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OPTIMAL INEQUALITIES FOR SUBMANIFOLDS
IN QUATERNION-SPACE-FORMS

WITH SEMI-SYMMETRIC METRIC CONNECTION

Simona DECU1

Abstract

We establish a version of B.-Y. Chen’s inequality for totally real submanifolds of
quaternion-space-forms with semi-symmetric metric connection. Also for quaternion
CR-submanifolds of quaternion-space-forms with semi-symmetric metric connection
we obtain an optimal inequality concerning the Ricci curvature.
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1 Preliminaries

Let M̃ be an m-dimensional Riemannian manifold with the Riemannian metric g, the
linear connection ∇̃ and the Riemannian connection ˙̃∇. For the vector fields X̃, Ỹ on M̃
the torsion tensor field T̃ of the linear connection ∇̃ is defined by

T̃ (X̃, Ỹ ) = ∇̃X̃ Ỹ − ∇̃Ỹ X̃ − [X̃, Ỹ ]. (1)

A linear connection ∇̃ is said to be semi-symmetric connection if the torsion tensor T̃ of
the connection ∇̃ satisfies

T̃ (X̃, Ỹ ) = Φ(Ỹ )X̃ − Φ(X̃)Ỹ, (2)

where Φ is a 1-form on M̃ . Further, if ∇̃ satisfies the condition

∇̃g = 0,

then ∇̃ is called a semi-symmetric metric connection [14]. K. Yano obtained in [14] a
relation between the semi-symmetric metric connection ∇̃ and the Riemannian connection
˙̃∇ which is given by

∇̃X̃ Ỹ = ˙̃∇X̃ Ỹ + Φ(Ỹ )X̃ − g(X̃, Ỹ )P, (3)
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where P is a vector field given by g(P, X̃) = Φ(X̃) for any vector field X̃ on M̃ .
We denote by R̃ and ˙̃R the curvature tensors associated to ∇̃ and ˙̃∇, respectively.

Let M be an n-dimensional Riemannian submanifold of the Riemannian manifold M̃
with the induced semi-symmetric metric connection ∇ and the induced Riemannian con-
nection ∇̇.
The Gauss formulae are

∇̃XY = ∇Y
X + h(X,Y )

˙̃∇XY = ∇̇Y
X + ḣ(X,Y ),

for any X,Y vector fields on M, where h is a (0, 2) symmetric tensor on M and ḣ is the
second fundamental form associated to the Riemannian connection ∇̇ [12].
We denote by R and Ṙ the curvature tensors associated to ∇ and ∇̇, respectively. Let M̃
be an 4m-dimensional Riemannian manifold with the Riemannian metric g. M̃ is called a
quaternionic Kaehlerian manifold if there exists a 3-dimensional vector space V of tensors
of type (1,1) with local basis of almost Hermitian structure I, J and K such that
(a) IJ = −JI = K,JK = −KJ = I,KI = −IK = J, I2 = J2 = K2 = −1,
(b) for any local cross-section ϕ of V, ˙̃∇X̃ϕ is also a cross-section of V, where X̃ is an

arbitrary vector field on M̃ and ˙̃∇ the Riemannian connection on M̃ .
The condition (b) is equivalent to the following condition:
(b’) there exist the local 1-forms p, q and r such that

˙̃∇X̃I = r(X̃)J − q(X̃)K
˙̃∇X̃J = −r(X̃)I + p(X̃)K (4)
˙̃∇X̃K = q(X̃)I − p(X̃)J.

Let X̃ be a unit vector on M̃ . Then X̃, IX̃, JX̃ and KX̃ form an orthonormal frame
on M̃ , denoting by Q(X̃) the 4-plane spanned by them. For any two orthonormal vectors
X̃, Ỹ on M̃ , we denote by π(X̃, Ỹ ) the 2-plane spanned by X̃ and Ỹ . If Q(X̃) and Q(Ỹ )
are orthogonal, the plane π(X̃, Ỹ ) is called a totally real plane. Any 2-plane in Q(X̃) is
called a quaternionic plane. A sectional curvature of a quaternionic plane π is called the
quaternionic sectional curvature of π. A quaternionic Kaehlerian manifold is a quaternion-
space-form if its quaternionic sectional curvatures are equal to a constant 4c. We denote
an 4m-dimensional quaternion-space-form by M̃(4c). A quaternionic Kaehlerian manifold
M̃ is a quaternion-space-form if and only if its curvature tensor ˙̃R has the following form [8]:

˙̃R(X̃, Ỹ )Z̃ = c{g(Ỹ , Z̃)X̃ − g(X̃, Z̃)Ỹ + g(IỸ , Z̃)IX̃ − g(IX̃, Z̃)IỸ + 2g(X̃, IỸ )IZ̃
+g(JỸ , Z̃)JX̃ − g(JX̃, Z̃)JỸ + 2g(X̃, JỸ )JZ̃ (5)
+g(KỸ , Z̃)KX̃ − g(KX̃, Z̃)KỸ + 2g(X̃,KỸ )KZ̃}

for the vectors X̃, Ỹ , Z̃ tangent to M̃(4c).
Let (M, g) be an n-dimensional Riemannian submanifold of the quaternion-space-form
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M̃(4c). A submanifold M is called a totally real submanifold of M̃(4c) if any 2-plane
π(X,Y ) of M (spanned by any orthonormal vectors X,Y of M) is contained by a totally
real plane of M̃(4c). Also Q(X) and Q(Y ) are orthogonal and g(X,ϕY ) = g(ψX, Y ) = 0
for ϕ, ψ = I, J or K. Consequently, if M is a totally real submanifold of M̃(4c), then
ϕ(TM) ⊂ T⊥M for ϕ = I, J or K, where T⊥M is the normal bundle of M in M̃(4c)[5] .

By (5) results the following relation (see [12]):

˙̃R(X,Y, Z,W ) = c{g(X,W )g(Y, Z)− g(X,Z)g(Y,W )}, (6)

for any X, Y, Z, W vector fields on M.
If α is (0, 2)-tensor such that:

α(X,Y ) = ( ˙̃∇XΦ)Y − Φ(X)Φ(Y ) +
1
2
Φ(P )g(X,Y ),

for any X, Y vector fields of M it occurs (see [7]):

R̃(X,Y, Z,W ) = ˙̃R(X,Y, Z,W ) − α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )
− α(X,W )g(Y, Z) + α(Y,W )g(X,Z). (7)

By (6) and (7) we obtain:

˙̃R(X,Y, Z,W ) = c{g(X,W )g(Y, Z)− g(X,Z)g(Y,W )}
− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W ) (8)
− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

The Gauss equation is

˙̃R(X,Y, Z,W ) = Ṙ(X,Y, Z,W ) + g(ḣ(X,Z), ḣ(Y,W ))− g(ḣ(X,W ), ḣ(Y, Z)). (9)

Let π ⊂ TpM and π⊥ ⊂ T⊥p M be plane sections for any p in M and K(π) the sectional
curvature of M associated to induced semi-symmetric metric connection ∇.
In M̃(4c) we can choose a local orthonormal frame:

e1, ..., en, en+1, ..., em; eI(1) = Ie1, ..., eI(m) = Iem;
eJ(1) = Je1, ..., eJ(m) = Jem; eK(1) = Ke1, ..., eK(m) = Kem = e4m, (10)

such that, restricting to M, e1, ..., en are tangent to M.
We denote by τ the scalar curvature of M defined as τ(p) =

∑
1≤i<j≤nK(ei ∧ ej), by λ

the trace of α. If we write hr
ij = g(h(ei, ej), er), we have hϕ(i)

jk = h
ϕ(j)
ik = h

ϕ(k)
ji where

i, j, k ∈ {1, ..., n}, r ∈ {n+1, ..., I(1), ...,K(m)}, ϕ ∈ {I, J,K}. The squared length of h is

‖h‖2 =
∑

1≤i<j≤n

g(h(ei, ej), h(ei, ej)),
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and the mean curvature vector of M associated to ∇ is ~H = 1
n

∑n
i=1 h(ei, ei), denoting

by H the mean curvature of M associated to ∇. Similarly, the mean curvature vector
of M associated to ∇̇ is ~̇H = 1

n

∑n
i=1 ḣ(ei, ei), denoting by Ḣ the mean curvature of M

associated to ∇̇.
A submanifold M of a quaternion Kaehler manifold M̃ is called a quaternion CR-submanifold
if there exist two orthogonal complementary distributions Dp and D⊥

p such that Dp is in-
variant under quaternion structure, that is, ϕ(Dp) ⊆ Dp, i = 1, 2, 3, ∀p ∈ M and D⊥

p is
totally real, that is, ϕi(D⊥

p ) ⊆ TpM, i = 1, 2, 3, where we denoted ϕ1 = I, ϕ2 = J and
ϕ3 = K. A submanifold M of a quaternion Kaehler manifold is a quaternion submanifold
if dim D⊥ = 0. Let dim D = 4s and dim D⊥ = t. For any X tangent to M, we put
(see[11])

