1 (ti−1)

2h
, i = 1, n− 1.
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The last iteration ”k” is determined such that
∣∣Sk (ti)− Sk−1 (ti)

∣∣ < ε, ∀i =
1, n− 1, for previously given ε > 0.

Concerning the convergence of the iterative algorithm (14)-(19) we obtain the
following result.

Theorem 2. Under of hypotheses of Theorem 1, if f ∈ C2
(
[0, T ]× R2

)
and

T 2

4

(
α+ 47

27β
)
< 1, then the sequence of Catmull-Rom splines

(
Sk

)
k∈N∗ approxi-

mates the solution of (7) and the error estimates in the discrete and continuous
approximation are:

∣∣x∗ (ti)− Sk (ti)
∣∣ ≤

(
T 2

8 (α+ β)
)k

T 2

8 M0

1− T 2

8 (α+ β)
+

+
L′Th2

12[1− T 2

4

(
α+ 47

27β
)
]
+

βT 2
(
2M ′

27 h3 + M ′′h4

384

)
4[1− T 2

4

(
α+ 47

27β
)
]
, i = 1, n− 1, k ∈ N∗ (20)

and

∣∣x∗ (t)− Sk (t)
∣∣ ≤

(
T 2

8 (α+ β)
)k

T 2

8 M0

1− T 2

8 (α+ β)
+

47L′Th2

324[1− T 2

4

(
α+ 47

27β
)
]
+

+
47βT 2

(
2M ′

27 h3 + M ′′h4

384

)
108[1− T 2

4

(
α+ 47

27β
)
]

+
2M ′

27
h3 +

M ′′h4

384
=

λk+1M0

1− λ
+O

(
h2
)

(21)

for all t ∈ [0, T ], k ∈ N∗, respectively.

Proof. Since
∣∣x∗ (t)− Sk (t)

∣∣ ≤ |x∗ (t)− xk (t)|+
∣∣xk (t)− Sk (t)

∣∣, we have to esti-
mate

∣∣xk (t)− Sk (t)
∣∣. For this purpose, in the discrete case, by (17) we have

∣∣xk (ti)− Sk (ti)
∣∣ = ∣∣Rk,i

∣∣ ≤ |Rk,i|+
T 2

4

(
α
∣∣Rk−1

∣∣+ β
∥∥xk−1 − Sk−1

∥∥
∞
)

(22)

for all i = 1, n− 1, where
∣∣Rk−1

∣∣ = max{
∣∣Rk−1,i

∣∣ : i = 1, n}, and for estimat-
ing

∥∥xk−1 − Sk−1

∥∥
∞ we consider the Catmull-Rom spline Sk−1 = CR (xk−1)

interpolating xk−1 (ti), i = 0, n and the piecewise Hermite cubic polynomial
Hk−1 interpolating xk−1 (ti) and x′k−1 (ti) , i = 0, n, and we use the scheme

Sk−1 → Sk−1 → Hk−1 → xk−1 and Lemma 1 applied to the pair (Hk−1, Sk−1).
By (6) we obtain the estimate

∥xk−1 − Sk−1∥∞ ≤ ∥xk−1 −Hk−1∥∞ + ∥Hk−1 − Sk−1∥∞ ≤

≤ 2h3

27
·
∥∥x′′′k−1

∥∥
∞ +

h4

384
·
∥∥∥x(4)k−1

∥∥∥ ≤ 2M ′

27
h3 +

M ′′h4

384
(23)

and similarly to (18) we have

Sk−1 (t) = (1− τ)2 (2τ + 1)xk−1 (ti−1) + τ2 (3− 2τ)xk−1 (ti)+
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+hτ (1− τ)2mk−1 (i− 1)− hτ2 (1− τ)mk−1 (i)

where mk−1 (i), i = 0, n are obtained analogous to (19). Consequently, it obtains∣∣Sk−1 (t)− Sk−1 (t)
∣∣ ≤ (1− τ)2 (2τ + 1)

∣∣xk−1 (ti−1)− Sk−1 (ti−1)
∣∣+ τ2 (3− 2τ) ·

·
∣∣xk−1 (ti)− Sk−1 (ti)

