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Abstract
Continuous branching processes on [0,∞[ are derived from Poisson random mea-

sures associated with Lévy processes
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1 The origin

From historical point of view, the first stochastic pattern in branching property is that
of Galton-Watson chains, that is Markov processes with times n ∈ {0, 1, . . .}, states x ∈
{0, 1, . . .} and one-step transition probabilities Q(x; dy) from time n to time n+ 1

Q(x; ·) := ν∗x (no dependence on n).

Here the probability ν on {0, 1, . . .} is the offspring distribution (which is arbitrary but
fixed, for each fixed chain) while the convolution power ν∗x is defined as ν ∗ . . . ∗ ν (x
times). That is the shortest and most rigurous definition to Galton-Watson chains but it
is often replaced by an inuitive description in terms of individuals which independently
give birth to random numbers of ofsprings, each such random number obeying the same
distribution ν from above.
From theoretical point of view, the most outstanding property of Galton-Watson chains
is the following:

IfX and Y are independent Galton-Watson chains that have the same offspring
distribution ν, then their sum n 7−→ Xn + Yn is also a Galton-Watson chain
with offspring distribution ν.

Roughly speaking, the modifications introduced by later branching patterns concern the
time set {0, 1, . . .} (which is often replaced by [0,∞[) and the state space {0, 1, . . .}, which
is often replaced by [0,∞[ (or even by more complicated measure spaces). All of these
patterns still obey intuitive descriptions in terms of particles which independently give
birth to offsprings according to a given law. Other patterns also consider motions of these
particles.
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2 Continuous Branching Processes

The continuous branching processes have the continuous time set [0,∞[ and the state
space E := [0,∞[ (with a trap at 0 ∈ E). Letting aside some technicalities, we may think
of continuous branching processes as E-valued Feller processes which satisfy the following
property:

If X and Y are independent E-valued Markov processes with identical transi-
tion semigroup, then their sum process X + Y is stil Markovian and has the
same transition semigroup as X and Y .

Given a continuous branching process X, one may think intuitively of Xt as the random
mass of a particle, at time t; clearly, we think of masses which evolve in time and vanish
forever when hitting the state 0 ∈ E. Under such an interpretation, no motion is assumed
by this pattern.
Let us fix throughout Pt(x; dy) as to be the transition semigroup of a continuous branching
process. Now clearly the above invariance under addition reads as the following convolution
equation

Pt(x+ y; ·) = Pt(x; ·) ∗ Pt(y; ·) for all t ≥ 0 and x, y ∈ E

Consequently we start with the assumption that the following setting is satisfied on a
suitably large probability space.

1. X = (Xx
t ;x ∈ E, t ≥ 0) is a doubly indexed family of E-valued random variables.

2. All the sample maps t 7−→ Xx
t are right continuous with left-hand limits and satisfy

Xx
0 = x.

3. All the sample maps x 7−→ Xx
t are non-decreasing and right continuous.

4. Whatever be n ∈ {2, 3, . . .} and 0 = x(0) ≤ x(1) ≤ . . . ≤ x(n) < ∞, the processes
t 7−→ (Xx(i)

t − X
x(i−1)
t ) (for i = 1, 2, . . . , n) are independent continuous branching

processe with transition semigroup Pt and a trap at 0 ∈ E.

As for the relationship with the originating convolution power expression Q(x; ·) = ν∗x of
transition probabilities, we still have

Pt(x; ·) = Pt(1; ·)∗x for t ≥ 0, x ∈ E = [0,∞[ (1)

but the definition to the xth convolution power (·)∗x follows now from the theory of
indefinite divisible distributions while the probability Pt(1; ·) ceases to be arbitrary. In
fact, the probabilities Pt(1; ·) associated with all the continuous branching processes form a
subclass of indefinite divisible laws which obey, via their Laplace transforms, some special
differential equations.

