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Abstract

We consider two static problems of contact between an elastic beam and an obsta-
cle, the so called foundation. The contact is modeled with normal compliance and the
Signorini unilateral conditions, respectively. We state the variational formulation of
the problems, then we analyse them via the control variational method. As a result,
we obtain existence, uniqueness and regularity results.
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1 Introduction

Situations where deformable bodies or components come into contact are common in
industrial settings and in everyday life. Consequently, problems involving contact and its
additional phenomena (friction, wear, adhesion) have received a great deal of attention in
the engineering literature. The formalism of general detailed models for these processes
and their analysis has been developed in the mathematical literature, too. A general
survey of some results on the analysis of three dimensional contact problems, via the
study of variational inequalities, can be found in [3, 7]. There, various existence and
uniqueness results were obtained and the error analysis in the study of discrete schemes
for the corresponding problems is provided.

The interest in contact problems involving beams lies in the fact that their mathe-
matical analysis is considerably easier and more transparent, as some of the difficulties
associated with two or three dimensions are absent. The regularity of the solutions is
usually better and the use of trace theorems more convenient. Such problems may provide
insight into the possible types of behaviour of the solutions and on occasions lead to de-
coupling of some of the equations, thus simplifying the analysis even more. Moreover, one
may use such models as tests and benchmarks for computer schemes meant for simulation
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of complicated multidimensional contact problems. Models, analysis and simulations of
contact problems for beams can be found in [2, 4, 5, 8] and the references therein.

In the present paper we deal with two mathematical problems which describe the
process of equilibrium of an elastic beam in contact with an obstacle. We use the Euler-
Bernoulli model for the beam and we model the contact with normal compliance and
the Signorini conditions, respectively. In a variational formulation, the problems lead
to a nonlinear variational equation and to an elliptic variational inequality, respectively.
The novelty of the paper is that we analyse these models by using the control variational
method introduced in [1, 9]. A comprehensive presentation for this new variational method
may be found in the recent monograph [6]. The main new idea in this method consists to
perform the minimization of the energy of the system via the optimal control theory, which
represents an extension of the arguments of minimization via the calculus of variations,
used in the classical variational method. This new general framework is very flexible and
may offer several different solutions for the same problem, as shown in [10]. It is relevant
both from the theoretical and the numerical point of view, as illustrated in [6]. The interest
in using the control variational method in the analysis of the problems described in this
paper arise in the fact that it replaces the solution of nonlinear differential equations of
order four by the solution of linear equations of second order and, moveover, it provides
regularity results.

The rest of the paper is structured as follows. In Section 2 we present the two problems
of contact and prove their unique weak solvability. Our main results are presented in
Section 3; there, we analyze the variational models via the control variational method;
we provide existence, uniqueness and regularity results, and we investigate additional
properties related to our approach.

2 The problems and their unique weak solvability

The physical setting and the process are as follows. An elastic beam of length L > 0
is clamped at its left end and the right end is free. The beam is acted upon by an applied
force of (linear) density f = f(x) which is directed downward, f ≤ 0, where x is the spatial
variable. Let g = g(x) ≤ 0 denote the gap between the beam in its reference configuration
[0, L] and an obstacle S, situated on the Ox axis. The beam comes into contact with S
only when the vertical displacement exceeds g. The physical setting is depicted in Fig. 2.1.
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Fig. 2.1. The setting of the problem.

For x ∈ [0, L], denote by u = u(x) the vertical displacement of the beam. When the
meaning is clear, we do not indicate explicitly the dependence of various variables on x.
We use the Euler-Bernoulli model for the beam and we denote A = EI, where I is the
beam’s moment of inertia and E its Young modulus.

In the first problem we assume that S is deformable and, therefore, we model the
contact with normal compliance. The classical formulation of the problem is the following.