∣∣+ τ (1− τ)2 |mk−1 (i− 1)−mk−1 (i− 1)|+ τ2 (1− τ) ·

· |mk−1 (i)−mk−1 (i)| ≤
∣∣Rk−1

∣∣+ 8h

27
max
i=0,n

|mk−1 (i)−mk−1 (i)| ≤
47

27

∣∣Rk−1

∣∣
and by (23) we get

∥∥xk−1 − Sk−1

∥∥
∞ ≤ 47

27

∣∣Rk−1

∣∣+ 2M ′

27
h3 +

M ′′h4

384
(24)

remaining to estimate
∣∣Rk−1

∣∣. By (22) in inductive manner it obtains,
∣∣R1,i

∣∣ =
|R1,i| ≤ L′Th2

12

∣∣R2,i

∣∣ ≤ [1 + T 2

4

(
α+

47

27
β

)]
L′Th2

12
+

βT 2

4

(
2M ′

27
h3 +

M ′′h4

384

)
, i = 1, n− 1

and

∣∣Rk,i

∣∣ ≤ (1 + ω + ...+ ωk−1
) L′Th2

12
+

βT 2

4

(
1 + ω + ...+ ωk−2

)
(
2M ′

27
h3+

+
M ′′h4

384
) ≤ L′Th2

12 (1− ω)
+

βT 2
(
2M ′

27 h3 + M ′′h4

384

)
4 (1− ω)

= O
(
h2
)
, i = 1, n− 1 (25)

for all k ∈ N∗, where ω = T 2

4

(
α+ 47

27β
)
. Now, by using (24) and (25) we obtain

(20) and (21).

We see that
∥∥xk − Sk

∥∥
∞ = O

(
h2
)
and therefore, the order of convergence of

Green’s function method applied to (7) is O
(
h2
)
. This order is maximal because

∂G
∂t and ∂G

∂s have discontinuity on the line ”t = s”. Since in (9) we have

xk (ti) = g (ti)−
ti∫
0

s (T − ti)

T
Fk−1 (s) ds−

T∫
ti

ti (T − s)

T
Fk−1 (s) ds, i = 0, n

the quadrature rule (12) is applied separately on the intervals [0, ti] and [ti, T ].
The kernel functions in these integrals have Lipschitzian first order derivative
and the second order derivative does not exists. Of course, by (21) we have

lim
k→∞,h→0

∣∣x∗ (t)− Sk (t)
∣∣ = 0 for all t ∈ [0, T ], that is the convergence of the

iterative method (13)-(19).
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4 Third order two-point boundary value problems with
deviating argument

4.1 Green’s function iterative method

In this section we present the performances of the Green function method,
that involves Catmull-Rom splines as interpolation procedure, when it is applied
to two-point boundary value problems associated with third order differential
equations with retarded argument. In this context we consider the boundary value
problem (1) which is equivalent with the following Fredholm integral equation
x (t) = A (x) (t) , t ∈ [0, T ]. Here the integral operator A : C[0, T ] → C[0, T ] is
given as

A (x) (t) = g (t) +

T∫
0

G (t, s) · f (s, x (s) , x (φ (s))) ds, t ∈ [0, T ] (26)

with the Green function G,

G (t, s) =

{
H (t, s) = s2(T−t)2

2T 2 , s ≤ t

K (t, s) = s2(T−t)2

2T 2 − (s−t)2

2 , t ≤ s
,

∂G (t, s)

∂s
=

{
s(T−t)2

T 2 , s ≤ t
s(T−t)2

T 2 − (s− t) , t ≤ s

and g (t) = (rT+c−d)t2

T 2 + (2(d−c)−rT )t
T + c. After elementary calculus we deduce

G (t, 0) = G (t, T ) = G (0, s) = G (T, s) = 0,

∥G∥∞ = max
(t,s)∈[0,T ]2

|G (t, s)| =
(
5
√
5− 11

)
T 2

4
= CT 2, max

t∈[0,T ]

T∫
0

|G (t, s)| ds = 2T 3

81

(27)

max
t∈[0,T ]

T∫
0

∣∣∂G
∂t (t, s)

∣∣ ds = T 2

6 , max
t∈[0,T ]

T∫
0

∣∣∣∂2G
∂t2

(t, s)
∣∣∣ ds = 2T

3 ,
∥∥∂G

∂s

∥∥
∞ = 23T

27 ,
∥∥∥∂2G

∂t2

∥∥∥
∞

=

1,
∥∥∥∂2G

∂s2

∥∥∥
∞

= 1, where we have denoted C = 5
√
5−11
4 and observe CT 2 ≤ T 2

22 . It is

easy to see that G ∈ C1 ([0, T ]× [0, T ]), the second order partial derivatives are
discontinuous on the line ”t = s”, and therefore third order partial derivatives of
G does not exist. Moreover, we get ∂G

