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Abstract

Our goal in this paper is to discuss an ergodic decomposition of the state space
of a transition probability or transition function. The decomposition allows us to
have a better understanding of the structure of the set of invariant probabilities of
the transition probability or transition function under consideration, and, as a by-
product, it allows us to obtain various criteria for the existence of invariant probability
measures. Also, the decomposition offers a “system of reference” for the invariant
ergodic probability measures which is useful in various instances.

The present paper is a survey of results that I have obtained during the last ten
years, and is an extended version of my talk at the 9-ème Colloque Franco-Roumain
de Mathématiques Appliquées,28 août-2 septembre 2008, Braşov, Roumanie.

2000 Mathematics Subject Classification: 47A35, 28A33, 37A10, 37A30, 60B10,
60B15, 60G50, 60J05, 60J25, 60J35.

Prelude

The father has given his son two dollar bills, and asked him to buy two pounds
of sugar that cost one dollar and half a dozen eggs that also cost one dollar. A few
moments later, the son returns and asks:

“Daddy, which dollar bill should I use for the sugar and which one for the eggs?”

1 Introduction

The joke in Prelude (an adaptation of one of the jokes about Bulă2 that were popular
in Romania in the sixties and seventies) points out an interesting aspect of reasoning in

11509 Pine Valley Blvd., Apt. 16, Ann Arbor, MI 48104, USA, E-mail: raduz@umich.edu
2Bulă is a folklore character, a ten years old boy who has been the hero of many Romanian jokes. The

first vowel u in the name is pronounced like in the English word book ; the last vowel ă is pronounced like
the indefinite article a in English.
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mathematics, and in science in general. If we have a finite or infinite set of objects, and
we want to describe each in terms of certain characteristics, we first need a system of
reference which will allow us to distinguish each object. A case in point is the following:
suppose that we are given a transition probability or a transition function defined on a
locally compact separable metric space, and suppose that we want to describe precisely
the support of each invariant ergodic probability measure of the ! transition probability or
transition function under consideration (for instance, we want to find a “formula” for these
supports). This problem makes sense only if we have a system of reference for the measures
whose supports we want to describe. In this paper we are going to discuss a decompo-
sition of the state space of the transition probability or transition function in question
which is just such a system of reference. Besides providing a system of reference for the
invariant ergodic probability measures, the decomposition has various other features, the
most important among these features being the fact that the decomposition allows us to
obtain a better understanding of the structure of the set of invariant probabilities of the
transition probability or transition function under study.

We call the decomposition discussed in this paper the Kryloff-Bogoliouboff-Beboutoff-
Yosida decomposition (or the KBBY decomposition) because, among many earlier efforts
to obtain the decomposition, the pioneering results of N. Kryloff and N. Bogoliouboff [20],
M. Beboutoff [2], and K. Yosida [59] and [60] (see also Section 4 of Chapter 13 of Yosida’s
monograph [61]) are closest to the results discussed here.

The decomposition is valid under fairly general conditions, in the sense that any tran-
sition probability on a locally compact separable metric space defines a KBBY decompo-
sition of the space and, under rather mild conditions, a transition function on a locally
compact separable metric space defines a KBBY decomposition of the space, as well.

This work is an expanded version of my talk at the 9-ème Colloque Franco-Roumain
de Mathématiques Appliquées, 28 août-2 septembre 2008, Braşov, Roumanie.3 We will
survey here results that have appeared in the monograph [65], the paper [68], and results
that I plan to include in a small monograph that I am currently writing.

The paper is organized as follows: in the next section (Section 2), we discuss the KBBY
decomposition for transition probabilities; in Section 3, we discuss transition functions and
their KBBY decomposition; finally, in Section 4, we outline several directions for further
research that stem from the results discussed in this paper.

2 Transition Probabilities

Let (X, d) be a locally compact separable metric space, and let B(X) be the σ-algebra of
all Borel subsets of X (that is, B(X) is the σ-algebra generated by the open subsets of
X).

As usual, a map P : X × B(X) → R is called a transition probability (on X) if the
following two conditions are satisfied:

3I would like to express my gratitude to Marius Iosifescu for inviting me to give a talk at the colloquium
and to Eugen Păltănea for the invitation to write this paper.
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(TP1) For every Borel subset A of X, the map x 7→ P (x, A) from X to R is Borel
measurable.

(TP2) For every x ∈ X, the set function µx : B(X) → R defined by µx(A) = P (x,A)
for every A ∈ B(X) is a probability measure.

The transition probabilities are of fundamental importance in the study of Markov
processes (for details on transition probabilities in the context of discrete-time Markov
processes, see, for instance, the monographs by O. Hernández-Lerma and J. B. Lasserre
[12], P. A. Meyer [35], S. P. Meyn and R. L. Tweedie [36], E. Nummelin [39], S. Orey
[41], D. Revuz [45], and M. Rosenblatt [48]). This is so because, to any discrete-time
Markov process, we can associate in a fairly standard manner a sequence of transition
probabilities, and a large amount of information about the Markov process can be ob-
tained by studying the corresponding sequence of transition probabilities (these transition
probabilities are often called one-step transition probabilities). If the Markov process is
also time-homogeneous, then all the corresponding one-step transition probabilities are
equal; therefore, to such a process we associate a single transition probability. Interest-
ingly enough (and well-known) is the fact that, given a transition probability, we can
always construct a discrete-time Markov process homogeneous in time whose associated
transition probability is the given one (for details, see Section 1.2 of Revuz [45]).

Transition probabilities are also of significant use in the study of discrete-time dynam-
ical systems (see, for instance, Chapter 3 of U. Krengel’s monograph [19], and [65]).

Let Bb(X) be the Banach space of all real-valued bounded Borel measurable functions
on X, where the norm on Bb(X) is the uniform (sup) norm: ‖f‖ = sup

x∈X
|f(x)| for every

f ∈ Bb(X), and let M(X) be the Banach space of all real-valued signed Borel measures
on X, where the norm on M(X) is the total variation norm.

If f ∈ Bb(X) and µ ∈M(X), we will use the notation 〈f, µ〉 for
∫
X

f(x) dµ(x).