ϕiX = TiX + FiX, i = 1, 2, 3, (11)

where TiX (resp. FiX) denotes tangential (resp. normal) component of ϕiX.
Recently A. Mihai and C. Ozgur established in [10] a Chen inequality for submanifolds
of real space forms with a semi-symmetric metric connection. In the following we ob-
tain a Chen inequality for totally real submanifolds in quaternion-space-forms with semi-
symmetric metric connection and we estimate the Ricci curvature for quaternion CR-
submanifolds of quaternion-space-forms with semi-symmetric metric connection, referring
to [5] and [11] for basic results.

2 A Chen inequality for totally real submanifolds in quaternion-
space-forms with semi-symmetric metric connection

We first recall an algebraic lemma (see [2]):

Lemma 1. Let a1, ..., ak, c be k + 1 (k ≥ 2) real numbers such that:(
k∑

i=1

ai

)2

= (k − 1)

(
k∑

i=1

a2
i + c

)
. (12)

Then 2a1a2 ≥ c, with equality holding if and only if a1 + a2 = a3 = ... = ak.

Now we can prove the following inequality.

Theorem 1. Let M be an n-dimensional (n ≥ 2) totally real submanifold of an 4m-
dimensional quaternion-space-form M̃(4c) with semi-symmetric metric connection ∇̃. Then

τ(p)−K(π) ≤ n2(n− 2)
2(n− 1)

‖H‖2 +
1
2
(n+ 1)(n− 2)c− (n− 2)λ− trace(α|π⊥) (13)

Proof. The Gauss equation (see [12]) is:

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(Y, Z), h(X,W )). (14)
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For X = W = ei and Y = Z = ej , with i 6= j ∈ {1, ..., n}, (14) becomes:

R̃(ei, ej , ej , ei) = c{g(ei, ei)g(ej , ej)− g(ei, ej)g(ej , ei)}
− α(ej , ej)g(ei, ei) + α(ei, ej)g(ej , ei)
− α(ei, ei)g(ej , ej) + α(ej , ei)g(ei, ei) (15)
= c− α(ej , ej)− α(ei, ei).

By (14) and (15) it results

c− α(ej , ej)− α(ei, ei) = R(ei, ej , ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).(16)

We obtain by (16)

n(n− 1)c− 2(n− 1)λ = 2τ − n2 ‖H‖2 + ‖h‖2 . (17)

Denoting by

ε = 2τ − n2(n− 2)
n− 1

‖H‖2 + 2(n− 1)λ− (n+ 1)(n− 2)c (18)

and substituing (17) in (18) we obtain:

n2 ‖H‖2 = (n− 1)(‖h‖2 + ε− 2c). (19)

Let en+1 = H
‖H‖2 be the unit vector in the direction H, then (19) can be rewritten as(

n∑
i=1

hn+1
ii

)2

= (n− 1)


n∑

i=1

(
hn+1

ii

)2 +
∑
i6=j

(
hn+1

ij

)2
+

4m∑
r=n+2

n∑
i,j=1

(
hr

ij

)2 − 2c+ ε

 . (20)

Using the Chen’s lemma, we get the following inequality:

2hn+1
11 hn+1

22 ≥
∑
i6=j

(
hn+1

ij

)2
+

4m∑
r=n+2

n∑
i,j=1

(
hr

ij

)2 − 2c+ ε. (21)

Let π ⊂ TpM be a plane section, with p in M, spanned by the orthonormal vectors e1
and e2. Then by (14) the sectional curvature is given by

K(π) = c+
4m∑

r=n+1

[
hr

11h
r
22 − (hr

12)
2
]
− α(e1, e1)− α(e2, e2)

≥ c+
1
2

∑
i6=j

(
hn+1

ij

)2
+

1
2

4m∑
r=n+2

n∑
i,j=1

(
hr

ij

)2 − c+
ε

2

+
4m∑

r=n+2

hr
11h

r
11 −

4m∑
r=n+1

(hr
12)

2 − α(e1, e1)− α(e2, e2)