Now fix arbitrarily t > 0 and think of the random maps E 3 x 7−→ Xx
t which corre-

spond to a Lévy process. The Lévy procees x 7−→ Xx
t will have no Gaussian component

since supported by a semibounded interval; the proof to this claim is not straightforward
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but we omit it since a general matter of indefinitely divisible laws. Therefore there exists
a Poisson random measure Ht(dx⊗ dy) on E × E such that

Xx
t − x =

∫
[0,x]×E

vHt(du⊗ dv)

Furthermore, since the sample paths of the Lévy process x 7−→ Xx
t are non-decreasing

(therefore with locally bounded variation) if follows that we have proved the following
result:

Proposition 1 The cadlag version of each sample map x 7−→ Xx
t −x can be expressed as

a series

Xx
t − x =

∑
n≥1

 ∑
1≤k≤n

η(t, k)

χ[τ(t,n),∞[(x) (2)

with random variables η(t, n) > 0 and random variables 0 < τ(t, 1) < τ(t, 2) < . . . <
τ(t, n) < . . . which increase to ∞ with n. Finally, since x 7−→ Xx

t is a Lévy process, it
follows that the random measures Ht(·; dudx)

Ht(·; dudy) :=
∑
n

δη(t,n)(du)⊗ δτ(t,n)(dy) (3)

are Poisson random measures with respect to which the proceeses x 7−→ Xx
t express as

integrals

Xx
t − x =

∫
[0,∞[×E

χ[0,x]×E(u, y)yHt(·; dudy) (4)

As for the Poisson random measures Ht(·; dudy), we have the following result.

Proposition 2 The measure valued process t 7−→ Ht is a temporarily homogeneous Markov
process.

Proof. For every natural integer number n ≥ 2, and arbitrary real numbers x(0) ≤
x(1) ≤ . . . ≤ x(n) we know that the process

t 7−→ (Xx(0)
t , X

x(1)
t , . . . , X

x(n)
t )

is Markovian since so is t 7−→ (Xx(0)
t , X

x(1)
t − X

x(0)
t , . . . , X

x(n)
t − X

x(n−1)
t ) and the two

processes follow from each other, by a one-to-one map. Since n and x := (x(0), . . . , x(n))
are arbitrary, we extend the claim to the whole path valued procees t 7−→ (Xx

t ;x) in the
sense that

t 7−→
(
[0,∞[3 u 7−→ X

x(u)
t

)
is Markovian

for every nondecreasing path [0,∞[3 u 7−→ x(u) ∈ E = [0,∞[ which has locally bounded
variation. But our hypotheses ensure the fact that the path valued process t 7−→

(
u 7−→ X

x(u)
t

)
and the measure valued process t 7−→ Ht(·; dudx) follow from each other by the one
to one integral map at (4). Therefore the measure valued process t 7−→ Ht(·; dudx)
is Markovian too; finally its time homogenity also follows from the same property of
t 7−→

(
u 7−→ X

x(u)
t

)
.
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3 Continuous branching Brownian motion

Throughout this section, we will deal with a concrete example of continuous branching
Markov process t 7−→ Xt. Recall (Pt)t≥0 denotes the transition semigroup of X.

Consider the function-to-function linear operator G which acts as

Gf(x) := xf ′′(x); x ∈ E = [0,∞[ (5)

for all functions f ∈ C2 (E) := C2 (R)|E . Finally assume that C2 (E) is included into the
domain of the infinitessimal generator of (Pt)t≥0 and that

lim
t↓0

Ptf − f

t
= Gf in C (E) for all f ∈ C2 (E)

Let on the other hand Tt : C (E) −→ C (E) be the contraction linear operators defined as

Ttf (x) :=
∫
E
f (y) exp

(
∗;x1

t
e1/t

)
(dy) ; x ≥ 0, t ≥ 0

where eλ
eλ(dx) := χ[0,∞[(x)λe

−λxdx

is the exponential law while the probability exp (∗;µ) on R is the convolution exponential

exp (∗;µ) := e−µ(R)
∑
n≥0

1
n!
µ∗n

for every positive finite measure µ on R. Now we have the following.result

Proposition 3
Pt = Tt for all t ≥ 0. (6)

Proof. With each t ≥ 0, λ ≥ 0 associate the number ψ(t, λ)

ψ(t, λ) :=
λ

1 + tλ

and let fλ : E −→ E be the function

fλ(x) := e−λx; x ∈ E = [0,∞[.