Now, let P be a transition probability on (X, d).
Using P , we can define in a natural manner two linear operators S : Bb(X) → Bb(X)

and T : M(X) →M(X) as follows:

Sf(x) =
∫

f(y) dµx(y) (1)

for every f ∈ Bb(X) and x ∈ X, where µx, x ∈ X, are the probability measures that
appear in condition (TP2) in the definition of a transition probability; it is the custom to
use the notation P (x,dy) for dµx(y) in (1), so (1) becomes the more familiar equality

Sf(x) =
∫

f(y)P (x,dy); (2)

Tµ(A) =
∫

P (x,A) dµ(x) (3)

for every µ ∈M(X) and A ∈ B(X).
It is easy to see that S and T are well-defined (in the sense that Sf is indeed an

element of Bb(X) for every f ∈ Bb(X) whenever Sf is defined by (1) or (2), and that
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Tµ belongs to M(X) whenever Tµ is defined by (3). Also easy to see is that S and T
are positive linear contractions (that is, S and T are linear bounded operators such that
‖S‖ ≤ 1 and ‖T‖ ≤ 1, and such that Sf ≥ 0 and Tµ ≥ 0 whenever f ≥ 0 and µ ≥ 0), that
T is a Markov operator (that is, ‖Tµ‖ = ‖µ‖ for every µ ∈ M(X), µ ≥ 0; for additional
details on Markov operators, see [65]), and that S1X = 1X , where 1X is the (real-valued)
constant 1 function on X. Finally, S and T are related by the equality

〈Sf, µ〉 = 〈f, Tµ〉

for every f ∈ Bb(X) and µ ∈M(X).
The ordered pair (S, T ) is called the Markov pair defined by the transition probability

P .
Let Cb(X) be the Banach subspace of Bb(X) of all real-valued bounded continuous

functions on X.
Let P be a transition probability on (X, d), and let (S, T ) be the Markov pair defined

by P . We say that P is a Feller transition probability if Sf ∈ Cb(X) whenever f ∈ Cb(X).
If P is a Feller transition probability, then (S, T ) is called a Markov-Feller pair.

We will now discuss briefly a few examples of transition probabilities and their associ-
ated Markov pairs in order to illustrate how diverse these objects can be. We stress that
the examples that follow are by no means the only important examples of transition prob-
abilities. For many other examples, see the monograph by Meyn and Tweedie [36]. In the
examples discussed below, and throughout the paper, we will use the following notation:
if A is a subset of X, 1A stands for the real-valued function on X defined by 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x ∈ X \ A; given x ∈ X, δx stands for the Dirac probability
measure concentrated at x (that is, δx is the probability measure on (X,B(X)) defined by
δx({x}) = 1).

Example 1 (Transition Probabilities Defined by Measurable Functions). Probably the
simplest examples of transition probabilities and Markov pairs are those defined by mea-
surable functions. In spite of their simple appearance, the study of these transition prob-
abilities and Markov pairs is extremely interesting, often challenging and sophisticated.
Under some additional conditions, the measurable functions and their iterates are studied
under the name discrete-time dynamical systems (for additional details on discrete-time
dynamical systems see, for example, the monographs by J. Aaronson [1], I. P. Cornfeld,
S. V. Fomin, and Ya. G. Sinai [6], H. Furstenberg [11], A. Katok and B. Hasselblatt [18],
U. Krengel [19], A. Lasota and M. C. Mackey [22], R. Mañé [32], W. de Melo and S. van
Strien [34], K. Petersen [42], C. Robinson [47], D. J. Rudolph [49], Ya. G. Sinai [?] Si,
P. Walters [58], and my book [65]).

Given a locally compact separable metric space (X, d), let w : X → X be a measurable
function (the measurability of w means, of course, that w−1(A) ∈ B(X) for every A ∈
B(X)).

Now, consider the map Pw : X ×B(X) → R defined by Pw(x,A) = 1A(w(x)) for every
x ∈ X and A ∈ B(X). Since Pw(x, A) = δw(x)(A) for every x ∈ X and A ∈ B(X), it
follows that Pw is a transition probability.
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It is easy to see that if Sw : Bb(X) → Bb(X) is defined by Swf(x) = f(w(x)) for every
f ∈ Bb(X) and x ∈ X, and if Tw : M(X) →M(X) is defined by Twµ(A) = µ(w−1(A)) for
every µ ∈ M(X) and A ∈ B(X), then Sw and Tw are well-defined (in the sense that Swf
and Twµ are indeed elements of Bb(X) and M(X) whenever f ∈ Bb(X) and µ ∈ M(X),
respectively) linear bounded operators, and that (Sw, Tw) is the Markov pair defined by Pw.
We say that Pw and (Sw, Tw) are the transition probability and the Markov pair defined
(or induced) by w.

Note that Pw is a Feller transition probability (or, equivalently, that (Sw, Tw) is a
Markov-Feller pair) if and only if w is continuous.

Note also that in the case of Pw, the probability measures µx, x ∈ X, that appear in
condition (TP2) of the definition of a transition probability, are all Dirac measures. �

The next example can be thought of as a natural extension of Example 1 to the case
of several maps w1, w2, . . . , wn, n ∈ N, n ≥ 2.

Example 2 (Iterated Function Systems). As before, let (X, d) be a locally compact sepa-
rable metric space.

Let n ∈ N, n ≥ 2, and let w1, w2, . . . , wn, p1, p2, . . . , pn be 2n measurable functions,
wi : X → X, pi : X → R for every i = 1, 2, . . . , n. Set w = (w1, w2, . . . , wn) and
p = (p1, p2, . . . , pn). Assume that pi(x) ≥ 0 for every i = 1, 2, . . . , n and every x ∈ X,

that
n∑

i=1
pi(x) = 1 for every x ∈ X, and that none of the functions pi, i = 1, 2, . . . , n is

identically zero. The ordered pair (w,p) is called a generalized iterated function system
(or generalized i.f.s.) with probabilities. If the functions wi and pi, i = 1, 2, . . . , n are
all continuous, then (w,p) is simply called an i.f.s. with probabilities (rather than a
generalized i.f.s. with probabilities).