≥ ε

2
− α(e1, e1) + α(e2, e2),

the inequality (13) beeing obtained, where α(e1, e1) + α(e2, e2) = λ − trace(α|π⊥). The
inequality (13) is known as Chen inequality.
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Remark 1. If P is a tangent vector field on M (see [6]), then H = Ḣ, h = ḣ. In these
conditions the equality case of (13) holds at a point p ∈M if and only if , with respect to
a suitable orthonormal basis {e1, ..., en, en+1, ..., e4m} at p, the shape operators Ar = Aer

take the following forms:

An+1 =


a 0 0 0 · · · 0
0 b 0 0 · · · 0
0 0 µ 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · µ

 , a+ b = µ, (22)

and

Ar =


hr

11 hr
12 0 · · · 0

hr
12 −hr

11 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , n+ 2 ≤ r ≤ 4m. (23)

From the proof of theorem the relations (22)and (23)occur having conditions:

hn+1
1j = 0, hn+1

2j = 0, j > 2,

hn+1
ij = 0, i 6= j > 2,

hr
1j = hr

2j = hr
ij = 0, r ∈ {n+ 2, ..., 4m}, i, j ∈ {3, ..., n},

hr
11 + hr

22 = 0, r ≥ n+ 2,
hn+1

11 + hn+1
22 = hn+1

33 = ... = hn+1
nn .

Corollary 1. Let M be an n-dimensional totally real submanifold of a quaternion-space-
form M̃(4c) with semi-symmetric metric connection ∇̃. If the equality in (13) holds (in
the conditions of remark above) and ξ is a normal vector at a point p of M, then the
operator Aξ has at most 3 eigenspaces and the dimension of one of the eigenspaces is at
least n− 2. Moreover, one of the following cases occurs:

1. Aξ = 0, when a = b = 0 or hr
11 = hr

12 = 0 for some r where ξ = en+1 or er.

2. Aξ has a two-dimensional eigenspace with a non-zero real number α as the eigenvalue
and an (n − 2)-dimensional eigenspace with eigenvalue 2α. This occurs only when
a = b = α, µ = 2α, ξ = en+1.

3. Aξ has an one-dimensional eigenspace with eigenvalue zero and an (n−1)-dimensional
eigenspace with nonzero eigenvalue α. This occurs when α = µ, b = 0, ξ = en+1.

4. Aξ has an eigenspace with the eigenvalue α, another eigenspace with the eigenvalue
β, both of them are one-dimensional, and an (n − 2)-dimensional eigenspace with
the eigenvalue α + β. This occurs when ξ = en+1, α 6= β or ξ = er for some r with
α = −β = ±

√
(hr

11)2 + (hr
12)2.
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3 On Ricci curvature of quaternion CR-submanifolds in quater-
nion space forms with semi-symmetric metric connection

Theorem 2. Let M be an n-dimensional quaternion CR-submanifold of an 4m-dimensional
quaternion-space-form M̃(4c) with semi-symmetric metric connection ∇̃. Then
a) For each unit vector X∈ D⊥

p , we have

‖H‖2 ≥ 4
n2

[Ric(X)− (n− 1)c+ (2n− 3)λ− (n− 2)α(X,X)]. (24)

b) For each unit vector X∈ Dp, we have

‖H‖2 ≥ 4
n2

[Ric(X)− (n+ 8)c+ (2n− 3)λ− (n− 2)α(X,X)]. (25)

c) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (24) and
(25), respectively, if and only if X ∈ D⊥

p ∩Np (respectively X ∈ Dp ∩Np).

Proof. Let M be a quaternion CR-submanifold of a quaternion space form M̃(4c) with
semi-symmetric metric connection ∇̃. Then using equation (11) in Gauss equation we
have for any vector fields X, Y, Z, W tangent to M

R(X,Y, Z,W ) = c{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

+
3∑

i=1

[g(TiY, Z)g(TiX,W )− g(TiX,Z)g(TiY,W ) + 2g(X,TiY )g(TiZ,W )]}

+g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )
−α(X,W )g(Y, Z) + α(Y,W )g(X,Z) +A(X,Y, Z,W ),

where we denoted

A(X,Y, Z,W ) =
3∑

i=1

[−α(TiX,W )g(TiY, Z)− α(TiY, Z)g(TiX,W )

+α(TiX,Z)g(TiY,W ) + α(TiY,W )g(TiX,Z)
−2α(TiZ,W )g(X,TiY )− 2α(X,TiY )g(TiX,Z)].

