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Abstract

Let X1, X2, ... be i.i.d. random variables, and put Sn = X1 + ...+Xn. We find nec-
essary and sufficient moment conditions for

∫∞
δ

f(x)dx <∞, δ > α, where α ≥ 0 and
f(x) =

∑
n anP (|Sn| > xbn) with an > 0 and bn is either n1/p, 0 < p < 2,

√
n log n

or
√

n log log n. The series f(x) we deal with are classical series studied by Hsu and
Robbins, Erdős, Spitzer, Baum and Katz, Davis, Lai, Gut, etc.
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1 Introduction

Let X, X1, X2, ... be i.i.d. random variables with P (X 6= 0) > 0 and EX = 0, and consider
the random walk S0 = 0, Sn = X1 + ... + Xn, n ≥ 1. We consider series of the type

f(x) =
∑

n

anP (|Sn| > xbn), x > 0,

where an > 0 and
∑
n

an =∞, and for bn we deal with the next cases:

- bn = n1/p, 0 < p < 2, and P (|Sn| > xn1/p) is called probability of large deviation;
- bn =

√
n log n, and P (|Sn| > x

√
n log n) is called probability of moderate deviation;

- bn =
√

n log log n, and P (|Sn| > x
√

n log log n) is called probability of small deviation.
Several authors proved that

E[ϕ(|X|)] < ∞ for some function ϕ ⇐⇒∑
n

anP (|Sn| > xbn) <∞ for x > some a. (1)

We show that, except for two remarkable cases, the following strengthening of (1) is
possible. This is the general form of our main result.
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Theorem A. The following are equivalent:
(i) E[ϕ(|X|)] <∞;

(ii) f(x) =
∑
n

anP (|Sn| > xbn), x > a;

(iii) Iδ =
∞∫
δ

f(x)dx <∞, δ > a, i.e.
∑
k

∑
n

anP (|Sn| > kbn) <∞.

The impetus to study the convergence of the integral Iδ comes from the theory of
branching processes. Namely, K. B. Athreya (1988) considered a critical Galton-Watson

process (Zn)n≥0 with Z0 = i such that EZ2
1 <∞ to which he associated a random walk Sn

generated by the random variable X = the number of offspring produced by a single parent
particle and put Mn = max

0≤k≤n
Zk.Then he proved that EMn/ log n → i as n → ∞. The

main step in the proof is to establish the convergence of the series
∑
n

E[ |Sn|
n I{|Sn| > δn}]

for all δ > 0, which is in fact a result of the form Iδ <∞.

We present special instances of the general Theorem A, exposing in order relevant
results concerning the random walk Sn with boundary ±xn1/p, 0 < p < 2, ±x

√
n log n

and ±x
√

n log log n.

2 The boundary ±xn1/p, 0 < p < 2, (Large deviations)

For x > 0, set Nx =
∑
n

I{|Sn| > xn} = the number of exits of the random walk Sn beyond

the boundary ±xn and consider the domain Dx = {(n, y) : |y| ≤ xn}. Then the strong law
of large numbers (LLN), due to A. N. Kolmogorov (1930), can be rephrased as follows.

Strong Law of Large Numbers. E |X| < ∞ ⇐⇒ Nx < ∞ a.s., x > 0 ⇐⇒ whatever
x > 0, Sn ∈ Dx a.s. for all but finitely many n.

Closely related to the strong LLN is the complete convergence theorem. The sufficiency
part of this theorem was proved by P. L. Hsu and H. Robbins (1947), while the converse
part was obtained by P. Erdős (1949, 1950).

Complete Convergence Theorem. EX2 < ∞⇐⇒ f(x) = ENx =
∑
n

P (|Sn| > xn) <

∞ for any x > 0.

The function f is nonincreasing. Since P (X 6= 0) > 0, it follows that lim
x↘0

f(x) =∑
n

P (Sn 6= 0) = ∞ by the Borel-Cantelli lemma. Additional information about this limit

is provided by the next theorem, due to C. C. Heyde (1975).

Theorem 1. EX2 <∞ =⇒ x2ENx → EX2, and so f(x) ∼ x−2EX2 as x↘ 0.

This means that
∞∫
0

f(x)dx = ∞ and raises the question about finiteness of Iδ =

∞∫
δ

f(x)dx for δ > 0. The answer is given by the following result proved by A. Spătaru

(1990).
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Theorem 2. EX2 <∞⇐⇒ Iδ =
∞∫
δ

ENxdx =
∞∫
δ

(
∑
n

P (|Sn| > xn))dx <∞, δ > 0.

This is an improvement over the complete convergence theorem which asserts that∑
n

P (|Sn| > xn) < ∞, x > 0 ⇐⇒ EX2 < ∞, while Theorem 2 shows that the

same moment condition EX2 < ∞ is equivalent to the convergence of the double se-
ries

∑
k

∑
n

P (|Sn| > kn) < ∞. Theorem 2 was generalized by D. Li and A. Spătaru (2005)

as follows.

Theorem 3. For q > 0,

∞∫
δ

f(xq)dx <∞, δ > 0 ⇐⇒

 E |X|1/q <∞ if q < 1/2
E[X2 log+ |X|] <∞ if q = 1/2

EX2 <∞ if q > 1/2
.