The literature on i.f.s. with probabilities is impressively large (see, for instance, Section
12.8 of the monograph by A. Lasota and M. C. Mackey [22], the papers by P. M. Centore
and E. R. Vrscay [4], J. Jaroszewska [17], A. Lasota and M. C. Mackey [21], A. Lasota
and J. Myjak [23], [24], [25], [26], [27], and [28], A. Lasota and J. A. Yorke [29], J.
Myjak and T. Szarek [37], M. Nicol, N. Sidorov, and D. Broomhead [38], Ö. Stenflo [51],
[52], [53], [54], and [55], T. Szarek [56], E. R. Vrscay [57], our papers [62], [63], [64], and
[67], and the references in the above-mentioned works). By contrast, the generalized i.f.s.
with probabilities have not been considered in the literature so far; we believe that these
generalized i.f.s. with probabilities should be studied because some of them, which we call
simple generalized ! i.f.s. with probabilities (a simple generalized i.f.s. with probabilities is
a generalized i.f.s. with probabilities which consists of simple functions (functions whose
ranges are finite sets) only), are easier to handle computationally than the i.f.s. with
probabilities that are currently employed, and we think that the simple generalized i.f.s.
with probabilities could be used to solve some of the challenging problems that have emerged
in image processing (for details, see [68]).

The generalized i.f.s. with probabilities are particular cases of OMIGT processes.
The OMIGT processes (OMIGT stands for Onicescu, Mihoc, Iosifescu, Grigorescu, and
Theodorescu) stem from a pioneering 1935 paper by O. Onicescu and G. Mihoc [40]; the
interest in these processes, known as random systems with complete connections (r.s.c.c.),
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has increased significantly when the theory of r.s.c.c. was made available to a large seg-
ment of the mathematical community by two monographs: one by M. Iosifescu and S.
Grigorescu [15], and the other one by M. Iosifescu and R. Theodorescu [16]. The above
historical remarks explain why we prefer to use the term OMIGT process rather than
r.s.c.c.

Now, let (w,p), w = (w1, w2, . . . , wn), p = (p1, p2, . . . , pn), n ∈ N, n ≥ 2, be a
generalized i.f.s. with probabilities defined on (X, d), and let P(w,p) : X × B(X) → R be

defined by P(w,p)(x,A) =
n∑

i=1
pi(x)1A(wi(x)) for

every x ∈ X and A ∈ B(X). It is easy to see that P(w,p) is a transition probability (indeed,
condition (TP1) is clearly satisfied; in order to see that condition (TP2) is also satisfied,

note that P(w,p)(x,A) =
n∑

i=1
pi(x)δwi(x)(A) for every x ∈ X and A ∈ B(X)). We say that

P(w,p) is the transition probability defined by (w,p).

Let S(w,p) : Bb(X) → Bb(X) be defined by S(w,p)f(x) =
n∑

i=1
pi(x)f(wi(x))

for every f ∈ Bb(X) and x ∈ X, and let T(w,p) : M(X) → M(X) be defined by

T(w,p)µ(A) =
n∑

i=1

∫
w−1

i (A)

pi(x) dµ(x) for every µ ∈ M(X) and A ∈ B(X). It is easy to

see that (S(w,p), T(w,p)) is the Markov pair defined by P(w,p). We call (S(w,p), T(w,p)) the
Markov pair defined by (w,p).

Note that if the functions wi and pi, i = 1, 2, . . . , n, are continuous, then P(w,p) is a
Feller transition probability (and, of course, (S(w,p), T(w,p)) is a Markov-Feller pair).

Note also that, while in Example 1 the measures µx described in condition (TP2)
in the definition of a transition probability are Dirac measures, in the case of transition
probabilities defined by generalized i.f.s. with probabilities, the measures µx are convex
combinations of Dirac measures. �

In the two examples discussed so far, the transition probabilities that have been under
consideration have the property that the supports of their measures µx described in condi-
tion (TP2) of the definition of a transition probability were finite subsets. In our next (and
last) example of transition probabilities, we will see that, as expected, the supports of the
probability measures µx can be fairly general closed subsets of the corresponding (locally
compact separable) metric spaces on which these transition probabilities are defined.

Example 3 (Transition Probabilities Defined by Convolution Operators). The transition
probabilities that we are going to dicuss here involve the use of the operation of convolution
of two measures. For unexplained terminology and notation used in this example, see [66].
For additional details on convolutions of measures on groups, see H. Heyer’s monograph
[13]; for convolutions on semigroups, see the book by G. Högnäs and A. Mukherjea [14].

Let (X, d) be a locally compact separable metric semigroup, and let µ ∈ M(X). The
map Tµ : M(X) → M(X), Tµν = µ ∗ ν for every ν ∈ M(X), is called a convolution
operator. If µ is a probability measure, then Tµ is a Markov operator.

Let µ ∈M(X) be a probability measure.
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Let Pµ : X × B(X) → R be defined by Pµ(x, A) = µ ∗ δx(A) for every x ∈ X and
A ∈ B(X). It is easy to see that Pµ is a transition probability. Since Pµ(x,A) = Tµδx(A)
for every x ∈ X and A ∈ B(X), we say that Pµ is the transition probability defined by the
convolution operator Tµ.

Let Sµ : Bb(X) → Bb(X) be defined by Sµf(x) =
∫

f(yx) dµ(y) for every f ∈ Bb(X)
and x ∈ X. Using Proposition 2.1 on p. 69 of Högnäs and Mukherjea [14], we obtain
that the definition of Sµf is correct in the sense that the integral defining Sµf(x) exists
for every x ∈ X and the resulting real-valued function Sµf on X is an element of Bb(X)
for every f ∈ Bb(X). It is easy to see that Sµ is a positive linear contraction of Bb(X),
and it can be shown that (Sµ, Tµ) is the Markov pair defined by Pµ. Moreover, it can also
be shown that Pµ is a Feller transition probability.

The transition probability Pµ and the Markov-Feller pair (Sµ, Tµ) are closely related to
the study of random walks. For additional details on this relationship and for a study of
random walks as stochastic processes in a setting similar to ours, see D. Revuz’s monograph
[45].

Note that in the case of Pµ, the probability measures µx that appear in condition (TP2)
in the definition of a transition probability are of the form µ ∗ δx, so suppµx = (suppµ)x,
x ∈ X (here, and throughout the paper, supp ν is the support of a measure ν and A is the
closure of a subset A of X). �

We now return to the general setting described before the above examples. Thus, we
assume given a locally compact separable metric space (X, d), a transition probability P
on (X, d), and the Markov pair (S, T ) defined by P .