∂t (0, s) = s− s2

T , ∂G
∂s (0, s) = ∂G

∂s (T, s) = 0

∂G

∂s
(t, T ) =

(T − t)2

T
− (T − t) ,

∂G

∂s
(t, 0) = 0 (28)

and ∂G
∂t (t, 0) = ∂G

∂t (t, T ) = ∂G
∂t (T, s) = 0. By applying the Banach fixed point

principle to the integral operator (26) it obtains the following result.
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Theorem 3. If φ ∈ C[0, T ], 0 ≤ φ (t) ≤ t, ∀t ∈ [0, T ], f ∈ C ([0, T ]× R× R)
is Lipschitzian with respect to the second and to the third argument with corre-
sponding Lipschitz constants α and β, and if 2T 3

81 (α+ β) < 1, then the boundary
value problem (1) has unique solution x∗ ∈ C3[0, T ]. Moreover, the sequence of
Picard iterations (xk)k∈N, given by xk+1 = A (xk) with x0 = g, converges to x∗ on
C[0, T ], that is lim

k→∞
xk (t) = x∗ (t) (uniformly for t ∈ [0, T ]). In the approximation

of x∗ by the sequence (xk)k∈N, the error estimate is

|x∗ (t)− xk (t)| ≤

(
2T 3

81 (α+ β)
)k

2T 3

81 M0

1− 2T 3

81 (α+ β)
, ∀t ∈ [0, T ], k ∈ N∗, (29)

where x0 = g and M0 ≥ 0 is such that |f (t, g (t) , g (φ (t)))| ≤ M0 for all t ∈ [0, T ].
In addition to this, the sequence of Picard iterations is uniformly bounded, and an
”a posteriori” error estimate holds, too:

|x∗ (t)− xk (t)| ≤
2T 3

81 (α+ β)

1− 2T 3

81 (α+ β)
|xk (t)− xk−1 (t)| , ∀t ∈ [0, T ], k ∈ N∗. (30)

Proof. The Banach fixed point principle applied to the integral operator (26)
leads to the existence and uniqueness of the solution x∗ ∈ C[0, T ] and based on

∥x1 − x0∥ ≤ 2T 3

81 M0, and (27) the error estimates (29) and (30) are obtained.
After three times differentiation of the equality x∗ = A (x∗) we get x∗ ∈ C3[0, T ]
and since the sequence of Picard iterations is written as

xk (t) = g (t) +

T∫
0

G (t, s) · f (s, xk−1 (s) , xk−1 (φ (s))) ds, t ∈ [0, T ], k ∈ N∗ (31)

it obtains xk ∈ C3[0, T ], ∀k ∈ N and x′′′k (t) = f (t, xk−1 (t) , xk−1 (φ (t))) , ∀t ∈
[0, T ], k ∈ N∗. Similarly to the proof of Theorem 1 we get |xk (t)− x0 (t)| ≤
∥x1−x0∥∞

1− 2T3

81
(α+β)

and

|xk (t)| ≤
2T 3M0

81
(
1− 2T 3

81 (α+ β)
) +Mg = R, ∀t ∈ [0, T ], k ∈ N∗

that is the uniform boundedness of the sequence (xk)k∈N.
Consequently, (t, xk (t) , xk (φ (t))) ∈ [0, T ] × [−R,R] × [−R,R] for all t ∈ [0, T ]
and k ∈ N∗, and therefore, with the notation Fk (t) = f (t, xk (t) , xk (φ (t))), it
obtains |Fk (t)| ≤ M, ∀t ∈ [0, T ], k ∈ N∗ for some M ≥ 0, that is the uniform
boundedness of the sequence (Fk)k∈N. After three times differentiation in (31),

together with max
t∈[0,T ]

T∫
0

∣∣∂G
∂t (t, s)

∣∣ ds = T 2

6 and max
t∈[0,T ]

T∫
0

∣∣∣∂2G
∂t2

(t, s)
∣∣∣ ds = 2T

3 , we

obtain |x′k (t)| ≤ 2|rT+c−d|+|2(d−c)−rT |
T + MT 2

6 , |x′′k (t)| ≤ 2|rT+c−d|
T 2 + 2MT

3 and
|x′′′k (t)| = |f (t, xk−1 (t) , xk−1 (φ (t)))| ≤ M, ∀t ∈ [0, T ], k ∈ N∗. So, the sequences
(x′k)k∈N , (x′′k)k∈N, (x

′′′
k )k∈N are uniformly bounded, too.
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Under the conditions of Theorem 3, if f ∈ C3
(
[0, T ]× R2