More generally, for x > 0 and 0 < p < 2, put Nx =
∑
n

I{|Sn| > xn1/p} = the number

of exits of Sn beyond the boundary ±xn1/p and consider the domain Dx = {(n, y) :
|y| ≤ xn1/p}. For x > 0 and r ≥ 1, consider also the random series Mx =

∑
n

nr−2I{|Sn| >

xn1/p}. Then the generalization of the strong law of large numbers, due to J. Marcinkiewicz
and A. Zygmund (1937), can be rephrased as follows.

Generalized Strong Law of Large Numbers. E |X|p < ∞ ⇐⇒ Nx < ∞ a.s.,
x > 0 ⇐⇒ whatever x > 0, Sn ∈ Dx a.s. for all but finitely many n.

Closely related to the generalized strong LLN is the generalized complete convergence
theorem.

Generalized Complete Convergence Theorem. E |X|pr < ∞ ⇐⇒ f(x) = EMx =∑
n

nr−2P (|Sn| > xn1/p) <∞ for any x > 0.

For p = 1 and r = 2 this theorem reduces to the Hsu-Robbins-Erdős complete conver-
gence theorem. The special case p = r = 1 was proved by F. Spitzer (1956), and the result
in the general form is due to L. E. Baum and M. Katz (1965). The next strengthening of
the generalized complete theorem was obtained by D. Li and A. Spătaru (2005).

Theorem 4. For q > 0,

∞∫
δ

f(xq)dx <∞, δ > 0 ⇐⇒

 E |X|1/q <∞ if q < 1/pr
E[|X|pr log+ |X|] <∞ if q = 1/pr

E |X|pr <∞ if q > 1/pr

.

The first exceptional case alluded to above Theorem A refers to Spitzer’s theorem.

More precisely the following result holds.

Theorem 5. For x > 0, define the stopping times T+(x) = inf{n : 1 ≤ n ≤ ∞ : Sn > xn}
and T−(x) = inf{n : 1 ≤ n ≤ ∞ : Sn < −xn}. Then the following statements are
equivalent:

(i) E[|X| log+ |X|] <∞;



140 Aurel Spătaru

(ii) E[sup
n≥1

|Sn|] <∞;

(iii) E[
ST+(x)

T+(x) I{T+(x) <∞}] <∞ and E[
ST−(x)

T−(x) I{T−(x) <∞}] > −∞;

(iv)
∞∫
δ

(
∑
n

1
nP (|Sn| > xn))dx <∞. for any δ > 0.

J. Marcinkiewicz and A. Zygmund (1937) proved that (i)=⇒(ii), and D. L. Burkholder
(1962) showed the converse implication (ii)=⇒(i). Recently, A. Spătaru (2006) established
the sequence of implications (ii)=⇒(iii)=⇒(iv)=⇒(i).

Another important result in this area is next stated. L. E. Baum and M. Katz (1965)
proved that (i)⇐⇒(ii), and A. Spătaru (2006) showed that (i)⇐⇒(iii).
Theorem 6. Let 1 < p < 2. The following are equivalent:

(i) E[|X|p log+ |X|] <∞;
(ii) f(x) =

∑
n

log n
n P (|Sn| > xn1/p) <∞ for any x > 0;

(iii) Iδ =
∞∫
δ

f(x)dx <∞ for any δ > 0.

The second exceptional case alluded to above Theorem A is related to this theorem and
corresponds to the case p = 1. Namely, the following result was obtained by A. Spătaru
(2006).

Theorem 7. E[|X| (log+ |X|)2] <∞⇐⇒
∞∫
δ

(
∑
n

log n
n P (|Sn| > xn))dx <∞, δ > 0.

3 The boundary ±x
√

n log n, 0 < p < 2, (Moderate devia-
tions)

For x > 0 and r > 1, define Mx =
∑
n

nr−2I{|Sn| > x
√

n log n} = the number of exits of

Sn over the boundary ±x
√

n log n with the ”weights” nr−2. The statement (i) in Theorem
8 below is due to T. L. Lai, and the statement (ii) was proved by A. Spătaru (2006).
Theorem 8. Writing EX2 = σ2, the following hold:

(i) f(x) = EMx =
∑
n

nr−2P (|Sn| > x
√

n log n) <∞ for any x > σ
√

2r − 2;

(ii) Iδ =
∞∫
δ

f(x)dx <∞ for any δ > σ
√

2r − 2.

An interesting result concerning moderate deviations is as follows.
Theorem 9. The following are equivalent:

(i) EX2 <∞;
(ii) f(x) =

∑
n

log n
n P (|Sn| > x

√
n log n) <∞ for any x > 0;

(iii) Iδ =
∞∫
δ

f(x)dx <∞ for any δ > 0.

J. A. Davis (1968) showed that (i)⇐⇒(ii), and S. H. Siraždinov proved that (i)⇐⇒(iii).
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4 The boundary ±x
√

n log log n, (Small deviations)

For x > 0, define Mx =
∑
n

1
nI{|Sn| > x

√
n log log n} = the number of exits of Sn over the

boundary ±x
√

n log log n with the ”weights” 1
n . The statement (i) in Theorem 10 below

is due to J. A. Davis (1968a), and the statement (ii) was proved by A. Spătaru (2006).

Theorem 10. Writing EX2 = σ2, the following hold:
(i) f(x) = EMx =

∑
n

1
nP (|Sn| > x

√
n log log n) <∞ for any x > σ

√
2;

(ii) Iδ =
∞∫
δ

f(x)dx <∞ for any δ > σ
√

2.
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