An element µ of M(X) is said to be an invariant element for T (or for P , or for (S, T ))
if Tµ = µ.

Since the zero measure is always an invariant element for T , the interesting situation
is the case in which T has also nonzero invariant elements.

There are two natural questions that appear in connection with the invariant elements
of T :

(1) Does T have nonzero invariant elements?

and

(2) Assuming that T has nonzero invariant elements, what can be said about the
structure of the set of all invariant elements of T?

In view of the fact that M(X) is a Banach lattice and since T is a Markov operator
on M(X), we obtain that T has nonzero invariant elements if and only if T has invariant
probability measures. Moreover, if T has invariant probabilities, then every invariant
element of T inM(X) is a linear combination of invariant probability measures. Therefore,
for most purposes, in order to understand the structure of the set of invariant elements
of T , it is enough to understand the structure of the set of invariant probabilities of T .
The KBBY decomposition that we are going to present below allows us to obtain a fairly
complete understanding of the structure of the set of invariant probabilities, and, at the
same time, the study of the decomposition yields various criteria for the existence of
nonzero invariant elements of T .
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Now, assume that T has invariant probabilities, let µ be such an invariant probability,
and consider the following assertion:

(E) There exists a Borel measurable subset A of X such that µ(A) > 0, µ(X\A) > 0,
and such that the measures µ1 : B(X) → R and µ2 : B(X) → R defined by µ1(B) =
µ(B ∩A) and µ2(B) = µ(B ∩ (X \A)) for every B ∈ B(X) are both invariant for T .

The fact that assertion (E) holds true for µ means that we can write µ as a sum of
two nonzero mutually singular T -invariant measures µ1 and µ2. By contrast, the fact that
assertion (E) is false for µ means that we cannot “break” µ into such a sum of two nonzero
mutually singular T -invariant measures.

A T -invariant probability measure for which assertion (E) is false is said to be ergodic.
The ergodic T -invariant probabilities are, in a certain sense that will be made precise by
the KBBY decomposition, the “building blocks” for all T -invariant probabilities, and, for
T -invariance they play the same role as the role played by molecules for a substance. A
molecule is the smallest part of a substance that preserves all the properties of that sub-
stance; similarly, an ergodic T -invariant probability measure is the “smallest” T -invariant
probability in the sense of assertion (E) with respect to T -invariance.

Let C0(X) be the Banach space of all real-valued continuous functions on X that
vanish at infinity, where the norm on C0(X) is the uniform (sup) norm (note that C0(X)
can also be thought of as a Banach subspace of Bb(X)).

The KBBY decomposition of X defined by P is a splitting of X in terms of the

convergence behaviour of the sequences of averages

(
1
n

n−1∑
k=0

Skf(x)

)
n∈N

, f ∈ C0(X),

x ∈ X. The decomposition has various features, the most significant of them being the
following two:

– it allows us to associate, in a fairly natural manner, a measurable subset of X
to each ergodic T -invariant probability measure such that the measure is concentrated on
the subset, and, for every two distinct ergodic T -invariant probabilities, the corresponding
subsets are disjoint

and

– it allows us to express each T -invariant probability measure as a convex combi-
nation in integral form of ergodic T -invariant probability measures.

We will now describe the decomposition in detail.
Set

D =

x ∈ X

∣∣∣∣∣∣∣
the sequence

(
1
n

n−1∑
k=0

Skf(x)
)

n∈N
converges to zero for every f ∈ C0(X)


and Γ0 = X \ D.

The set D is called the dissipative part of X generated by P (or (S, T )). We say that
P (or (S, T )) is dissipative if D = X.
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Now set

Γc =

x ∈ Γ0

∣∣∣∣∣∣∣
the sequence

(
1
n

n−1∑
k=0

Skf(x)
)

n∈N
converges for every f ∈ C0(X)

 .

The definition of Γc suggests to us that we consider, for every x ∈ Γc, a map εx :

C0(X) → R defined by εx(f) = lim
n→∞

1
n

n−1∑
k=0

Skf(x) for every f ∈ C0(X). Clearly, the maps

εx, x ∈ Γc, are linear and positive (the positivity of εx means that εx(f) ≥ 0 whenever
f ≥ 0). Since εx, x ∈ Γc, are positive linear maps, it follows that these maps are also
continuous; therefore, the maps belong to the topological dual (C0(X))∗ of C0(X). But
(C0(X))∗ can be identified in a standard manner with M(X) (see, for instance, Theorem
7.3.5, pp. 220-223, of D. L. Cohn’s book [5]). Thus, we may and do think of εx, x ∈ Γc, as
usual (positive) Borel measures on X. Note that 0 < εx(X) ≤ 1 for every x ∈ Γc. We call
εx, x ∈ Γc,! standard elementary measures (see [68] for the terminology). The elementary
measures form a larger class of measures and are defined using Banach limits (see [65] and
[68]). In order to exhibit the full flavor of the decomposition, in this paper we will not
discuss elementary measures in full generality.

Set Γcp = {x ∈ Γc|‖εx‖ = 1}. Thus, Γcp is the set of all x ∈ Γc which have the property
that εx is a standard elementary probability measure.

A natural question is whether or not all the standard elementary measures, or at least
the standard elementary probability measures, are invariant. One is tempted to believe
that the elementary measures are invariant because, in the case of a Feller transition
probability, the elementary measures are indeed invariant (see Theorem 2.1.1 in [65]).
However, in the general not necessarily Feller case, standard elementary measures, even if
they are probability measures, may not be invariant (see Example 5.1 in [68]). Since, in
general, standard elementary probability measures may or may not be invariant, it makes
sense to set

Γcpi = {x ∈ Γcp | εx is a T -invariant probability measure}

because, as shown in Example 5.1 of [68], Γcpi 6= Γcp in general, even though Γcpi = Γcp

whenever P is a Feller transition probability.
A Borel subset A of X is said to be a set of maximal probability for T (or for P or

for (S, T )) if either T does not have invariant probability measures, or else µ(A) = 1 for
every T -invariant probability measure µ.

The following theorem summarizes the results about the KBBY decomposition that
can be stated at this time and that are needed to develop the decomposition further.

