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ON THE CONTINUITY OF POINT TO SET MAPS
WITH APPLICATIONS TO PARETO OPTIMIZATION

Marius PĂUN 1 and Paul IACOB2

Abstract

Pareto optimization problems have sets as solution both in the decisions’ space
and in the objectives’ space. When the problem depends on a real vector parameter
the notion of the stability of the solution must be defined and studied. We introduce
in this paper the notions of limit of sequences of sets, open, closed and continous
application. Then we determine some relations between the stability of the solutions
in the decisions’ space and in the objectives’ space.
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1 Introduction

Zangwill’s paper [7] marks the beginning of the research on the continuity of the
solutions of an optimization problem in relation with the convergence of the optimization
algorithms.

Many authors describe and analyze the properties of point to set maps related to the
semicontinuity of a real function, considering the solution of a single objective optimization
problem. A generalization of Pareto optimization is found in Tigan [6].

Another approach to study the properties of point to set maps is to take functions
F : Rn → P(Rn) and to consider the continuity of these functions in some special topology
defined on P(Rn), see Berge[1].

More effective is the study of the properties of point to set maps through the properties
of their graphics.

2 Continuity of set to point maps

First we define two basic concepts :open application and closed application. These no-
tions are named in Tanino and Sawaragi [5] lower semicontinous and upper semicontinous
applications.
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Definition 1. Let A : Y ⊂ Rk → P(Rn). A is closed in y∗ ∈ Y if for all convergent
sequences yn → y∗ and xn → x∗ with xn ∈ A(yn) we have x∗ ∈ A(y∗).

Definition 2. Let A : Y ⊂ Rk → P(Rn). A is open in y∗ ∈ Y if for all convergent
sequence yn → y∗ and for all x∗ ∈ A(y∗) there is a convergent sequence xn → x∗ and a
natural N so that xn ∈ A(yn) for all n > N .

Definition 3. Let A : Y ⊂ Rk → P(Rn). A is continuous in y∗ ∈ Y if A is simultaneously
closed and open in y∗.

Definition 4. Let A : Y ⊂ Rk → P(Rn). A is continuous (or open, or closed) on Y if A
is continuous (or open or closed) in all y∗ ∈ Y .

Definition 5. Let Bj ⊂ Rk, j ∈ N be a sequence of sets. We define the inner limit of
the sequence of sets Bj as the set

B = lim sup
j→∞

Bj =
{

x | x = lim
i→∞

xji , xji ∈ Bji

}
(1)

where Bji is a subsequence of Bj.

Definition 6. Let Bj ⊂ Rk, j ∈ N a sequence of sets. We define the outer limit of the
sequence of sets Bj as the set

B = lim inf
j→∞

= {x | x = lim xj} (2)

where xj is a sequence with the property that there exists a natural N so that xj ∈ Bj ∀j >
N .

Definition 7. Let Bj ⊂ Rk, j ∈ N , a sequence of sets. If

lim inf
j→∞

Bj = lim sup
j→∞

Bj = B

then we state that B is the limit of the sequence of sets Bj.

We emphasise some relations between the convergence of set sequences and the prop-
erty of a point to set application to be continuous (or open or closed) obtained directly
from these definitions.

Proposition 1. The application A is closed in y∗ if A(yj) ⊂ A(y∗) for all sequence yj

convergent to y∗.

Proposition 2. The application A is open in y∗ if A(yj) ⊃ A(y∗) for all sequence yj

convergent to y∗.

If the codomain of the function A consists in a single point we have:
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Lemma 1. (Meyer[4]) Consider a function A : Y ⊂ Rk → P(Rn) with the property
A(y) = {xy} ∀y ∈ Y .
i) if A is open in y∗ then A is closed in y∗ and therefore A is continuous in y∗
ii) if A : Y ⊂ Rk → P(Z), Z compact and A closed then A is open in y∗ and therefore is
continuous in y∗.

Hogan proves in [3] that in some cases the condition of uniform compactness near y∗
is sufficient.

Definition 8. Let A : Y ⊂ Rk → P(Rn). A is uniform compact near y∗ if there exists a
neighbourhood V (y∗) ⊂ Y such that the set

⋃
y∈V (y∗)

A(y) is compact.

We can prove:

Lemma 2. Let A : Y ⊂ Rk → P(Rn). If
i) A is uniform compact near y∗
ii) A is closed in y∗
iii) A(y∗) = x∗
then A is open in y∗.

Theorem 1. (Danzing,Folkman and Shapiro[2])
Let f : Rn → R, D : Y ⊂ Rk → P(Rn) and Ω : Y → P(Rn) be defined by

Ω(y) = {x∗ ∈ D(y) | f(x∗) = min
x∈D(y)

f(x)} not= m(f | D(y)) (3)

If Ω is a closed application in y∗ for all continuous function f then for any convergent
sequence yj → y∗ we have that lim

j→∞
D(yj) is empty set or is equal to D(y∗).

We extend this theorem to the multiobjective optimization in the following shape. We
introduce first the set of minimum Pareto points and in this sense we consider: F : Rn →
Rp, F = {f1, f2, ..., fp}, D : Y ⊂ Rk → P(Rn) and y ∈ Y .

Definition 9. x∗ ∈ D(y) is a Pareto minimum point of F on D(y) if
there is no x ∈ D(y), x 6= x∗ such that F (x) ≤ F (x∗)
(i.e. 1)fi(x) ≤ fi(x∗) for any i ∈ {1, ..., p}

2) there exists j ∈ {1, ..., p} so that fj(x) 6= fj(x∗))

Denote this notion by mP (F | D).

