ON THE TRANSFORMATIONS GROUP OF N-LINEAR CONNECTIONS ON THE DUAL BUNDLE OF 3-TANGENT BUNDLE

Monica PURCARU¹ and Mirela TÂRNOVEANU²

Abstract

In the present paper we study the transformations for the coefficients of an N-linear connection on the dual bundle of 3-tangent bundle, $T^{*3}M$, by a transformation of nonlinear connections on $T^{*3}M$. We prove that the set \mathcal{T} of these transformations together with the composition of mappings isn't a group, but we give some groups of transformations of \mathcal{T} , which keep invariant a part of the components of the local coefficients of an N-linear connection.

2000 Mathematics Subject Clasification: 53B05

Key Words: dual bundle of 3-tangent bundle, nonlinear connection, N-linear connection, transformations group, subgroup.

1 Introduction

The notion of Hamilton spaces was introduced by R. Miron in [7], [8]. The differential geometry of the dual bundle of k-osculator bundle was introduced and studied by R. Miron [13], too.

In the present section the general setting from [13] is presented and subsequently only some needed notions are recalled.

Let M be a real n-dimensional C^{∞} -manifold and let $(T^{*3}M, \pi^{*3}, M)$ be the dual bundle of 3-osculator bundle (or 3-cotangent bundle), where the total space is:

$$T^{*3}M = T^{*2}M \times T^*M. (1.1)$$

Let $(x^i, y^{(1)i}, y^{(2)i}, p_i)$, (i = 1, ..., n), be the local coordinates of a point $u = (x, y^{(1)}, y^{(2)}, p) \in T^{*3}M$ in a local chart on $T^{*3}M$.

The change of coordinates on the manifold $T^{*3}M$ is:

¹Faculty of Mathematics and Informatics, *Transilvania* University of Braşov, Romania, e-mail: mpurcaru@unitbv.ro

 $^{^2}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: mi_tarnoveanu@yahoo.com

$$\begin{cases}
\tilde{x}^{i} = \tilde{x}^{i} \left(x^{1}, ..., x^{n} \right), \det \left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}} \right) \neq 0, \\
\tilde{y}^{(1)i} = \frac{\partial \tilde{x}^{i}}{\partial x^{j}} \tilde{y}^{(1)j}, \\
2\tilde{y}^{(2)i} = \frac{\partial \tilde{y}^{(1)i}}{\partial x^{j}} y^{(1)j} + 2 \frac{\partial \tilde{y}^{(1)i}}{\partial y^{(1)j}} y^{(2)j}, \\
\tilde{p}_{i} = \frac{\partial x^{j}}{\partial \tilde{x}^{i}} p_{j}, (i, j = 1, 2, ..., n),
\end{cases}$$
(1.2)

where the following relations hold:

$$\frac{\partial \tilde{y}^{(\alpha)i}}{\partial x^j} = \frac{\partial \tilde{y}^{(\alpha+1)i}}{\partial y^{(1)j}} = \frac{\partial \tilde{y}^{(2)i}}{\partial y^{(2-\alpha)j}}, \left(\alpha = 0, 1; y^{(0)} = x\right). \tag{1.3}$$

 $T^{*3}M$ is a real differential manifold of dimension 4n.

With respect to (1.1) the natural basis of the vector space $T_u\left(T^{*3}M\right)$ at the point $u \in T^{*3}M$:

$$\left\{ \frac{\partial}{\partial x^i} \bigg|_{u}, \frac{\partial}{\partial y^{(1)i}} \bigg|_{u}, \frac{\partial}{\partial y^{(2)i}} \bigg|_{u}, \frac{\partial}{\partial p_i} \bigg|_{u} \right\}$$
 (1.4)

is transformed as it follows by the Jacobi matrix of (1.2) changes.