Theorem 4. (a) The sets D, Γ0, Γc, Γcp, and Γcpi are Borel measurable subsets of X.

(b) the sets Γ0, Γc, Γcp, and Γcpi are sets of maximal probability for T .

For the proofs of the various assertions made in the above theorem, see [68].
As usual, if µ ∈M(X), we denote by suppµ the support of µ in X.
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Let x ∈ X. The subset O(x) =
∞⋃

n=1

supp(Tnδx) of X is called the orbit of x under the

action of T (or P ). The closure O(X) of O(X) in the metric topology of X is called the
orbit-closure of x. The reason for the terminology stems from the fact that if P and T are
induced by a measurable function w : X → X, then O(X) and O(X) are the usual orbit
and orbit-closure of x defined by w that are studied in ergodic theory and the theory of
dynamical systems.

Now, when we look at the standard elementary T -invariant probability measures εx,
x ∈ Γcpi, we notice that the support of each such probability measure εx has a certain
minimality property; namely, it can be shown that supp εx is a subset of the orbit-closure
of x under P , x ∈ Γcpi. On the other hand, the ergodic invariant probability measures, by
their definition have a certain minimality property, as we saw earlier in the paper, in the
sense that an ergodic invariant probability measure cannot be “broken” into a sum of two
nonzero mutually singular T -invariant measures. Thus, it is tempting to believe that all
the measures εx, x ∈ Γcpi, are ergodic. However, a remarkably simple example, Example
2.2.4 on pp. 47-48 of [65], which was suggested by one of the anonymous referees of [65],
can be used to show that, in general, some of the measures εx, x ∈!Γcpi, might fail to be
ergodic. The example suggests that we should study further the set Γcpi if we want to
identify the set of all x ∈ Γcpi which have the property that εx is ergodic.

To this end, let us introduce first the following notation: if f ∈ C0(X), let f∗ : X → R
be defined by

f∗(x) =

 lim
n→+∞

1
n

n−1∑
k=0

Skf(x) if x ∈ Γc

0 if x 6∈ Γc

.

Now set

Γcpie =

x ∈ Γcpi

∣∣∣∣∣∣∣
∫

Γcpi

(f∗(y)− f∗(x))2 dεx(y) = 0 for every f ∈ C0(X)

 .

An element x of Γcpi belongs to Γcpie if, for every f ∈ C0(X), the function f∗ is
constant on a measurable set Ax,f (which depends on x and f) such that εx(Ax,f ) = 1.
However, since C0(X) is a separable Banach space, it can be shown that there exists a
measurable set Ax, set which is independent of f ∈ C0(X) such that εx(Ax) = 1 and f∗

is constant on Ax for every f ∈ C0(X). Now, the existence of such a set Ax implies that
εx is ergodic. Moreover, it can be shown that any ergodic invariant probability measure
is of the form εx for some x ∈ Γcpie. It can also be shown that Γcpie is a Borel measurable
subset of X and that Γcpie is a set of maximal probability for P .

Using Theorem 1.2.6 of [65], the fact that Γcpie is a subset of Γcpi, and that Γcpie is a
set of maximal probability, we obtain that, for every T -invariant probability measure µ,
the following equality holds true:∫

X

f(x) dµ(x) =
∫

Γcpie

∫
X

f(y) dεx(y)

dµ(x) (4)
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for every f ∈ C0(X). Using the notation 〈f, εx〉 =
∫
X

f(y) dεx(y), x ∈ Γcpie, the equality

(4) becomes ∫
X

f(x) dµ(x) =
∫

Γcpie

〈f, εx〉dµ(x) (5)

for every f ∈ C0(X).
Note that the right-hand sides of (4) and (5) can be thought of as convex combinations

in integral form of ergodic T -invariant probability measures. Since any element of M(X)
can be thought of as a linear functional on C0(X), the equality (4) (or (5)) tells us that
any T -invariant probability measure can be expressed as a convex combination in integral
form of ergodic T -invariant probability measures, and this is a reason why we think of the
ergodic invariant probability measures as being the “building blocks” for all the invariant
probabilities.

Now, let us study further the structure of Γcpie. To this end, consider the relation ∼
defined on Γcpie as follows: x ∼ y if, by definition, f∗(x) = f∗(y) for every f ∈ C0(X)
where x ∈ Γcpie and y ∈ Γcpie. It is easy to see that ∼ is an equivalence relation.

It can be shown that the equivalence classes [x], x ∈ Γcpie, are measurable subsets of
X, and that εx([x]) = 1 for every x ∈ Γcpie. Thus, for every x ∈ Γcpie, the set [x] is a
measurable subset of X of εx-measure 1 on which f∗ is constant whenever f ∈ C0(X).
For many purposes, the sets [x], x ∈ Γcpie can be thought of as a system of reference for
the ergodic T -invariant probability measures.

Summing up, we can compare the KBBY decomposition of a space X defined by
a transition probability P with a fruit. The ergodic invariant probability measures εx,
x ∈ Γcpie, are the “seeds.” Each “seed” εx is located at [x]. Thus, all the “seeds” are in
the nucleus Γcpie. The nucleus is “surrounded” by several “protective” layers: D, Γ0 \ Γc,
Γc \ Γcp, Γcp \ Γcpi, and Γcpi \ Γcpie. Some of the layers, or even all of them may be
missing (there exist transition probabilities for which Γcpie is equal to the entire space X
on which these transition probabilities are defined). On the other hand, it can happen
that a transition probability does not have invariant probability measures; in this case, Γcpi

and, of course, Γcpie are empty (actually, it can be shown that Γcpi is empty! if and only
if Γcpie is empty); if a transition probability does not have invariant probability measures,
then the space on which the transition probability is defined is the union of some of or all
the sets D, Γ0 \ Γc, Γc \ Γcp, and Γcp, so, in this case, the KBBY decomposition consists
of layers that protect nothing.

3 Transition Functions

A remarkable fact about the KBBY decomposition is that the decomposition is valid also
for a rather large family of transition functions.

Let T stand for R or the interval [0,+∞) in R, and, as in Section 2, let (X, d) be a
locally compact separable metric space.
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A family (Pt)t∈T of transition probabilities on (X, d) is called a transition function if

Ps+t(x,A) =
∫
X

Ps(y, A)Pt(x, dy) (6)

for every s ∈ T, t ∈ T, x ∈ X, and A ∈ B(X), where, of course, Pt(x, dy) has the same
meaning as P (x, dy) in formula (2).