Problem P1. Find a displacement field u : [0, L] → R such that

d2

dx2

(
A

d2u

dx2

)
= f + p(g − u) in (0, L), (1)

u(0) =
du

dx
(0) = 0, (2)

d2u

dx2
(L) =

d3u

dx3
(L) = 0. (3)

We now provide explanations on the equations and conditions above. When u > g
there is no contact between the beam and the foundation and we have d2

dx2 (A d2u
dx2 ) = f ,

which is the classical equilibrium equation of the beam. Therefore,

u > g =⇒ d2

dx2

(
A

d2u

dx2

)
= f. (4)

When u ≤ g, there is contact between the beam and the foundation. In this case the
foundation reacts with a normal force ξ directed upward, ξ ≥ 0. The equilibrium equation
now is d2

dx2 (A d2u
dx2 ) = f + ξ. We assume that the reaction ξ depends on the penetration,

i.e. ξ = p(g − u) where p is a given nonnegative function. This assumption represents
a version of the so-called normal compliance contact condition, see [7] and the reference
therein. Thus,

u ≤ g =⇒ d2

dx2

(
A

d2u

dx2

)
= f + p(g − u). (5)

Conditions (4) and (5) may be restated in the form (1), if we assume that p(r) = 0 for
r < 0. Next, condition (2) is imposed since the beam is rigidly attached at its left and,
finally, we use condition (3) since we assume that no moments act on the free end of the
beam.

In the second problem we assume that the foundation is rigid and, therefore, we model
the contact with the Signorini conditions. The classical formulation of the problem is the
following.
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Problem P2. Find a displacement field u : [0, L] → R such that

d2

dx2

(
A

d2u

dx2

)
= f + ξ in (0, L), (6)

u ≥ g, ξ ≥ 0, ξ(g − u) = 0 in (0, L), (7)

u(0) =
du

dx
(0) = 0, (8)

d2u

dx2
(L) =

d3u

dx3
(L) = 0. (9)

The meaning of the equations and conditions in Problem P2 is similar to that in Prob-
lem P1. The only difference arise from the fact that now we use the Signorini conditions
(7). These conditions show that there is no penetration into the obstacle (since u ≥ g), the
reaction force ξ is directed upward (since ξ ≥ 0), and vanishes when there is no contact
(since ξ = 0 when u > g). More details in the use of the Signorini contact conditions can
be found in [3, 7].

We turn now to derive a weak or variational formulation of Problems P1 and P2. To
this end we assume in what follows that

A ∈ L∞(0, L), there exists m > 0 such that A(x) ≥ m a.e. x ∈ (0, L), (10)
f ∈ L2(0, L), f(x) ≤ 0 a.e. x ∈ (0, L), (11)
g ∈ L2(0, L), g(x) ≤ 0 a.e. x ∈ (0, L). (12)

Also, the normal compliance function p : R → R satisfies
(a) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R.

(b) (p(r1)− p(r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.

(c) p(r) = 0 ∀ r < 0.

(13)

We remark that the assumptions (13) on p(·) are fairly general. The main severe restriction
comes from condition (a) which, roughly speaking, requires that the function grows at most
linearly for large values of the argument. From mechanical point of view, conditions (b)
and (c) express the fact that the reaction force increases with the penetration and vanishes
when there is no penetration into foundation. One standard example of function p which
satisfies (13) is p(r) = µr+, where µ > 0 is the stiffness coefficient and r+ denotes the
positive part of r, i.e. r+ = max {0, r}.

In what follows we use standard notation for Lp and Sobolev spaces and the subscripts
x and xx will represent the first and the second derivatives with respect to x, respectively.
We introduce the closed subspace of H2(0, L) given by

V = { v ∈ H2(0, L) : v(0) = vx(0) = 0 }, (14)
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and we denote (u, v)V = (u, v)H2(0,L), whenever u, v ∈ V . In addition, we consider the
bilinear form a : V × V → R, the functional j : V × V → R, and the set of admissible
displacement fields K, defined by

a(u, v) =
∫ L

0
A uxxvxx dx ∀u, v ∈ V, (15)

j(u, v) = −
∫ L

0
p(g − u) v dx ∀u, v ∈ V, (16)

K = { v ∈ V : v ≥ g in (0, L) }. (17)

We note that by conditions (10)–(13) the integrals in (15) and (16) are well-defined;
moreover, by condition (12) it follows that K nonempty.

A standard computation, based on two integrations by parts and the boundary condi-
tions (2), (3) leads to the following variational formulation of Problem P1.