We denote $\widetilde{T^{*3}M} = T^{*3}M \setminus \{0\}$. Let us consider the tangent bundle of the differentiable manifold $T^{*3}M$,

 $(TT^{*3}M, d\pi^{*3}, T^{*3}M)$, where $d\pi^{*3}$ is the canonical projection and the vertical distribution $V: u \in T^{*3}M \to V(u) \in T_uT^{*3}M$, locally generated by the vector fields $\left\{\frac{\partial}{\partial y^{(1)i}}, \frac{\partial}{\partial y^{(2)i}}, \frac{\partial}{\partial p_i}\right\}$ at every point $u \in T^{*3}M$.

The following $\mathcal{F}(T^{*3}M)$ – linear mapping:

$$J:\chi\left(T^{*3}M\right)\to\chi\left(T^{*3}M\right),$$

defined by:

$$J\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial y^{(1)i}}, J\left(\frac{\partial}{\partial y^{(1)i}}\right) = \frac{\partial}{\partial y^{(2)i}}, J\left(\frac{\partial}{\partial y^{(2)i}}\right) = 0, J\left(\frac{\partial}{\partial p_i}\right) = 0, \tag{1.6}$$

at every point $u \in \widetilde{T^{*3}M}$ is a tangent structure on $T^{*3}M$.

We denote with N a nonlinear connection on the manifold $T^{*3}M$ with the coefficients:

$$\left(N_{(1)}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), N_{i}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), N_{ij} \left(x, y^{(1)}, y^{(2)}, p \right) \right), (i, j = 1, 2, ..., n).$$

The tangent space of $T^{*3}M$ in the point $u \in T^{*3}M$ is given by the direct sum of vector spaces:

$$T_u(T^{*3}M) = N_{0,u} \oplus N_{1,u} \oplus V_{2,u} \oplus W_{3,u}, \ \forall u \in T^{*3}M.$$
 (1.5)

A local adapted basis to the direct decomposition (1.5) is given by:

$$\left\{ \frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{(1)i}}, \frac{\delta}{\delta y^{(2)i}}, \frac{\delta}{\delta p_{i}} \right\}, (i = 1, 2, ..., n), \tag{1.6}$$

where:

$$\begin{cases}
\frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N^{j}_{i} \frac{\partial}{\partial y^{(1)j}} - N^{j}_{i} \frac{\partial}{\partial y^{(2)j}} + N_{ij} \frac{\partial}{\partial p_{j}}, \\
\frac{\delta}{\delta y^{(1)i}} = \frac{\partial}{\partial y^{(1)j}} - N^{j}_{i} \frac{\partial}{\partial y^{(2)j}}, \\
\frac{\delta}{\delta y^{(2)i}} = \frac{\partial}{\partial y^{(2)i}}, \\
\frac{\delta}{\delta p_{i}} = \frac{\partial}{\partial p_{i}}.
\end{cases} (1.7)$$

Under a change of local coordinates on $T^{*3}M$, the vector fields of the adapted basis transform by the rule:

$$\frac{\delta}{\delta x^{i}} = \frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{x}^{j}}, \frac{\delta}{\delta y^{(1)i}} = \frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{y}^{(1)j}},
\frac{\delta}{\delta y^{(2)i}} = \frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{y}^{(2)j}}, \frac{\delta}{\delta p_{i}} = \frac{\delta x^{i}}{\delta \tilde{x}^{j}} \frac{\delta}{\delta \tilde{p}_{j}}.$$
(1.8)

The dual basis of the adapted basis (1.6) is given by:

$$\left\{\delta x^{i}, \delta y^{(1)i}, \delta y^{(2)i}, \delta p_{i}\right\},\tag{1.9}$$

where:

$$\begin{cases}
 dx^{i} = \delta x^{i}, \\
 dy^{(1)i} = \delta y^{(1)i} - N^{i}{}_{j}\delta x^{j}, \\
 dy^{(2)i} = \delta y^{(2)i} - N^{i}{}_{j}\delta y^{(1)j} - N^{i}{}_{j}\delta x^{j}, \\
 dp_{i} = \delta p_{i} + N_{ii}\delta x^{j}.
\end{cases} (1.10)$$