)
, by the continuity

of the partial derivatives of f on the compact set [0, T ] × [−R,R] × [−R,R] we
get the uniform boundedness of the sequences (F ′

k)k∈N , (F ′′
k )k∈N , and (F ′′′

k )k∈N,
that implies the existence of M1,M2,M3 ≥ 0 such that∣∣F ′

k (s)
∣∣ ≤ M1,

∣∣F ′′
k (s)

∣∣ ≤ M2,
∣∣F ′′′

k (s)
∣∣ ≤ M3. (32)

Now, by considering a uniform partition of [0, T ] with stepsize h = T
n and

knots ti = ih, i = 0, n, we are able to describe the iterative method provided by
Green’s function technique and Catmull-Rom splines. In order to approximate
the integrals in (31) we use the corrected trapezoidal rule with the error estimate
deduced by Lemma 2 from [12]. Since on the knots ti, i = 0, n, the iterations (31)
can be written as

xk (ti) = g (ti) +

ti∫
0

H (ti, s) · Fk−1 (s) ds+

T∫
ti

K (ti, s) · Fk−1 (s) ds (33)

and ∂2H(ti,s)
∂s2

= (T−ti)
2

T 2 − 1, ∂2K(ti,s)
∂s2

= (T−ti)
2

T 2 , under the condition
f ∈ C3

(
[0, T ]× R2

)
we infer that the second order derivative (with respect by

”s”) of the kernel functions from the integrals in (33) are Lipschitzian. Remem-
bering that the inequality in Lemma 2 from [12] is∣∣∣∣∣∣

b∫
a

f (x) dx− (b− a) (f (a) + f (b))

2
+

(b− a)2

12

(
f ′ (b)− f ′ (a)

)∣∣∣∣∣∣ ≤
≤ (b− a)3 (M −m)

32

with m = min
x∈[a,b]

f ′′ (x) , M = max
x∈[a,b]

f ′′ (x) , in the case of L-Lipschitzian f ′′ we get

∣∣∣∣∣∣
b∫

a

f (x) dx− (b− a) (f (a) + f (b))

2
+

(b− a)2

12

(
f ′ (b)− f ′ (a)

)∣∣∣∣∣∣ ≤ L (b− a)4

32

(34)
which can be applied to uniform partitions. Now, we use (34) on the uniform
partition of [0, T ] in the approximation of the integrals in (33). By using (28) and
the fact G (t, 0) = G (t, T ) = 0, we get:

xk (t0) = c, xk (tn) = d, k ∈ N, x0 (ti) = g (ti) , i = 0, n,

xk (ti) = g (ti) +
T

2n

n∑
j=1

[G (ti, tj−1) · Fk−1 (tj−1) +G (ti, tj) · Fk−1 (tj)]−

− T 2

12n2

(
(T − ti)

2

T
− (T − ti)

)
f (tn, d, xk−1 (φ (tn)))+Rk,i, i = 1, n− 1, k ∈ N∗

(35)
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with |Rk,i| ≤ L′′T 4

32n3 , ∀i = 1, n− 1, k ∈ N∗, where L′′ ≥ 0 is the greatest Lipschitz

constant of ∂2

∂s2
(H (ti, s) · Fk−1 (s)) and

∂2

∂s2
(K (ti, s) · Fk−1 (s)), i = 0, n, k ∈ N∗.

Since for approximating the third argument in Fk−1(s)=f(s, xk−1(s) , xk−1(φ (s)))
we use the Catmull-Rom spline with mn = r, by (35) we obtain the following
iterative algorithm:

The initial iterative step is x0 (t) = g (t) , ∀t ∈ [0, T ], and

xk (t0) = c, xk (tn) = d, ∀k ∈ N∗ (36)

and denote Sk (t0) := c, Sk (tn) := d for k ∈ N∗. With k = 1 in (35) we get
x1 (ti) = S1 (ti) +R1,i, ∀i = 1, n− 1. By induction for k ∈ N∗, k ≥ 2, it obtains

xk (ti) = g (ti) +
T

2n

n∑
j=1

[G (ti, tj−1) · f
(
tj−1, Sk−1 (tj−1) , Sk−1 (φ (tj−1))

)
+

+G (ti, tj) · f
(
tj , Sk−1 (tj) , Sk−1 (φ (tj))

)
]− T 2

12n2

(
(T − ti)

2

T
− (T − ti)

)
·

·f
(
tn, d, Sk−1 (φ (tn))