Problem P V
1 . Find a displacement field u such that

u ∈ V, a(u, v) + j(u, v) = (f, v)L2(0,L) ∀ v ∈ V. (18)

Next, we note that if u is a regular solution of Problem P2 then u ∈ K and, moreover,
for all v ∈ K we have

ξ(v − u) = ξ(v − g) + ξ(g − u) = ξ(v − g) ≥ 0 in (0, L).

Therefore, using again integrations by parts and the boundary conditions (8), (9) we derive
the following variational formulation of Problem P2.

Problem P V
2 . Find a displacement field u such that

u ∈ K, a(u, v − u) ≥ (f, v − u)L2(0,L) ∀ v ∈ K. (19)

We have the following existence and uniqueness results, which provide the unique weak
solvability of the contact problems P1 and P2.

Theorem 1. Assume that (10)–(12) hold. Then:
1) There exists a unique solution u∗ ∈ V to the variational problem P V

1 , if (13) holds.
2) There exists a unique solution û ∈ K to the variational problem P V

2 .

Proof. 1) Let A : V → V be the operator given by (Au, v)V = a(u, v) + j(u, v) for all
v ∈ V . We use assumptions (10) and (13) to see that A is a strongly monotone Lipschitz
continuous operator on V . Moreover, by (11) it follows that there exists a unique element
f̃ ∈ V such that (f̃ , v)V = (f, v)L2(0,L) for all v ∈ V . The unique solvability of Problem
P V

1 follows from the unique solvability of the equation Au = f̃ , guaranteed by a standard
result on nonlinear equations with monotone operators.

2) We use assumption (10) to see that the bilinear from a(·, ·) is continuous and V -
elliptic. Also, it follows from (12) that K is a nonempty closed convex subset of V . The
unique solvability of Problem P V

2 follows now from a standard result on elliptic variational
inequality of the first kind.
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3 Analysis via the control variational method

In this section we perform the analysis of problems P V
1 and P V

2 by a method which
is different from the method presented in the proof of Theorem 1. Everywhere below we
assume that (10)–(12) hold and, when we deal with Problem P V

1 , we assume that (13)
holds, too. We start with the analysis of Problem P V

1 and, to this end, we introduce the
following optimal control problem:

min
{ 1

2

∫ L

0
lh2 dx +

∫ L

0
ϕ(g − u) dx

}
, (20)

uxx = lz + lh in (0, L), (21)

u(0) = ux(0) = 0. (22)

Here and below l = A−1 and note that, by condition (15), it follows that l ∈ L∞(0, L).
Also, ϕ : R → R is such that ϕ′ = p and z ∈ H2(0, L) is the solution of the problem

d2z

dx2
= f in (0, L), z(L) =

dz

dx
(L) = 0. (23)

The solvability of the optimal problem (20)–(22) and its link with the variational
problem P V

1 is given by the following result.

Theorem 2. Assume that (10)–(13) hold. Then, problem (20)–(22) has a unique optimal
pair [u∗, h∗] ∈ H2(0, L)× L2(0, L) and, moreover, u∗ satisfies (18).

Proof. Any pair [u, h] ∈ H2(0, L) × L2(0, L) that satisfies (21), (22) is admissible for the
control problem. The assumptions on p show that ϕ is convex and therefore is bounded
from below by some affine mapping. As the dependence u 7→ h in (21) is linear, it yields
that the cost functional is coercive in h ∈ L2(0, L). This ensures the existence of an optimal
pair [u∗, h∗] and its uniqueness follows by the strict convexity of the cost functional (20).

Next, from (22) and the definition (14) of the space V it follows that u∗ ∈ V . We
consider now affine variations of the type [u∗, h∗] + λ([w, k] − [u∗, h∗]), where λ ∈ R and
[w, k] is an element of H2(0, L) × L2(0, L) which satisfies (21), (22). Since [u∗, h∗] is the
minimum point of (20), we obtain∫ L

0
ϕ(g − u∗) dx +

1
2

∫ L

0
l(h∗)2 dx

≤
∫ L

0
ϕ(g − λw − (1− λ)u∗) dx +

1
2

∫ L

0
l(λk + (1− λ)h∗)2 dx ∀λ ∈ R.