Let D be an N-linear connection on $T^{*3}M$, with the local coefficients in the adapted basis (1.6):

$$D\Gamma(N) = \left(H^{i}_{jh}, C^{i}_{jh}, C_{i}^{jh}\right), (\alpha = 1, 2). \tag{1.11}$$

An N-linear connection D is uniquely represented under the adapted basis in the following form:

$$\begin{split} &D_{\frac{\delta}{\delta x^{j}}}\frac{\delta}{\delta x^{i}}=H^{s}{}_{ij}\frac{\delta}{\delta x^{s}},D_{\frac{\delta}{\delta x^{j}}}\frac{\delta}{\delta y^{(\alpha)i}}=H^{s}{}_{ij}\frac{\delta}{\delta y^{(\alpha)s}},(\alpha=1,2)\,,\\ &D_{\frac{\delta}{\delta x^{j}}}\frac{\delta}{\delta p_{i}}=-H^{i}{}_{sj}\frac{\delta}{\delta p_{s}},\\ &D_{\frac{\delta}{\delta y^{(\alpha)j}}}\frac{\delta}{\delta x^{i}}=C^{s}{}_{ij}\frac{\delta}{\delta x^{s}},D_{\frac{\delta}{\delta y^{(\alpha)j}}}\frac{\delta}{\delta y^{(\beta)i}}=C^{s}{}_{ij}\frac{\delta}{\delta y^{(\beta)s}},\\ &D_{\frac{\delta}{\delta y^{(\alpha)j}}}\frac{\delta}{\delta p_{i}}=-C^{i}{}_{(\alpha)}{}^{i}{}_{sj}\frac{\delta}{\delta p_{s}},(\alpha,\beta=1,2)\,,\\ &D_{\frac{\delta}{\delta p_{j}}}\frac{\delta}{\delta x^{i}}=C_{i}{}^{js}\frac{\delta}{\delta x^{s}},D_{\frac{\delta}{\delta p_{j}}}\frac{\delta}{\delta y^{(\alpha)i}}=C_{i}{}^{js}\frac{\delta}{\delta y^{(\alpha)s}},(\alpha=1,2)\,,\\ &D_{\frac{\delta}{\delta p_{j}}}\frac{\delta}{\delta p_{i}}=-C_{s}{}^{ij}\frac{\delta}{\delta p_{s}}. \end{split} \tag{1.12}$$

$\mathbf{2}$ The set of the transformations of N-linear connections

In the following we shall give the transformations for the coefficients of an N- linear connection on $T^{*3}M$, by a transformation of nonlinear connections and we shall prove that the set, \mathcal{T} , of all these transformations together with the mapping composition isn't a group. We shall find some groups which keep invariant a part of components of the local coefficients of an N-linear connection.

Let \bar{N} be another nonlinear connection on $T^{*3}M$, with the local coefficients:

$$\left(\bar{N}_{(1)}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), \bar{N}_{(2)}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), N_{ij} \left(x, y^{(1)}, y^{(2)}, p \right) \right) (i, j = 1, 2, ..., n)$$
 Then there exists the uniquely determined tensor fields $A_{i}^{j} \in \tau_{1}^{1} \left(T^{*3} M \right), (\alpha = 1, 2)$ and

 $A_{ij} \in \tau_2^0 \left(T^{*3} M \right)$, such that:

$$\begin{cases}
\bar{N}^{i}_{j} = N^{i}_{j} - A^{i}_{j}, (\alpha = 1, 2), \\
(\alpha) \quad (\alpha) \quad (\alpha)
\end{cases}$$

$$\bar{N}_{ij} = N_{ij} - A_{ij}, (i, j = 1, 2, ..., n).$$
(2.1)

Conversely, if $N^{i}_{(\alpha)}$ and $A^{i}_{(\alpha)}$, $(\alpha = 1, 2)$, respectively N_{ij} and A_{ij} are given, then \bar{N}^{i}_{j} , $(\alpha = 1, 2)$, respectively \bar{N}_{ij} , given by (2.1) are the coefficients of a nonlinear connection.

