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ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY A
DIFFERENTIAL OPERATOR
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Abstract
In this paper we investigate a new subclass of analytic functions defined by Sălăgean

differential operator. Some properties of functions belonging to this subclass are ob-
tained.
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1 Indroduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

k=2

akz
k, z ∈ U (1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
Denote by S the class of functions f ∈ A which are univalent.
A function f ∈ A is said to be in the class S∗ of starlike functions, if it satisfies the

following inequality:

Re
zf ′(z)
f(z)

> 0, z ∈ U. (2)

For a function f ∈ A, Sălăgean differential operator Dn [8] is defined by

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D(Dn−1f(z)), n ∈ {1, 2, . . .} .

If f ∈ A is given by (1), note that

Dnf(z) = z +
∞∑

k=2

knakz
k, n ∈ {0, 1, 2, . . .} . (3)

Making use of the generalized harmonic mean of the functions Dnf(z) and Dn+1f(z)
we define the following class of functions.
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Definition 1. Let α be a complex number. We say that a function f ∈ A belongs to the
class HS∗

n(α) if the function F defined by

1
F (z)

=
1− α

Dnf(z)
+

α

Dn+1f(z)
, z ∈ U (4)

is in the class S∗.

For n = 0, the class HS∗
0(α) reduces to the class HS∗(α) investigated by N. N. Pascu

and D. Răducanu [6].
When α = 0, the class HS∗

n(0) reduces to the class of analytic n-starlike functions
sudied by G. S. Sălăgean [8].

In this paper we find the relationship between the classes HS∗
n(α) and S∗. The Fekete-

Szegö problem for the class HS∗
n(α) is also solved.

2 Relationship property

In order to prove the relationship between the classes HS∗
n(α) and S∗ we need the

following lemma.

Lemma 1 ([4]). Let p(z) be an analytic function in U with p(0) = 1 and p(z) 6= 1. If
0 < |z0| < 1 and

Rep(z0) = min
|z|≤|z0|

Rep(z)

then

z0p
′(z0) ∈ R and z0p

′(z0) ≤ − |1− p(z0)|2

2[1−<p(z0)]
.

Theorem 1. Let α be a complex number such that
∣∣∣∣α− 1

2

∣∣∣∣ ≥ 1
2
. Then HS∗

n(α) ⊂ S∗.

Proof. Assume that f belongs to the class HS∗
n(α). Simple calculations show that if f is

in HS∗
n(α), then

Re

[
Dn+1f(z)
Dnf(z)

+
Dn+2f(z)
Dn+1f(z)

− (1− α)Dn+2f(z) + αDn+1f(z)
(1− α)Dn+1f(z) + αDnf(z)

]
> 0. (5)

Consider the analytic function p(z) in U, given by

p(z) =
Dn+1f(z)
Dnf(z)

. (6)

Then, the inequality (5) becomes

Re

[
p(z) +

zp′(z)
p(z)

− (1− α)zp′(z)
(1− α)p(z) + α

]
> 0. (7)
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Suppose that there exists a point z0 (0 < |z0| < 1) such that

Rep(z) > 0 (|z| < |z0|) and p(z0) = iρ, (8)

where ρ is real and ρ 6= 0.Then, making use of Lemma 1., we get

z0p
′(z0) ≤ −1 + ρ2

2
. (9)

By virtue of (7), (8) and (9) it follows that

R0 := Re

[
p(z0) +

z0p
′(z0)

p(z0)
− (1− α)z0p

′(z0)
(1− α)p(z0) + α

]

= Re

[
iρ +

z0p
′(z0)
iρ

− (1− α)z0p
′(z0)

(1− α)iρ + α

]
.

Hence,

R0 =
z0p

′(z0)
|(1− α)iρ + α|2

Re
[
|α|2 − ᾱ

]
. (10)

Since
∣∣∣∣α− 1

2

∣∣∣∣ ≥ 1
2

it follows that Re
[
|α|2 − ᾱ

]
≥ 0.

From (9) and (10) we get

R0 ≤ − 1 + ρ2

2|(1− α)iρ + α|2
Re

[
|α|2 − ᾱ

]
≤ 0,

which contradicts the assumption f ∈ HS∗
n(α). Therefore, we must have

Rep(z) = Re
Dn+1f(z)
Dnf(z)

> 0, for z ∈ U. (11)

An important results in [8] states that the condition (11) implies

Re
Dnf(z)

Dn−1f(z)
> 0, z ∈ U

which implies

Re
Dn−1f(z)
Dn−2f(z)

> 0, z ∈ U

and so on. Finally, we obtain

Re
D1f(z)
D0f(z)

= Re
zf ′(z)
f(z)

> 0, z ∈ U

and thus, f ∈ S∗.
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3 The Fekete-Szegö problem

In 1933 M. Fekete and G. Szegö [1] obtained sharp upper bounds for |a3 − µa2
2| for

f ∈ S and µ real number. For this reason, the determination of sharp upper bounds for the
non-linear functional |a3 − µa2

2| for any compact family F of functions f ∈ A is popularly
known as the Fekete-Szegö problem for F. For different subclasses of S, the Fekete-Szegö
problem has been investigated by many authors including [[2], [5], [7], [9], [10]], etc.

In this section we will solve the Fekete-Szegö problem for the class HS∗
n(α), when α is

a positive real number.
The following lemmas will be needed in order to prove our results.

Lemma 2 ([3]). If p1(z) = 1 + c1z + c2z
2 + . . . is an analytic function with positive real

part in U , then ∣∣c2 − vc2
1

∣∣ ≤


−4v + 2, if v ≤ 0
2, if 0 ≤ v ≤ 1
4v − 2, if v ≥ 1.