We divide the previous inequality by λ > 0 and then pass to the limit as λ → 0 to obtain

0 ≤
∫ L

0
lh∗(k − h∗) dx + j(u∗, w − u∗),
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for all elements [w, k] as above. Similar arguments with λ < 0 show that the converse
inequality is valid, too; therefore, we conclude that∫ L

0
lh∗(k − h∗) dx + j(u∗, w − u∗) = 0. (24)

Also, by (21) and the similar relation for [w, k] we have∫ L

0
lh∗(k − h∗) dx =

∫ L

0
(Au∗xx − z)(wxx − u∗xx) dx

=
∫ L

0
(Au∗xx)(wxx − u∗xx) dx−

∫ L

0
f(w − u∗) dx,

due to the definition (23) of z. Using this equality in (24) and taking into account the
definition of the bilinear form a(·, ·), we obtain (18), which concludes the proof.

We now turn to the analysis of Problem P V
2 and, to this end, we introduce the optimal

control problem

min
{∫ L

0
lh2dx

}
, (25)

subjected to (21), (22) and to the unilateral constraint

u ≥ g in (0, L). (26)

The solvability of this optimal problem and its link with the variational problem P V
2 is

given by the following result.

Theorem 3. Assume that (10)–(12) hold. Then, problem (25), (21), (22), (26) has a
unique optimal pair [û, ĥ] ∈ K × L2(0, L) and, moreover, û satisfies (19).

Proof. Clearly, any element u ∈ K generates via (21) the control h ∈ L2(0, L) such that
the pair [u, h] is admissible for the control problem (25), (21), (22), (26). The existence
and the uniqueness of an optimal pair [û, ĥ] ∈ K × L2(0, L) of this problem follows by
using arguments similar to those presented in the proof of Theorem 2.

Let [w, k] ∈ K×L2(0, L) be an admissible pair for the problem (25), (26) and consider
convex variations of the form [û, k̂] + λ([w, k] − [û, ĥ]) where λ ∈ [0, 1] and [w, k] is an
element of K ×H2(0, L) which satisfies (21), (22). Then, the optimality of [û, ĥ] leads to
the inequality ∫ L

0
l(ĥ)2 dx ≤

∫ L

0
l[λk + (1− λ)ĥ]2 dx,

which implies that

0 ≤
∫ L

0
lĥ(k − ĥ) dx,
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for any k ∈ L2(0, L) such that [w, k] is admissible for (25), (26), with some w ∈ K. As
in the proof of Theorem 2, we replace in the previous inequality ĥ and k as they may be
computed from the state equation (21). As a result we find that

0 ≥
∫ L

0
(Aûxx − z)(ûxx − wxx) dx ∀w ∈ K.

We now integrate by parts the term involving z to obtain (19), which concludes the
proof.

Note that by Theorems 2 and 3 we obtain the existence of the solutions to Problems
P V

1 and P V
2 , respectively. We conclude that the control variational method presented

above allows to recover the existence part in Theorem 1. The uniqueness part can be
easily obtained by using arguments of monotonicity.

In what follows we provide more comments on the interest in using the control varia-
tional method and we illustrate them within the study of Problem P V

1 .
First, we note that the state equation (21) in the optimal control problems discussed

above is linear and its form is extremely simple and easy to integrate. Therefore, the
solution of (1)–(3) or, equivalently, the solution of (18), is reduced to the successive solution
of such type of equations. Note also that, in contrast, both (1) and (18) are nonlinear
ordinary differential equations of fourth order and, therefore, in principle, their integration
is more difficult. We conclude that the interest on the control variational method presented
above arises in the fact that it replaces the solution of nonlinear differential equations of
order four by the solution of linear equations of second order.

A second interest in the optimal control method arises from the fact that it pro-
vides regularity results. To illustrate this, we turn again to the optimal control problem
(20)−(22). We introduce the adjoint system and the adjoint state r ∈ H1(0, L) given by

rxx = −p(g − u∗) in (0, L), (27)

r(L) = rx(L) = 0. (28)

Performing integration by parts in (24) and using (27), (28), (21) and (22) we find that

0 =
∫ L

0
lh∗(k − h∗) dx−

∫ L

0
p(g − u)(w − u∗) dx

=
∫ L

0
lh∗(k − h∗) dx +

∫ L

0
rxx(w − u∗) dx

=
∫ L

0
lh∗(k − h∗) dx +

∫ L

0
r(wxx − u∗xx) dx

=
∫ L

0
lh∗(k − h∗) dx +

∫ L

0
lr(k − h∗) dx.