Theorem 1 Let N and \bar{N} be two nonlinear connections on $T^{*3}M$, with local coefficients:

$$\left(N_{(1)}^{j}\left(x,y^{(1)},y^{(2)},p\right),N_{(2)}^{j}\left(x,y^{(1)},y^{(2)},p\right),N_{ij}\left(x,y^{(1)},y^{(2)},p\right)\right),$$

$$\left(\bar{N}_{(1)}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), \bar{N}_{(2)}^{j} \left(x, y^{(1)}, y^{(2)}, p \right), N_{ij} \left(x, y^{(1)}, y^{(2)}, p \right) \right), (i, j = 1, 2, ..., n)$$

 $\begin{pmatrix} \bar{N}^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), \bar{N}^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), N_{ij}\left(x,y^{(1)},y^{(2)},p\right) \end{pmatrix}, \ (i,j=1,2,...,n)$ respectively. If D is an N-linear connection on $T^{*3}M$, with local coefficients $D\Gamma\left(N\right) = \begin{pmatrix} H^{i}{}_{jh}, C^{i}{}_{jh}, C^{i}{}_{jh}, C^{i}{}_{jh} \end{pmatrix}$, then the transformation: $N \longrightarrow \bar{N}$, given by (2.1) of nonlinear connections implies for the coefficients

 $D\Gamma\left(\bar{N}\right) \,=\, \left(\bar{H}^{i}{}_{jh}, \bar{C}^{i}{}_{jh}, \bar{C}^{i}{}_{jh}, \bar{C}_{i}{}^{jh}\right) \,\, of \,\, the \,\, \bar{N}-linear \,\, connection \,\, D \,\, the \,\, relations \,\, (2.2) \,,$ that is the transformation $D\Gamma(N) \to D\Gamma(\bar{N})$ is given by:

$$\begin{cases}
\bar{H}^{h}_{ij} = H^{h}_{ij} + A^{l}_{j} C^{h}_{il} + A^{l}_{j} N^{r}_{l} C^{h}_{ir} + A^{l}_{j} C^{h}_{il} - A_{jl} C^{lh}_{i}, \\
\bar{C}^{h}_{ij} = C^{h}_{ij} + A^{l}_{j} C^{h}_{il}, \\
\bar{C}^{h}_{ij} = C^{h}_{ij}, \\
\bar{C}^{h}_{ij} = C^{h}_{ij}, \\
\bar{C}^{h}_{iij} = 0, \\
A_{ihij} = 0, (i, j, h = 1, 2, ..., n),
\end{cases} (2.2)$$

where " \mid " denotes the h-covariant derivative with respect to $D\Gamma(N)$.

The proof results by a straightforward computation, using (1.12) and (2.1)

Theorem 2 Let N and \bar{N} be the nonlinear connections on $T^{*3}M$, with local coefficients: $\begin{pmatrix} N^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), N^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), N_{ij}\left(x,y^{(1)},y^{(2)},p\right) \end{pmatrix}$, $\begin{pmatrix} N^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), \bar{N}^{j}{}_{i}\left(x,y^{(1)},y^{(2)},p\right), \bar{N}_{ij}\left(x,y^{(1)},y^{(2)},p\right) \end{pmatrix}$, $\begin{pmatrix} i,j=\overline{1,n} \end{pmatrix}$ respectively. If $D\Gamma\left(N\right) = \begin{pmatrix} H^{i}{}_{jh}, C^{i}{}_{jh}, C^{i}{}_{jh}, C^{i}{}_{jh}, C^{i}{}_{jh} \end{pmatrix}$ and $D\bar{\Gamma}\left(\bar{N}\right) = \begin{pmatrix} \bar{H}^{i}{}_{jh}, \bar{C}^{i}{}_{jh}, \bar{C}^{i}{}_{jh}, \bar{C}^{i}{}_{jh} \end{pmatrix}$, are the local coefficients of two N-, respectively \bar{N} -linear connections, D, respectively \bar{D} on the differentiable manifold $T^{*3}M$, then there exists only one system of tensor fields $\begin{pmatrix} A^{i}{}_{j}, A^{i}{}_{j}, A_{ij}, B^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh} \end{pmatrix}$ such that:

$$\begin{cases}
\bar{N}_{j}^{i}, A_{ij}, B_{jh}, D_{jh}^{i}, D_{jh}^{i}, D_{i}^{jh}, D_{i}^{jh} \\
\bar{N}_{ij} = N_{ij} - A_{ij}^{i}, (\alpha = 1, 2) \\
\bar{N}_{ij} = N_{ij} - A_{ij}, \\
\bar{H}_{jh}^{i} = H_{jh}^{i} + A_{h}^{l} C_{jl}^{i} + A_{h}^{l} N^{r} C_{jr}^{i} + A_{h}^{l} C_{jl}^{i} - A_{hl} C_{j}^{li} - B_{jh}^{i}, \\
\bar{C}_{jh}^{i} = C_{jh}^{i} + A_{h}^{l} C_{jl}^{i} - D_{jh}^{i}, \\
\bar{C}_{(2)}^{i} = C_{jh}^{i} - D_{jh}^{i}, \\
\bar{C}_{(2)}^{i} = C_{jh}^{i} - D_{ijh}^{i}, \\
\bar{C}_{(3)}^{i} = C_{ijh}^{i} - D_{ijh}^{i}, \\
\bar{C}_{(1)}^{i} = C_{ijh}^{i} - D_{ijh}^{i}, \\
\bar{C}_{(1)}^{i} = C_{(1)}^{i} - D_{ijh}^{i}, \\
\bar{C}_{(1)}^{i} = C_{(1)}^{i} - D_{(2)}^{i}, \\
\bar{C}_{(1)}^{i} = C_{(1)}^{i} - D_{(1)}^{i} - D_{(2)}^{i}, \\
\bar{C}_{(1)}^{i} = C_{(1)}^{i} - D_{(2)}^{i}, \\
\bar{C}_{(1)}^{i}$$

where "\" denotes the h-covariant derivative with respect to $D\Gamma(N)$.

Proof. The first equality (2.3) determines uniquely the tensor fields: A^{i}_{j} , $(\alpha=1,2)$. The second equality (2.3) determines uniquely the tensor field A_{ij} . Since C^{i}_{jh} , $(\alpha=1,2)$ and C_{i}^{jh} are d-tensor fields, the third equation (2.10) determines uniquely the tensor field B^{i}_{jh} . Similarly the fourth,... and the last equation (2.3) determines the tensor field D_{i}^{jh} respectively,q.e.d.

We have immediately:

Theorem 3 If $D\Gamma(N) = \left(H^i{}_{jh}, C^i{}_{jh}, C^i{}_{jh}, C^i{}_{jh}, C^i{}_{i}^{jh}\right)$, are the coefficients of an N-linear connection D on $T^{*3}M$ and $\begin{pmatrix} A^i{}_j, A^i{}_j, A_{ij}, B^i{}_{jh}, D^i{}_{jh}, D^i{}_{jh}, D^i{}_{jh}, D^i{}_{jh} \end{pmatrix}$, is a system of tensor fields on $T^{*3}M$, then $D\bar{\Gamma}\left(\bar{N}\right) = \left(\bar{H}^i{}_{jh}, \bar{C}^i{}_{jh}, \bar{C}^i{}_{jh}, \bar{C}^i{}_{jh}\right)$, given by (2.3) are the coefficients of an \bar{N} -linear connection, \bar{D} , on $T^{*3}M$.