When 0 < v < 1, the above upper bounds can be improved as follows:

|c2 − vc2
1|+ v|c1|2 ≤ 2 , 0 < v ≤ 1

2
and

|c2 − vc2
1|+ (1− v)|c1|2 ≤ 2 ,

1
2

< v ≤ 1.

The results are sharp.

Lemma 3 ([7]). If p1(z) = 1 + c1z + c2z
2 + . . . is an analytic function with positive real

part in U , then
|c2 − vc2

1| ≤ 2 max {1; |2v − 1|} .

The result is sharp.

Theorem 2. Let α be a positive real number and let µ be a real number. Consider

σ1 :=
22n−1(1 + 4α− α2)

3n(1 + 2α)

σ2 :=
22n(1 + 3α)
3n(1 + 2α)

σ3 :=
22n−2(3 + 10α− α2)

3n(1 + 2α)
.

If the function f given by (1) belongs to the class HS∗
n(α), then

∣∣a3 − µa2
2

∣∣ ≤


1
(1 + α)2

[
3 + 10α− α2

3n(1 + 2α)
− µ

22n−2

]
, if µ ≤ σ1

1
3n(1 + 2α)

, if σ1 ≤ µ ≤ σ2

1
(1 + α)2

[
α2 − 10α− 3
3n(1 + 2α)

+
µ

22n−2

]
, if µ ≥ σ2.
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Further, if σ1 ≤ µ ≤ σ3, then

∣∣a3 − µa2
2

∣∣ +
22n−1(α2 − 4α− 1) + 3n(1 + 2α)µ

3n(1 + 2α)
|a1|2 ≤

1
3n(1 + 2α)

.

If σ3 ≤ µ ≤ σ2, then

∣∣a3 − µa2
2

∣∣ +
22n(1 + 3α)− 3n(1 + 2α)µ

3n(1 + 2α)
|a1|2 ≤

1
3n(1 + 2α)

.

Proof. Suppose f given by (1) belongs to the class HS∗
n(α). Let p1(z) = 1+c1z+c2z

2+. . .
be an analytic function with positive real part in U. From (5) we get

Dn+1f(z)
Dnf(z)

+
Dn+2f(z)
Dn+1f(z)

− (1− α)Dn+2f(z) + αDn+1f(z)
(1− α)Dn+1f(z) + αDnf(z)

=

= 1 + c1z + c2z
2 + . . . . (12)

We have
Dn+1f(z)
Dnf(z)

= 1 + 2na2z + (2 · 3na3 − 22na2
2)z

2 + . . . (13)

Dn+2f(z)
Dn+1f(z)

= 1 + 2n+1a2z + (2 · 3n+1a3 − 22n+2a2
2)z

2 + . . . (14)

(1− α)Dn+2f(z) + αDn+1f(z)
(1− α)Dn+1f(z) + αDnf(z)

= 1 + 2n(2− α)a2z+

+
[
2 · 3n(3− 2α)a3 − 22n(2− α)2a2

2

]
z2 + . . . . (15)

Using (13), (14) and (15) in (12) we find

c1 = 2n(1 + α)a2 and c2 = 2 · 3na3(1 + 2α) + 22n(α2 − 4α− 1)a2
2.

This gives

a2 =
c1

2n(1 + α)
and a3 =

1
2 · 3n(1 + 2α)

[
c2 −

α2 − 4α− 1
(1 + α)2

c2
1

]
. (16)

Therefore, we have

a3 − µa2
2 =

1
2 · 3n(1 + 2α)

(c2 − vc2
1),

where

v :=
22n−1(α2 − 4α− 1) + 3n(1 + 2α)µ

22n−1(1 + α)2
. (17)

The first part of our theorem now follows by an application of Lemma 2.
Assume σ1 ≤ µ ≤ σ3. Then

∣∣a3 − µa2
2

∣∣ +
22n−1(α2 − 4α− 1) + 3n(1 + 2α)µ

3n(1 + 2α)
|a1|2
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=
∣∣a3 − µa2

2

∣∣ + (µ− σ1)|a1|2

=
1

2 · 3n(1 + 2α)
|c2 − vc2

1|+
3n(1 + 2α)µ− 22n−1(1 + 4α− α2)

3n(1 + 2α)
· |c1|2

22n(1 + α)2

=
1

2 · 3n(1 + 2α)
[|c2 − vc2

1|+ v|c1|2] ≤
1

3n(1 + 2α)
.

Similarly, if σ3 ≤ µ ≤ σ2, we have

∣∣a3 − µa2
2

∣∣ +
22n(1 + 3α)− 3n(1 + 2α)µ

3n(1 + 2α)
|a1|2

=
∣∣a3 − µa2

2

∣∣ + (σ2 − µ)|a1|2

=
1

2 · 3n(1 + 2α)
|c2 − vc2

1|+
22n(1 + 3α)− 3n(1 + 2α)µ

3n(1 + 2α)
· |c1|2

22n(1 + α)2

=
1

2 · 3n(1 + 2α)
[|c2 − vc2

1|+ (1− v)|c1|2] ≤
1

3n(1 + 2α)
.

Thus, we have completed the proof of the theorem.

Making use of Lemma 3. and the equalities (16) and(17), we immediately obtain the
following result.

Theorem 3. Let α be a positive number and let µ a complex number. If the function f
given by (1) belongs to the class HS∗

n(α), then

∣∣a3 − µa2
2

∣∣ ≤ 1
3n(1 + 2α)

max

{
1;

∣∣22n−1(α2 − 10α− 3) + 2 · 3n(1 + 2α)µ
∣∣

22n−1(1 + α)2

}
.
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of close-to-convex functions, Complex Variable 44 (2001), 145-163.

[10] Tuneski, N., Darus,M., Fekete-Szegö functional for non-Bazilevic functions,
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