)
+Rk,i = Sk (ti) +Rk,i, i = 1, n− 1 (37)

where Sk−1 is the Catmull-Rom spline interpolating the values Sk−1 (ti) , i = 0, n,
computed at the previous iterative step, with the expression

Sk−1 (τ) = (1− τ)2 (2τ + 1)Sk−1 (ti−1) + τ2 (3− 2τ)Sk−1 (ti)+

+hτ (1− τ)2mk−1 (i− 1)− hτ2 (1− τ)mk−1 (i) , t ∈ [ti−1, ti], i = 1, n (38)

and notation τ = t−ti−1

h , such that mk−1 (n) = r,

mk−1 (0) =
−3c+ 4Sk−1 (t1)− Sk−1 (t2)

2h
, mk−1 (i) =

Sk−1 (ti+1)− Sk−1 (ti−1)

2h
(39)

for i = 1, n− 1.
The algorithm is stopped at the iteration ”k” determined such that

∣∣Sk (ti)−
−Sk−1 (ti)

∣∣ < ε, ∀i = 1, n− 1, with previously given ε > 0.

4.2 Convergence analysis

Concerning the convergence of the iterative method (35)-(39) we obtain the
main result of this work, as follows.

Theorem 4. Under the conditions of Theorem 3, if f ∈ C3 ([0, T ]× R× R) ,

CT 3
(
α+ 41

27β
)
< 1, and n ∈ N∗ is such that n >

√
T 3(α+ 41

27
β)

12(1−CT 3(α+ 41
27

β))
, then the

Catmull-Rom spline Sk, given in (38), approximates the solution of (1) and the
error estimates in the discrete and continuous approximation are:

∣∣x∗ (ti)− Sk (ti)
∣∣ ≤

(
2T 3

81 (α+ β)
)k

2T 3

81 M0

1− 2T 3

81 (α+ β)
+
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+
L′′Th3

32
[
1−

(
α+ 41

27β
) (

CT 3 + T 3

12n2

)] + 2Mh3

9 + M1h4

128

3
[
1−

(
α+ 41

27β
) (

CT 3 + T 3

12n2

)] (40)

for i = 1, n− 1, k ∈ N∗, and

∣∣x∗ (t)− Sk (t)
∣∣ ≤

(
2T 3

81 (α+ β)
)k

2T 3

81 M0

1− 2T 3

81 (α+ β)
+

2Mh3

27
+

M1h
4

384
+

+
41L′′Th3

864
[
1−

(
α+ 41

27β
) (

CT 3 + T 3

12n2

)] + 41
(
256Mh3 + 9M1h

4
)

93312
[
1−

(
α+ 41

27β
) (

CT 3 + T 3

12n2

)]
(41)

for all t ∈ [0, T ], k ∈ N∗.

Proof. Based on the inequality (29) we have to estimate
∣∣Rk,i

∣∣ = ∣∣xk (ti)− Sk (ti)
∣∣ ,

i = 1, n− 1. Then
∥∥xk − Sk

∥∥
∞ follows using a similar method as in Section 3,

which leads to formula (24). For this purpose, firstly we determine the Lipschitz
constant L′′ and denoting Gk,i (s) = G (ti, s) · Fk−1 (s) we get∣∣G′′

k,i (s)−G′′
k,i

(
s′
)∣∣

≤
∥∥∥∥∂2G

∂s2

∥∥∥∥
∞

∣∣Fk−1 (s)− Fk−1

(
s′
)∣∣+ 2

∣∣F ′
k−1 (s)

∣∣ · ∣∣∣∣∂G∂s (ti, s)−
∂G

∂s

(
ti, s

′)∣∣∣∣
+2

∥∥∥∥∂G∂s
∥∥∥∥
∞

∣∣F ′
k−1 (s)− F ′

k−1

(
s′
)∣∣+ ∥G∥∞

∣∣F ′′
k−1 (s)− F ′′

k−1

(
s′
)∣∣

+
∣∣F ′′

k−1

(
s′
)∣∣ ∣∣G (ti, s)−G

(
ti, s

′)∣∣
≤

(
3M1 +

23T

9
M2 + CT 2M3

) ∣∣s− s′
∣∣ = L′′ ∣∣s− s′

∣∣
for all s, s′ ∈ [0, T ], k ∈ N∗, i = 0, n, where M1,M2,M3 are given in (32),
obtaining L′′ = 3M1 + 23T