As is well-known, transition functions play an important role in the study of continuous-
time Markov processes (see, for instance, the monographs by E. B. Dynkin [9], S. N. Ethier
and T. G. Kurtz [10], T. M. Liggett [30], M. B. Marcus and J. Rosen [33], and D. Revuz
and M. Yor [46]). Transition functions play also a significant role in the study of a deep
connection between potential theory and the theory of continuous-time Markov processes
(for a recent nice exposition of this topic, see the monograph by L. Beznea and N. Boboc
[3]).

The reader who is familiar with continuous-time Markov processes has no doubt rec-
ognized that the equalities (6) are the well-known Chapman-Kolmogorov equations. The
same reader may wonder why do we allow the index set T to be also the real line rather
than confining ourselves to study only transition functions of the form (Pt)t∈[0,+∞) as is
done in the above-mentioned literature. The reason for considering also transition func-
tions of the form (Pt)t∈R is that, given a measurable flow (wt)t∈R defined on (X, d), if
we set Pt(x,A) = 1A(wt(x)) for every t ∈ R, A ∈ B(X) and x ∈ X (note the similarity
with Example 1), then (Pt)t∈R is a transition function in the sense of the definition stated
above; thus, the results that we obtain for the transition functions as defined in this section
can be used when dealing with flows, as well as when studying continuous-time Markov
processes, se! miflows, or continuous one-parameter convolution semigroups of probability
measures.

Now, let (Pt)t∈T be a transition function defined on (X, d). Given t ∈ T, Pt is a
transition probability; therefore, as discussed in Section 2, Pt defines a Markov pair (St, Tt).
The family of Markov pairs ((St, Tt))t∈T is said to be defined by, or associated with (Pt)t∈T.
Since (Pt)t∈T satisfies the Chapman-Kolmogorov equations (6), it follows that (St)t∈T and
(Tt)t∈T are semigroups of operators if T = [0,+∞), and groups of operators if T = R.

An element µ of M(X) is said to be invariant for (Tt)t∈T or (Pt)t∈T or ((St, Tt))t∈T if
Ttµ = µ for every t ∈ T. As in the case of transition probabilities, we are interested to
study the set of all invariant probability measures of (Pt)t∈T.

The definition of the ergodic invariant probability measures for a transition function
is perfectly similar to the corresponding notion for transition probabilities; that is, an
invariant probability measure µ for (Pt)t∈T is ergodic if, by definition, µ cannot be written
as a sum of two nonzero mutually singular invariant measures of (Pt)t∈T.

As in the case of transition probabilities, we say that a measurable subset A of X
is a set of maximal probability for (Pt)t∈T or for (Tt)t∈T if either (Pt)t∈T does not have
invariant probability measures, or else µ(A) = 1 for every invariant probability measure µ
of (Pt)t∈T.

From now on in this section we will assume that the transition function (Pt)t∈T under
consideration satisfies the following two conditions:



An ergodic decomposition 161

(TF1) For every A ∈ B(X), the map (t, x) 7→ Pt(x, A), (t, x) ∈ T × X is jointly
measurable with respect to t and x; that is, the map is measurable with respect to the
product σ-algebra L(T)⊗ B(X), where L(T) is the σ-algebra of all Lebesgue measurable
subsets of T.

(TF2) For every x ∈ X and f ∈ Cb(X), the map t 7→ Stf(x), t ∈ T, is continuous.

Condition (TF1) is called the standard measurability assumption (s.m.a.); we call
condition (TF2) the pointwise continuity of (St)t∈T (or of (Pt)t∈T).

Note that the s.m.a. is indeed standard (as its name states) in the sense that the
assumption is always made whenever one deals with transition functions to such an extent
that it is sometimes made part of the definition of a transition function (see, for instance,
p. 156 of Ethier and Kurtz’s monograph [10]).

By contrast, the second condition (TF2), the pointwise continuity of (St)t∈T, is some-
what unusual, but fairly weak. It is satisfied by all transition functions defined by con-
tinuous semiflows, continuous flows, and many one-dimensional convolution semigroups of
probability measures. In the case of transition functions defined by Markov processes, it
often happens that the conditions imposed on these transition functions are significantly
stronger than the pointwise continuity; for instance, if (Pt)t∈T is a transition function de-
fined by any of the interacting particle systems studied in Liggett’s monographs [30] and
[31], then (Pt)t∈T is a Feller transition function (that is, Stf ∈ Cb(X) whenever f ∈ Cb(X)
and t ∈ T, where (St)t∈T is the semigroup of operators defined on Bb(X)), T = [0,+∞),
and the map t 7→ Stf , t ∈ [0,+∞), is continuous with res! pect to the topology of uniform
convergence of Cb(X) for every f ∈ Cb(X).

It can be shown that if (Pt)t∈T satisfies the s.m.a. and is pointwise continuous, then
(Pt)t∈T defines an ergodic decomposition of the space X that is perfectly similar to the
KBBY decomposition defined by a transition probability, provided that we replace by
integrals the sums that appear in the decomposition defined by a transition probability.
For instance, the sets D and Γc that appear in the KBBY decomposition defined by a
transition probability correspond to the sets

D(TF) =

x ∈ X

∣∣∣∣∣∣ lim
s→+∞

1
s

s∫
0

Stf(x) dt exists and is

equal to zero for every f ∈ C0(X)


and

Γ(TF)
c =

x ∈ Γ(TF)
0

∣∣∣∣∣∣ lim
s→+∞

1
s

s∫
0

Stf(x) dt exists for every f ∈ C0(X)

 ,

where Γ(TF)
0 = X \ D(TF); for every x ∈ Γ(TF)

c , we can define the standard elementary

measure ε
(TF)
x : C0(X) → R, ε(TF)

x (f) = lim
s→+∞

1
s

s∫
0

Stf(x) dt for every f ∈ C0(X); then

we can set
Γ(TF)

cp =
{

x ∈ Γ(TF)
c |‖εx‖ = 1

}
,
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Γ(TF)
cpi =

{
x ∈ Γ(TF)

cp |εx is an invariant probability measure for (Tt)t∈T

}
,

and so on. All the notions and the results that appear in the study of the KBBY de-
composition for transition probabilities have analogues for transition functions. However,
the development of the KBBY decomposition for transition functions is significantly more
sophisticated than the development for transition probabilities. As mentioned in Intro-
duction, currently we are writing the final form of a small monograph essentially dedicated
to the KBBY decomposition for transition functions.