Let Λ denote the linear space generated by all the fλ functions from above, with λ ≥ 0.
Direct calculations show that

Ttfλ = fψ(t,λ) for all t ≥ 0, λ ≥ 0 (7)

therefore
TtΛ ⊆ Λ for all t ≥ 0. (8)
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But Λ is a dense linear subspace of C (E) therefore the equation Ttfλ = fψ(t,λ) and

ψ (s+ t, λ) = ψ (t, ψ (s, λ))

toghether show that

TtTs = Ts+t on the whole linear space C (E)

therefore (Tt)t≥0 is a semigroup, as the (Pt)t≥0 is. Now it is the time to verify

lim
t↓0

Ttf − t

t
= Gf in C (E) for all f ∈ Λ

therefore Λ is a core for G and (Tt)t≥0 is the unique Feller semigroup generated by G on
C (E). That is Pt = Tt.

Let us now detail the time homogeneous Lévy process x 7−→ Xx
s for an arbitrarily

fixed s > 0 (recall we think of x as the time parameter of x 7−→ Xx
s ) and the measure

valued Markov process t 7−→ Ht (·; ·). Since the Lévy measure of x 7−→ Xx
s is 1

se1/s (see
the expression of Tt at (3)) it follows that the measure intensity of each Poisson random
measure Ht (·; du⊗ dy) is equal to 1

t `(du) ⊗ e1/t(dy) where ` stands for the Lebesgue
measure on [0,∞[. Taking this into account, we make precise the distribution of the whole
family of random variables (η(t, k), τ(t, k))k≥1 at (2) and (3). Concretely they can be
expressed as

(η (t, n) , τ (t, n)) = t× (θ (t, n) , σ (t, n)) .

where all the random variables θ (t, n) , σ (t, n) are independent (for running n ≥ 1) and
identically distributed with common distribution e1.

Now, for fixed x, y ∈]0,∞[, the random measure Ht (δx ⊗ δy; ·) has the form

Ht (δx ⊗ δy; ·) = δt×ξ ⊗ δy, (9)

with ξ having the form

ξ =
ρ∑

n=1

ξn (10)

where ξn are i.i.d. random variables with common distribution e1 while the random
variable ρ is independent of them and has Poisson distribution with expectation y/x.

3.1 Details on the correspondence X ↔ H

From the point of view of the Lévy process x 7−→ Xx
t , the Dirac measure δx⊗δy on [0,∞[2

is not so addressing as it is the path

[0,∞] 3 u 7−→ x · χ[y,∞[(u).

whose right-hand values x · χ[y,∞[(u) are integrals like the one at (4). Anyway we are
interest in the path to path Markovian evolution

(x 7→ Xx
s ) 7−→

(
x 7→ Xx

s+t

)
,

therefore we think of (9)-(10) in terms of paths. In such terms, our result is now the
following.
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Proposition 4 Let s, t, x, y ∈]0,∞[ be fixed numbers and assume that the sample path X•
s

has the form
u 7−→ Xu

s = xχ[y,∞[(u)

Then the path X•
s+t has the form

u 7−→ Xu
s+t =

(
ρ∑

n=1

ξn

)
χ[y,∞[(u)

where ξn are i.i.d. random variables with common distribution e1 while the random variable
ρ is independent of them and has Poisson distribution with expectation y/x. Furthermore
the branching property of X extends this representation by additivity, with independent
summands for X•

s+t. Namely if (xi, yi)1≤i≤N are strictly positive real numbers, with arbi-
trary natural number N ≥ 2, and if X•

s has the form

u 7−→ Xu
s =

∑
1≤i≤N

xiχ[yi,∞[(u)

then the path X•
s+t has the form

u 7−→ Xu
s+t =

∑
1≤i≤N

[(
ρi∑
n=1

(ξi)n

)
χ[yi,∞[(u)

]

with independent family of random variables ρi and (ξi)n such that all the (ξi)n are e1-
distributed while each ρi is Poisson distributed with expectation xi/yi.

Remark It is to notice that each sum(
ρi∑
n=1

(ξi)n

)
χ[yi,∞[(u)

from above is null on the event (ρi = 0).
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