Following the definition given by M. Matsumoto [4, 5] in the case of Finsler spaces, we have:

Definition 2.1 *i*) The system of tensor fields:

 $\begin{pmatrix} A^{i}_{j}, A^{i}_{j}, A_{ij}, B^{i}_{jh}, D^{i}_{jh}, D^{i}_{jh}, D^{i}_{jh}, D^{i}_{jh} \end{pmatrix}$, is called the difference tensor fields of $D\Gamma(N)$ to $D\bar{\Gamma}(\bar{N})$.

ii) The mapping: $D\Gamma(N) \longrightarrow D\bar{\Gamma}(\bar{N})$ given by (2.3) is called a transformation of N-linear connection to \bar{N} -linear connection on $T^{*3}M$, and it is noted by:

$$t\left(A_{(1)}^{i}, A_{(2)}^{i}, A_{ij}, B_{jh}^{i}, D_{(1)}^{i}, D_{(2)}^{i}, D_{i}^{jh}, D_{i}^{jh}\right).$$

Theorem 4 The set \mathcal{T} of the transformations of N-linear connections to \bar{N} -linear connections on $T^{*3}M$, together with the composition of mappings isn't a group.

Proof. Let
$$t\left(A^{i}_{(1)}, A^{i}_{(2)}, A_{ij}, B^{i}_{jh}, D^{i}_{(1)}, D^{i}_{jh}, D^{i}_{ijh}, D^{i}_{ijh}, D^{i}_{i}\right) : D\Gamma\left(N\right) \longrightarrow D\bar{\Gamma}\left(\bar{N}\right)$$
 and $t\left(\bar{A}^{i}_{(1)}, \bar{A}^{i}_{j}, \bar{A}_{ij}, \bar{B}^{i}_{jh}, \bar{D}^{i}_{jh}, \bar{D}^{i}_{jh}, \bar{D}^{i}_{jh}, \bar{D}^{i}_{ijh}, \bar{D}^{i}_$

From (2.3) we have:

$$\begin{array}{rcl}
\stackrel{=}{N}^{i}_{j} &=& N^{i}_{j} - \left(A^{i}_{(\alpha)}_{j} + \bar{A}^{i}_{(\alpha)}_{j} \right), \ (\alpha = 1, 2), \\
\stackrel{=}{N}_{ij} &=& N_{ij} - \left(A_{ij} + \bar{A}_{ij}_{j} \right).
\end{array}$$

We obtain for example:

$$\bar{\bar{C}}_{(1)}^{i}{}_{jh} = \bar{C}_{(1)}^{i}{}_{jh} + \left(\bar{A}_{(1)}^{l}{}_{h} + \bar{\bar{A}}_{(1)}^{l}{}_{h}\right) \cdot \bar{C}_{(2)}^{i}{}_{jl} - \left(\bar{D}_{(1)}^{i}{}_{jh} + \bar{\bar{D}}_{(1)}^{i}{}_{jh} + \bar{D}_{(2)}^{i}{}_{jl}\bar{\bar{A}}_{h}^{l}\right).$$

So $\overset{=}{\overset{=}{C}}{}^{i}{}_{jh}$ hasn't the form (2.10). It follows that the mapping of two transformations from \mathcal{T} isn't a transformation from \mathcal{T} , that is \mathcal{T} , together with the composition of mappings isn't a group.q.e.d.

Remark 2.1. If we consider $A^{i}{}_{j} = 0$, $(\alpha = 1, 2)$ and $A_{ij} = 0$ in (2.3) we obtain the set \mathcal{T}_{N} of transformations of N-linear connections corresponding to the same nonlinear connection N:

$$\mathcal{T}_{N} = \left\{ t \left(0, 0, 0, B^{i}{}_{jh}, D^{i}{}_{jh}, D^{i}{}_{jh}, D_{i}^{jh} \right) \in \mathcal{T} \right\}.$$

We have:

Theorem 5 The set T_N of the transformations of N-linear connections to N-linear connections on $T^{*3}M$, together with the composition of mappings is a group. This group, acts effectively and transitively on the set of N-linear connections.