We will conclude this section with a few words about the use of conditions (TF1) and
(TF2). From our discussion so far, it is not difficult to see that we need the s.m.a. in order

to make sure that the integrals
s∫
0

Stf(x) dt, s ∈ R, s > 0, x ∈ X, f ∈ C0(X), do exist.

By contrast, it is not at all clear from our outline of the decomposition here where do we
use the pointwise continuity of (St)t∈T. During the colloquium in Braşov, Lucian Beznea
asked me why do we need condition (TF2), and I believe that it would be of interest to
elaborate here on my answer.

Condition (TF2) is used in several places when studying the KBBY decomposition
defined by (Pt)t∈T. For instance, the condition is used to show that Γ(TF)

cpi is a measurable
subset of X.

Let us outline briefly the main arguments used to prove the measurability of Γ(TF)
cpi

in order to see why the pointwise continuity of (St)t∈T is a necessary condition in our
approach.

As in the case of the KBBY decomposition for transition probabilities, in order to
prove that Γ(TF)

cpi is measurable, we have to prove first that D(TF), Γ(TF)
0 , Γ(TF)

c , and Γ(TF)
cp

belong to B(X). As soon as we know that Γ(TF)
cp is measurable, taking into consideration

that Γ(TF)
cpi ⊆ Γ(TF)

cp , we obtain that the proof of the measurability of Γ(TF)
cpi is completed if

we prove that Γ(TF)
cp \ Γ(TF)

cpi is measurable.
To this end, let (gn)n∈N be a sequence of elements of C0(X) such that the range

{gn |n ∈ N} of (gn)n∈N is dense in C0(X) (there exists such a sequence (gn)n∈N because
C0(X) is a separable Banach space). It can be shown that for every rational number
q, q ∈ T, and every n ∈ N, the set Aq,n =

{
x ∈ Γ(TF)

cp |〈Sqgn, εx〉 6= 〈gn, εx〉
}

belongs to

B(X). Finally, the proof of the measurability of Γ(TF)
cpi is completed by showing that

Γ(TF)
cp \ Γ(TF)

cpi =
⋃

q∈Q∩T
n∈N

Aq,n (7)

It is in the proof of the equality (7) that we use the pointwise continuity of (St)t∈T.

4 Future Research

We believe that, in sharp contrast with other ergodic decompositions, the KBBY decom-
position is a dynamic one, in the sense that it will change in time as other types of invariant
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measures will start playing a role in the decomposition. For instance, it seems likely that
the reversible probability measures defined on p. 91 of Liggett’s monograph [30] will play
such a role.

However, it seems to us that at this time the most pressing, important, and quite chal-
lenging research topic is to articulate the decomposition for the various cases of interest.
By this, we mean to obtain results similar in spirit to Theorem 2.2.6 of [65] (in which we
characterize the elements of Γcp in the case of symbolic flows) for the sets that appear in
the KBBY decomposition in the cases of interest. We will discuss now a few such cases
that come to mind. In all these situations, the idea of articulating the decomposition
appears implicitly or explicitly.

1. The Simple Generalized I.F.S. with Probabilities. Recall (see Section 2)
that these particular cases of OMIGT processes are fairly easy to use in computations but
their transition probabilities are not Feller.

In many applications, one encounters the following situation: given a locally compact
separable metric space (X, d), one would like to approximate a certain probability measure
µ ∈ M(X) by a sequence of probability measures (νn)n∈N, νn ∈ M(X) for every n ∈ N,
in the sense that one would like to find a sequence (νn)n∈N of probability measures that
converges to µ in the weak* topology of M(X) (the convergence of (νn)n∈N to µ in the
weak* topology means that (〈f, νn〉)n∈N converges to 〈f, µ〉 for every f ∈ C0(X)). This
is done by finding a sequence ((w(n),p(n)))n∈N of i.f.s. with probabilities which has the
property that each of the transition probabilities P(w(n),p(n)) defined by (w(n),p(n)) has
only one invariant probability measure, namely νn, which is necessa! rily ergodic, and
the KBBY decomposition of P(w(n),p(n)) is simply X = Γcpie. Then one has to use the
P(w(n),p(n)) to approximate the νn, which in turn approximate µ.

The problem that has been encountered using this approach with usual i.f.s. with prob-
abilities is that one has to solve linear systems that are ill-conditioned (that is, the absolute
value of the determinant of the matrix that contains the coefficients of the unknowns is
very close to zero).

By contrast, using generalized i.f.s. with probabilities in which the w
(n)
i and the p

(n)
i

are simple functions is very handy because simple functions are computationally tractable
and the use of such generalized i.f.s. with probabilities does not involve solving linear
systems.

Thus, it is of interest to find conditions under which the transition probabilities of these
simple generalized i.f.s. with probabilities (transition probabilities that are not Feller) have
the KBBY decomposition X = Γcpie and are uniquely ergodic (have only one invariant
probability measure).

2. Transition Functions of Markov Processes. As we discussed in Section 3, the
KBBY decomposition is valid for transition functions under very general conditions. In
our approach, we have obtained the decomposition in terms of transition functions and the
associated families of Markov pairs. However, when dealing with continuous-time Markov
processes, in many cases of interest, the transition functions and the associated families
of Markov pairs are not known explicitly (typical examples are the transition functions
associated to interacting particle systems).
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A situation of this kind can be described as follows: one is given a compact metric space
(X, d) (to simplyfy matters, we assume that X is compact rather than locally compact
and separable; since X is compact, it follows that C0(X) = Cb(X), so, as usual, we
denote by C(X) any of the Banach spaces C0(X) or Cb(X)) and a physical system that
changes in time (for instance, an interacting particle system); the system is modelled as a
continuous-time time-homogeneous Markov process with state space (X, d). The process
is known to have a Feller transition function (Pt)t∈[0,+∞), which in turn defines a family
of Markov-Feller pairs ((St, Tt))t∈[0,+∞). It is also known that the restrictions of St to
C(X), which can be thought of as positive contractions of C(X) and are also denoted
by St, t ∈ [0,+∞), form a Markov semigroup (for the definition of a Markov semigroup,
as well as for all other unexplained terminology on Markov p! rocesses, see Chapter 1
of Liggett’s monograph [30]). By the Hille-Yosida theorem (see Theorem 2.9, p. 16 of
Liggett [30]) there exists a unique Markov generator A defined by (St)t∈[0,+∞) by the

formula Af = lim
t→0

Stf − f

t
for every f ∈ C(X) for which the limit exists in the norm

topology of C(X), and, conversely, every Markov generator A defines a unique Markov

semigroup (St)t∈[0,+∞) such that lim
t→0

Stf − f

t
exists for every f in the domain D(A) of A,

and

Af = lim
t→0

Stf − f

t
. Furthermore, it can be shown that a Markov.