9 M2 + CT 2M3. Now, let Sk be the Catmull-Rom
spline interpolating the values xk (ti) , i = 0, n and based on (6) we need to

estimate
∥∥∥x(4)k

∥∥∥
∞
. Elementary calculus lead us to

∥∥∥x(4)k

∥∥∥
∞

≤ M1 and denoting∣∣Rk

∣∣ = max{
∣∣Rk,i

∣∣ : i = 0, n}, by (6) we get

∥∥xk−1 − Sk−1

∥∥
∞ ≤ 41

27

∣∣Rk−1

∣∣+ 2Mh3

27
+

M1h
4

384
(42)

remaining to estimate
∣∣Rk−1

∣∣. In this purpose, in inductive manner, by (35) and

(37) it obtains
∣∣R1,i

∣∣ = |R1,i| ≤ L′′Th3

32 and

∣∣Rk,i

∣∣ ≤ |Rk,i|+
T

2n

n∑
j=1

[G (ti, tj−1) (α
∣∣xk−1 (tj−1)− Sk−1 (tj−1)

∣∣+
+β
∣∣xk−1 (φ (tj−1))− Sk−1 (φ (tj−1))

∣∣) +G (ti, tj) (α
∣∣xk−1 (tj)− Sk−1 (tj)

∣∣+
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+β
∣∣xk−1 (φ (tj))− Sk−1 (φ (tj))

∣∣)] + T 2

12n2

∣∣∣∣∣(T − ti)
2

T
− (T − ti)

∣∣∣∣∣β×
×
∣∣xk−1 (φ (tn))− Sk−1 (φ (tn))

∣∣ , ∀k ∈ N∗, k ≥ 2, i = 1, n− 1.

In the case k = 2, by this recurrent inequality we get∣∣R2,i

∣∣≤ L′′Th3

32
+

T

2n

n∑
j=1

2 ∥G∥∞
(
α
L′′Th3

32
+ β

∥∥x1 − S1

∥∥
∞

)
+

T 3β

12n2

∥∥x1 − S1

∥∥
∞≤

≤ L′′Th3

32
+ CT 3

(
α
L′′Th3

32
+ β(

41

27
· L

′′Th3

32
+

2Mh3

27
+

M1h
4

384
)

)
+

+
T 3β

12n2

(
41

27
· L

′′Th3

32
+

2Mh3

27
+

M1h
4

384

)
≤

≤ [1 +

(
α+

41

27
β

)
CT 3 +

41

27
β

T 3

12n2
]
L′′Th3

32
+ CT 3β

(
2Mh3

27
+

M1h
4

384

)
+

+
T 3β

12n2

(
2Mh3

27
+

M1h
4

384

)
≤
[
1 +

(
α+

41

27
β

)(
CT 3 +

T 3

12n2

)]
L′′Th3

32
+

+
41

27
β

(
CT 3 +

T 3

12n2

)(
2Mh3

27
+

M1h
4

384

)
, ∀i = 1, n− 1.

Now, denoting ω =
(
α+ 41

27β
) (

CT 3 + T 3

12n2

)
with n >

√
T 3(α+ 41

27
β)

12(1−CT 3(α+ 41
27

β))
we

have ω < 1, and for k ≥ 3 by induction we obtain∣∣Rk,i

∣∣ ≤ (1 + ω + ...+ ωk−1
) L′′Th3

32
+ ω

(
1 + ω + ...+ ωk−2

)
·

·
(
2Mh3

27
+

M1h
4

384

)
≤ L′′Th3

32 (1− ω)
+

ω
(
2Mh3

27 + M1h4

384

)
1− ω

= O
(
h3
)
, ∀i = 1, n− 1.

(43)
By (43) and (29) the estimate (40) follows, and using (42) we obtain the estimate
(41).

By (42) and (43) we see that
∥∥xk − Sk

∥∥
∞ = O

(
h3
)
, ∀k ∈ N∗ and therefore we

conclude that the order of convergence of Green’s function method is O
(
h3
)
. Due

to the discontinuity of ∂2G
∂t2

, ∂2G
∂s2

, ∂2G
∂t∂s on the line ”t = s”, this order cannot be

improved being maximal. By (40) and (41) we have lim
k→∞,h→0

∣∣x∗ (t)− Sk (t)
∣∣ = 0

for all t ∈ [0, T ], which means the convergence of the iterative method (35)-(39).

Remark 1. Analogous to (35)-(39), the following boundary value problems asso-
ciated to the differential equation x′′′ (t) = f(t, x (t) , x (φ (t))), that involve one of
the endpoint conditions:

x (0) = c, x′ (0) = w, x′ (T ) = r, or
x (T ) = d, x′ (0) = w, x′ (T ) = r, or

x (0) = c, x′ (0) = w, x (T ) = d
(44)
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could be approached, and similarly to Theorem 4 it obtains the order of convergence∥∥xk − Sk

∥∥
∞ = O

(
h3
)
, ∀k ∈ N∗.