Let p ∈ M and an orthonormal basis {e1, ..., en = X} be in TpM . Then the Ricci
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tensor S(X,Y ) is given by

S(X,Y ) =
n∑

j=1

R(ej , X, Y, ej) = c
n∑

j=1

{g(X,Y )g(ej , ej)− g(ej , Y )g(X, ej)

+
3∑

i=1

[g(TiX,Y )g(Tiej , ej)− g(Tiej , Y )g(TiX, ej) + 2g(ej , TiX)g(TiY, ej)]}

+
n∑

j=1

{−α(X,Y )g(ej , ej) + α(ej , Y )g(X, ej)− α(ej , ej)g(X,Y ) + α(X, ej)g(ej , Y )

+A(ej , X, Y, ej) + g(h(ej , ej), h(X,Y ))− g(h(ej , Y ), h(X, ej))}

= c{(n− 1)g(X,Y ) + 3
3∑

i=1

g(TiX,TiY )}+
n∑

j=1

{g(h(ej , ej), h(X,Y ))

−g(h(ej , Y ), h(X, ej)) +A(ej , X, Y, ej) + (n− 2)α(X,Y ) + λ}.

The scalar curvature ρ is given by

ρ =
n∑

l=1

S(el, el) = c[(n− 1)n+ 12s+
n∑

l=1

n∑
j=1

A(ej , el, el, ej)] + n2 ‖H‖2 − ‖h‖2 − 2λn+ 2λ.

Denoting by

δ = ρ− n(n− 1)c− 12sc− n2

2
‖H‖2 + 2λn− 2λ−

n∑
l=1

n∑
j=1

A(ej , el, el, ej),

we obtain

n2 ‖H‖2 = 2(δ + ‖h‖2). (26)

With respect to the above orthogonal basis, equation (26) becomes(
n∑

i=1

hn+1
ii

)2

= 2

δ +
n∑

i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2

 . (27)

Applying Lemma 1 in equation (27) we get

∑
1≤α 6=β≤n−1

hn+1
αα hn+1

ββ ≥ δ + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2,

or equivalently,

n(n− 1)c+ 12sc+
n2

2
‖H‖2 − 2λn+ 2λ+

n∑
l=1

n∑
j=1

A(ej , el, el, ej) (28)

≥ ρ−
∑

1≤α 6=β≤n−1

hn+1
αα hn+1

ββ + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2.
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We characterise two different cases:
(a) en ∈ D⊥

p ;
(b) en ∈ Dp.
Using Gauss equation in case (a) we obtain

ρ−
∑

1≤α 6=β≤n−1

hn+1
αα hn+1

ββ + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 = 2S(en, en) + 12sc+ (29)

(n− 1)(n− 2)c+ 2
∑
i<n

(hn+1
in )2 +

4m∑
r=n+2

(hr
nn)2 + 2

n−1∑
i=1

(hr
in)2 +

n−1∑
j=1

hr
jj

2 .

By equations (28) and (29) we have

n2

4
‖H‖2 + (n− 1)c− 2λn+ 2λ+ α(en, en)(n− 2) + λ

≥ S(en, en) + 2
∑
i<n

(hn+1
in )2 +

4m∑
r=n+2


n∑

i=1

(hr
in)2 +

n−1∑
j=1

hr
jj

2 (30)

Then we get

S(en, en) ≤ (n− 1)c+
n2

4
‖H‖2 − (2n− 3)λ+ (n− 2)α(en, en).

Using Gauss equation in case (b) we find similarly

ρ−
∑

1≤α 6=β≤n−1

hn+1
αα hn+1

ββ + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2

= 2S(en, en) + 12sc+ (n− 1)(n− 2)c+ 2
∑
i<n

(hn+1
in )2

+
4m∑

r=n+2

{
(hr

nn)2
}

+ 2
n−1∑
i=1

(hr
in)2 +

n−1∑
j=1

hr
jj

2

− 3c
2

3∑
i=1

‖Tien‖2 , (31)

leading to the second inequality of theorem.
If H(p) = 0, then the equality holds in (24) and (25), respectively, if and only if

hr
1n = ... = hr

n−1,n = 0,

hr
nn =

n−1∑
i−1

hr
ii,

where r ∈ {n + 1, ..., 4m}, then hr
in = 0, ∀i ∈ {1, ..., n}, i.e. X ∈ D⊥

p ∩ Np (respectively
X ∈ Dp ∩Np), Np being the relative null space of M at a point p ∈M defined by

Np = {X ∈ TpM |h(X,Y ) = 0,∀ Y ∈ TpM}.
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