Definition 10. x∗ ∈ D(y) is weak Pareto minimum point of F on D(y) if there is no
x ∈ D(y), x 6= x∗ such that F (x) < F (x∗) where F (x) < F (x∗) means that fi(x) < fi(x∗)
for all i ∈ {1, ..., p}.

We denote this set by mPw(F | D).

Definition 11. x∗ ∈ D(y) is a strict Pareto minimum point if there is no x ∈ D(y), x 6=
x∗ such that F (x) � F (x∗) (i.e. there is no x ∈ D(y), x 6= x∗ such that fj(x) ≤ fj(x∗)
for all i ∈ {1, ...p}).

We denote the strict Pareto minimum point by mPst(F | D)
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3 Connections between stability in the decisions space and
in the objectives space

Theorem 2. Let Y ⊂ Rk, F : Rn × Y → Rp, D : Y → P(Rn) and Ω : Y → P(Rn)
defined by Ω(y) = mP (F (·, y) | D(y)). If Ω is closed in y∗ for all continuous functions F
then for all convergent sequences yj → y∗ we have that lim

j→∞
D(yj) is empty set or equal

to D(y∗)

Proof. If Ω is closed in y∗ for all continous vector function F , then it is closed in y∗ for
all F = (f, 0, ..., 0) and, in this case, mP (F | D(y)) = m(f | D(y)) and from Th. 2.1 we
obtain the conclusion.

In single objective optimization problem we have as a solution in the objectives’ space
a unique point; in multiple objectives optimization problem, the solution in the objectives’
space is a set and that is an essential difference.
We consider further Y ⊂ Rk, F : Rn × Y → Rp, F = {f1, f2, ..., fp}, fj is continuous
function for all j, D : Y → P(Rn), Ω : Y → P(Rn) defined by Ω(y) = mP (F (·, y) | D(y))
and Φ defined by Φ(y) =

⋃
x∈Ω(y)

F (x, y).

Theorem 3. If there exists a compact D∗ and a neighbourhood V (y∗) of y∗ such that
D(y) ⊂ D∗ ∀y ∈ V (y∗) and if Ω is a closed application in y∗ then Φ is a closed application
in y∗.

Proof. Consider the convergent sequence’ yj → y∗ and zj ∈ Φ(yj), zj → z∗. Then there
exist xj ∈ Ω(yj) and a natural N such that zj = F (xj , yj) with xj ∈ D∗ for all j > N . But
D∗ is compact, D(yj) ⊂ D∗∀j > N then xj contains a convergent subsequence xji → x∗
. Ω is closed application in y∗ ⇒ x∗ ∈ Ω(y∗). F is continuous on every component then
F (xj , yj) → F (x∗, y∗) = z∗. But x∗ ∈ Ω(y∗) then z∗ ∈ Ω(y∗).

The reciprocal theorem holds in less restrictive conditions:

Theorem 4. If Φ is a closed application in y∗ then Ω is a closed application in y∗.

Proof. We consider the convergent sequence yj → y∗, xj ∈ Ω(yj), xj → x∗. Then
F (xj , yj) → F (x∗, y∗) = z∗ and z∗ ∈ Φ(y∗) that means x∗ ∈ Ω(y∗), therefore Ω is a
closed application in y∗.

We can establish the same type of connections between open applications.

Theorem 5. If Ω is open application in y∗ then Φ is open application in y∗.

Proof. Let ym → y∗, and z∗ ∈ Φ(y∗). Then there is x∗ ∈ Ω(y∗) such that F (x∗, y∗) = z∗.
But, since Ω is open in y∗, there is a convergent sequence xj → x∗ and a natural N
such that for all m > N we have xm ∈ Ω(ym). Because F is continuous it follows
F (xm, ym) = zm → z∗ and for all m > N , zm ∈ Φ(ym).

The reciprocal theorem holds in more restrictive conditions:
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Theorem 6. If:
i) there exists a compact D∗ and a neighbourhood V (y∗) of y∗ such that D(y) ⊂ D∗ for all
y ∈ V (y∗)
ii) mP (F (., y∗)|D(y∗)) = mPSt(F (., y∗)|D(y∗))
iii) Φ is a continuous application in y∗
then Ω is an open application in y∗.

Proof. Let yl → y∗, and x∗ ∈ Ω(y∗). Denote by z∗ = F (x∗, y∗), that means z∗ ∈ Φ(y∗).
Because Φ is continuous in y∗ it is open in y∗. Therefore there exists a convergent sequence
zj → z∗ and a natural N1, such that zj ∈ Φ(yj), for j > N1. It follows that there exists
xj ∈ Ω(yj) such that zj = F (xj , yj).
Then there exists N2 such that for l > N2 we have xl ∈ D∗, but D∗ is compact, therefore
xl contains a convergent subsequence xli → x0;
Let us suppose x0 6= x∗.
F is continuous so F (xli , yli) → F (x0, y∗) and because the limit is unique we have
F (x0, y∗) = F (x∗, y∗) and x0 ∈ Ω(y∗).
Therefore x0 ∈mP (F (., y∗)|D(y∗)) = mPSt(F (., y∗)|D(y∗)) and that is in contradiction to
F (x0, y∗) = F (x∗, y∗). It means xl → x∗ and, for l > max(N1, N2) we have xl ∈ Ω(yl).
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