5 Numerical experiments and concluding remarks

In order to test the obtained theoretical results in Theorem 2 and Theorem
4 and to illustrate the accuracy of the Green function method, applied to the
boundary value problems (7) and (1), we present some numerical examples as
follows.

Example 1. The second order two-point boundary value problem{
x′′ (t) = 4e−

t
2 sin

(
t
2

)
x
(
t
2

)
, t ∈ [0, π4 ]

x (0) = 1, x
(
π
4

)
=

√
2
2 e−

π
4

(45)

has the exact solution x∗ (t) = e−t cos t and with ε = 10−22 the algorithm (35)-(39)
is stopped after k = 14 iterations. The convergence is tested by taking n = 10,

n = 100, n = 1000, and the numerical results ei =
∣∣∣x∗ (ti)− S14 (ti)

∣∣∣ , i = 0, n,

are presented in Table 1. We see that for stepsize h = 0.1, h = 0.01, h =
0.001, the accuracy is O

(
10−4

)
, O

(
10−6

)
, O

(
10−8

)
, respectively, and the order

of convergence O
(
h2
)
stated in Theorem 2 is confirmed.

ti\ei ei, n = 10 ei, n = 100 ei, n = 1000
π
20 6.93e-05 6.93e-07 6.93e-09
π
10 9.61e-05 9.62e-07 9.61e-09
3π
20 8.85e-05 8.85e-07 8.85e-09
π
5 5.42e-05 5.41e-07 5.42e-09
π
4 0 0 0

Table 1. Numerical results for (45)

Example 2. The exact solution of the boundary value problem{
x′′′ (t) = − 4

(t+1)4
− ([x (t)]4 + [x (t)]3) · x

(
t
2

)
, t ∈ [0, 1]

x (0) = 1, x (1) = 1
2 , x′ (1) = −1

4

(46)

is x∗ (t) = 1
t+1 and applying the algorithm (35)-(39) with n = 10, n = 100,

n = 1000, and ε = 10−22 we get k = 13 iterations. The obtained numerical results

ei =
∣∣∣x∗ (ti)− S13 (ti)

∣∣∣ , i = 0, n, are presented in Table 2 for stepsize values

h = 0.1, h = 0.01, and h = 0.001.

ti\ei ei, h = 0.1 ei, h = 0.01 ei, h = 0.001

0.2 2.187770e-06 2.402558e-10 2.398e-14

0.4 1.650722e-06 1.783128e-10 1.788e-14

0.6 6.793574e-07 7.391376e-11 7.439e-15

0.8 3.709491e-08 5.125900e-12 5.552e-16

Table 2. Numerical results for (46)
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Example 3. The solution of the linear third order two-point boundary value prob-
lem {

x′′′ (t) = −2
3x (t)−

1
3e

−0.5tx
(
t
2

)
, t ∈ [0, 1]

x (0) = 1, x (1) = 1
e , x′ (1) = −1

e

(47)

is x∗ (t) = e−t and with ε = 10−22 the number of iterations will be k = 11. The

numerical results ei =
∣∣∣x∗ (ti)− S11 (ti)

∣∣∣ , i = 0, n are presented in Table 3.

ti\ei ei, h = 0.1 ei, h = 0.01 ei, h = 0.001

0.2 4.378843e-08 3.793854e-12 3.331e-16

0.4 6.480995e-08 6.160406e-12 6.662e-16

0.6 6.732228e-08 6.596057e-12 7.772e-16

0.8 4.693276e-08 4.663381e-12 3.331e-16

Table 3. Numerical results for (47)

Example 4. In this numerical experiment we present some examples that cor-
respond to the cases mentioned in Remark 1, by considering the following third
order two-point boundary value problems:{

x′′′ (t) = e−t [x (t)]
3
2 · x

(
t
2

)
, t ∈ [0, 1]

x (0) = 1, x′ (0) = 1, x (1) = e
(48)

{
x′′′ (t) = 24t− 1

3x
(
t2
)
+ 1

3 [x (t)]
2, t ∈ [0, 1]

x (0) = 0, x′ (0) = 0, x′ (1) = 4.
(49)