Since the above inequality is valid for any k ∈ L2(0, L) we obtain that

r + h∗ = 0 in (0, L). (29)
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Relation (29) expresses the fact that the gradient of the cost functional (20) (as a
function of h alone) is zero in the minimum point h∗ ∈ L2(0, L). The left-hand side of (29)
is exactly this gradient and it is used in the iterative procedures (the gradient methods) for
the solution of (20)–(22). By Theorem 2 we see that this provides an alternative solution
method for the original problem (1)–(3), involving just the equations (21) and (27), that
may be integrated directly.

We also use relation (29) to note that h∗ has the same regularity as r, i.e. h∗ ∈
H2(0, L) ∩ H1

0 (0, L). Here, we use the fact that p(·) is Lipschitz continuous and g ∈
L2(0, L). If l is smooth enough, by (21) we also obtain that u∗ ∈ H4(0, L), which represents
a regularity property for the solution of Problem P1.

Note that such a regularity property seems not possible to be extended to the solution
of the variational inequality (19) or, equivalently, to the solution of the optimal control
problem (25), (21), (22), (26). The reason arise from the fact that in this case the adjoint
equation (27) has the form

rxx ∈ ∂IK(u∗) in (0, L),

where IK is the indicator function of the convex K ⊂ V . And, there may be a lack of
regularity of the nonlinear term ∂IK(u∗) as, in general, IK is not differentiable.

We end this paper with the remark that problem (20)–(22) may be reexpressed as the
following mathematical programming problem

min
{ 1

2

∫ L

0
lh2 dx +

∫ L

0
ϕ
(
g −

∫ x

0

∫ s

0
(lz + lh)(ζ)dζ ds

)
dx

}
for any h ∈ L2(0, L). This formulation is useful in the numerical approach of the the con-
tact problem P V

1 . And, finally, we note that arguments similar to those presend above can
be used in the study of variational inequalities associated to partial differential equations
of elliptic type, in arbitrary dimension.

References

[1] Arnautu, V., Langmach, H., Sprekels, J., Tiba, D., On the approximation and the
optimization of plates, Numer. Funct. Anal. Optim. 21 (2000), 337-354.

[2] Dumont, Y., Kuttler, KL., Shillor, M. Analysis and simulations of vibrations of a
beam with a slider, J. Engng. Math. 47 (2003), 61-82.

[3] Han, W., Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplas-
ticity, Studies in Advanced Mathematics 30, American Mathematical Society, Prov-
idence, RI–International Press, Sommerville, MA, 2002.

[4] Kuttler, K.L., Park, A., Shillor, M. and Zhang, W., Unilateral dynamic contact of
two beams, Math. Comput. Modelling 34 (2001), 365-384.

[5] Kuttler, K.L., Shillor, M., Vibrations of a beam between two stops, Dyn. Continu.,
Discrete Impuls. Systems 8 (2001) 93-110.



136 Mircea Sofonea and Dan Tiba

[6] Neittaanmaki, P., Sprekels, J., Tiba, D., Optimization of elliptic systems. Theory and
applications, Springer Verlag, New York, 2006.

[7] Shillor, M., Sofonea, M., Telega, J.J., Models and Analysis of Quasistatic Contact,
Lecture Notes in Physics 655, Springer, Berlin, 2004.

[8] Shillor, M., Sofonea, M., Touzani, R., Quasistatic frictional contact and wear of a
beam, Dynamics of Continuous Discrete and Impulsive Systems 8 (2001), 201-218.

[9] Sprekels, J., Tiba, D., Control variational methods for differential equations, ISNM
139, Bikhauser Verlag, Basel, (2001), 245-257.

[10] Sprekels, J., Tiba, D., The control variational approach for differential systems, SIAM
J.Control Optim. 47 (2008), 3220-3236.