semigroup (St)t∈[0,+∞) defines a unique transition function (Pt)t∈[0,+∞) with associated
family of Markov-Feller pairs ((St, Tt))t∈[0,+∞) where Tt is the dual of St thought of
as a positive contraction of C(X), and St is also considered as a positive contraction
of Bb(X) as extended in the proof of Theorem 1.1.4 of [65], t ∈ [0,+∞). It can be
shown that (Pt)t∈[0,+∞) as defined by (St)t∈[0,+∞) satisfies all the conditions necessary for
the existence of the KBBY decomposition. Since (St)t∈[0,+∞) defines a unique Markov
generator A, it follows that we should be able to articulate the KBBY decomposition
defined by (Pt)t∈[0,+∞) on (X, d) in terms of the generator A without making explicit
use of (Pt)t∈[0,+∞) and of the family of Markov-Feller pairs ((St, Tt))t∈[0,+∞) defined by
(Pt)t∈[0,+∞). Since in many cases ! of interest we know explicitly only the generator A
rather than (Pt)t∈[0,+∞) and ((St, Tt))t∈[0,+∞), articulating the KBBY decomposition in
terms of A is extremely useful. The problem of articulating the decomposition in terms
of A seems to me rather challenging at this time, but I believe that the problem could be
solved using some of the delicate but powerful potential theoretic methods discussed in
the monograph of Beznea and Boboc [3].

3. Transition Functions of Flows on Spaces of Cosets. By a space of left (or
right) cosets we mean the collection of all left (or all right) cosets of a not necessarily normal
subgroup D in a group G. Under suitable conditions imposed on G and D, conditions
which we assume to be satisfied here, the two collections of cosets (left and right) can
be endowed with natural metrics which define locally compact separable topologies on
the two collections of cosets. In contrast with the case of interacting particle systems,
when we deal with flows or semiflows defined on a locally compact separable metric space,
the transition functions and the corresponding families of Markov pairs can be described
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explicitly (in terms of the action of the flows or the semiflows, respectively). However,
if the locally compact separable metric space is a space of cosets, then, in almost all
cases of interest, the setting (that is, the structure of the cosets spaces and the action of
th! e flows) is so sophisticated that articulating the KBBY decomposition (which exists
because the corresponding transition functions satisfy all the conditions for the existence
of the decomposition) is an extremely challenging problem. As far as I know, the only
sophisticated flows for which the KBBY decomposition can be deduced from the results
already obtained are the horocycle flow and the more general unipotent flows. For the
horocycle flow, the decomposition can be deduced from the results of S. G. Dani [7] and S.
G. Dani and J. Smillie [8]; for unipotent flows (in connected Lie groups), the decomposition
can be obtained from the results of M. Ratner [43] and [44]. The impressive beauty of the
results of [7], [8], [43], and [44] can never be overstated.

References

[1] Aaronson, J., An Introduction to Infinite Ergodic Theory, Mathematical Surveys and
Monographs, Vol. 50, AMS, Providence, Rhode Island, 1997.

[2] Beboutoff, M., Markoff chains with a compact state space, Rec. Math. (Mat. Sbornik)
N.S. 10 (52) (1942), 213-238.

[3] Beznea, L. and Boboc, N., Potential Theory and Right Processes, Mathematics and
Its Applications, Vol. 527 Kluwer, Dordrecht, Holland, 2004.

[4] Centore, P. M. and Vrscay, E. R., Continuity of attractors and invariant measures
for iterated function systems, Canadian Math. Bull. 37 (1994), 315-329.

[5] Cohn, D. L. Measure Theory, Birkhäuser, Boston, 1980.
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[21] Lasota A. and Mackey, M. C., Stochastic perturbation of dynamical systems: the weak
convergence of measures, J. Math. Anal. Appl. 138 (1989), 232-248.

[22] Lasota A. and Mackey, M. C., Chaos, Fractals, and Noise, Springer, New York, 1994.

[23] Lasota A. and Myjak, J., Semifractals, Bull. Polish Acad. Sci., Math. 44( 1996), 5-21.

[24] Lasota A. and Myjak, J., Markov operators and fractals, Bull. Polish Acad. Sci.,
Math. 45 (1997), 197-210.

[25] Lasota A. and Myjak, J., Semifractals on Polish spaces, Bull. Polish Acad. Sci., Math.
46 (1998), 179-196.

[26] Lasota A. and Myjak, J., Fractals, semifractals, and Markov operators, Int. J. Bifur-
cation and Chaos 9 (1999), 307-325.

[27] Lasota A. and Myjak, J., Attractors of multifunctions, Bull. Polish Acad. Sci., Math.
48 (2000), 319-334.

[28] Lasota A. and Myjak, J., On a dimension of measures, Bull. Polish Acad. Sci., Math.
50 (2002), 221-235.



An ergodic decomposition 167

[29] Lasota A. and Yorke, J. A., Lower bound technique for Markov operators and iterated
function systems, Random & Computational Dynamics 2 (1994), 41-77.

[30] Liggett, T. M., Interacting Particle Systems, Grundlehren der Mathematischen Wis-
senschaften 276, Springer, New York, 1985.

[31] Liggett, T. M., Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-
cesses, Springer, Berlin, 1999.
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[51] Stenflo, Ö., A note on a theorem of Karlin, Statist. & Probab. Letters 54 (2001),
183-187.
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