Proposition 6 The sets: \mathcal{T}_{NH} , \mathcal{T}_{NC} , \mathcal{T}_{NC} , \mathcal{T}_{NC} , $\mathcal{T}_{NC,CC}$ are Abelian subgroups of \mathcal{T}_{N} .

Proposition 7 The group T_N preserves the nonlinear connection N, T_{NH} preserves the nonlinear connection N and the component $H^i{}_{jh}$ of the local coefficients $D\Gamma(N)$; T_{NC} preserves the nonlinear connection N and the component $C^i{}_{jh}$ of the local coefficients $D\Gamma(N)$, T_{NC} preserves the nonlinear connection N and the component $C^i{}_{jh}$ of the local coefficients $D\Gamma(N)$, T_{NC} preserves the nonlinear connection N and the component C^{jh} of the local coefficients $D\Gamma(N)$ and T_{NCCC} preserves the nonlinear connection N and the components $C^i{}_{jh}$, $C^i{}_{jh}$, $C^i{}_{jh}$, of the local coefficients $D\Gamma(N)$.

References

- [1] Atanasiu, Gh., and Târnoveanu, M., New Aspects in the Differential Geometry of the second order Cotangent Bundle, Univ. de Vest din Timişoara, 90 (2005), 1-65.
- [2] Atanasiu, Gh., The invariant expression of Hamilton geometry, Tensor N.S., Japonia, 47 (1988), 23-32.
- [3] Ianuş, Ş., On differential geometry of the dual of a vector bundle, The Proc. of the Fifth National Sem. of Finsler and Lagrange Spaces, Univ. din Braşov, 1988, 173-180.
- [4] Matsumoto, M., The Theory of Finsler Connections, Publ. of the Study Group of Geometry 5, Depart. Math. Okayama Univ., 1970.
- [5] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Otsu, 1986.
- [6] Miron, R., Hamilton Geometry, Seminarul de Mecanică, Univ. Timișoara, 3 (1987), 54.
- [7] Miron, R., Sur la geometrie des espaces Hamilton, C.R. Acad., Sci. Paris, Ser II, 306, no.4 (1988), 195-198.
- [8] Miron, R., Hamilton Geometry, Analele St. Univ. Iaşi, S-I Mat. 35 (1989), 35-85.
- [9] Miron, R., Ianuş, S., Anastasiei, M., The Geometry of the dual of a Vector Bundle, Publ. de l'Inst. Math., 46(60) (1989), 145-162.
- [10] Miron, R., On the geometrical theory of higher-order Hamilton Spaces, Steps in Differential Geometry, Proceedings of the Colloquium on Differential Geometry, 25-30 July, 2000, Debrecen, Hungary, 231-236.

- [11] Miron, R., Hamilton spaces of order k grater than or equal to 1, Int. Journal of Theoretical Phys., **39(9)** (2000), 2327-2336.
- [12] Miron, R., Hrimiuc, D., Shimada, H. and Sabău, V.S., *The geometry of Lagrange Spaces*, Kluwer Academic Publisher, FTPH, 118, 2001.
- [13] Miron, R., The Geometry of Higher-Order Hamilton Spaces. Applications to Hamiltonian Mechanics, Kluwer Acad. Publ., FTPH, 2003.
- [14] Saunders, D.J., The Geometry of Jet Bundles, Cambride Univ. Press, 1989.
- [15] Udrişte, C., Şandru, O., Dual Nonlinear Connections, Proc. of 22nd Conference Differential Geometry and Topology, Polytechnic Institute of Bucharest, Rom'nia, sept., 1991.
- [16] Yano, K., Ishihara, S., Tangent and Cotangent Bundles. Differential Geometry. M. Dekker, Inc., New-York, 1973.