{
x′′′ (t) = 1

2x (t) +
1
2e

(1−q)tx (qt) , t ∈ [0, 1], q ∈ (0, 1)
x′ (0) = 1, x (1) = e, x′ (1) = e

(50)

where the exact solution of (48) and (50) is x∗ (t) = et. In the case of (49), the
deviating argument is φ (t) = t2 and the exact solution will be x∗ (t) = t4. For
(48), taking ε = 10−22 we get k = 11 iterations and the numerical results are
presented in Table 4. Similarly, by considering ε = 10−22, the iterative algorithm
applied to (49) provides k = 8 iterations and the numerical results at the last

iteration ei =
∣∣∣x∗ (ti)− S8 (ti)

∣∣∣ , i = 0, n, can be found in Table 5. The bound-

ary value problem (50) was considered for q ∈ {1
4 ,

1
2 ,

3
4} obtaining the number of

iterations k = 18, k = 16 and k = 15, respectively, and the numerical results

ei =
∣∣∣x∗ (ti)− Sk (ti)

∣∣∣ , i = 0, n are presented in Table 6.

ti\ei ei, h = 0.1 ei, h = 0.01 ei, h = 0.001

0.2 5.403e-07 4.614e-11 4.441e-15

0.4 7.053e-07 6.703e-11 6.884e-15

0.6 6.776e-07 6.490e-11 6.439e-15

0.8 4.301e-07 4.181e-11 4.441e-15

Table 4. Numerical results for (48)
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ti\ei ei, h = 0.1 ei, h = 0.01 ei, h = 0.001

0.2 1.071654e-08 9.116789e-13 1.697861e-16

0.4 3.821559e-08 3.055615e-12 4.649059e-16

0.6 7.282348e-08 5.561190e-12 1.026956e-15

0.8 1.003167e-07 7.704226e-12 6.661338e-16

1 1.110156e-07 8.615109e-12 1.665335e-15

Table 5. Numerical results for (49)

ei\ti 0 0.2 0.4 0.6 0.8

q\n : 1
4\10 1.32e-06 1.17e-06 9.94e-07 7.39e-07 4.21e-07

n = 102 1.50e-10 1.32e-10 1.08e-10 7.75e-11 4.19e-11

n = 103 1.51e-14 1.34e-14 1.11e-14 8.22e-15 4.44e-15

q\n : 1
2\10 1.46e-06 1.28e-06 1.05e-06 7.62e-07 4.15e-07

n = 100 1.51e-10 1.32e-10 1.07e-10 7.72e-11 4.18e-11

n = 1000 1.52e-14 1.29e-14 1.09e-14 7.99e-15 4.01e-15

q\n : 3
4\10 1.46e-06 1.28e-06 1.04e-06 7.57e-07 4.04e-07

n = 102 1.50e-10 1.30e-10 1.06e-10 7.64e-11 4.15e-11

n = 103 1.49e-14 1.29e-14 1.07e-14 7.78e-15 4.01e-15

Table 6. Numerical results for (50)

Concerning the order of convergence of Green’s function method applied to
third order two-point boundary value problems with deviating argument, the re-
sults presented in Tables 2-6 can be summarized in Table 7 where we see that the
order O

(
h3
)
stated in Theorem 4 is confirmed.

h\ei eq. (46) eq. (47) eq. (48) eq. (49) eq. (50)

10−1 O
(
10−5

)
O
(
10−7

)
O
(
10−6

)
O
(
10−6

)
O
(
10−5

)
10−2 O

(
10−9

)
O
(
10−11

)
O
(
10−10

)
O
(
10−10

)
O
(
10−9

)
10−3 O

(
10−13

)
O
(
10−15

)
O
(
10−14

)
O
(
10−14

)
O
(
10−13

)
Table 7. The accuracy for third order BVP’s

In Theorem 4 we proved that the maximal order of convergence of Green’s
function method applied to third order two-point boundary value problems with
deviating argument is O

(
h3
)
and this was realized by choosing the Catmull-Rom

cubic spline as suitable interpolation procedure and by using the corrected trape-
zoidal quadrature rule. The corrected-trapezoidal quadrature rule has the error
estimate described in terms of Lipschitz constants for the second order derivative
of the kernel function. For the boundary value problems corresponding to the first
two cases in (44), the complete cubic spline interpolation procedure provides the
same order of convergence O

(
h3
)
, but the computational cost is increased because

a tridiagonal linear system should be solved at each iterative step. Therefore, the
approach of using Catmull-Rom spline is better from computational cost point of
view for third order two-point boundary value problems with deviating argument.

Acknowledgement: The authors want to thank to the anonymous reviewer
for his careful check-out and for the valuable suggestions that improved the quality
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