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Abstract

We present a new statistical randomness test based on Walsh-Hadamard trans-
form. This test is a extension of frequency and autocorrelation tests and can detect
a general class of defects which can appear in (pseudo)random generators. The test
is based on the probability distribution of the Walsh-Hadamard transform. NIST
Special Publication 800-22 [10] present two methods of integrating the results of one
or more tests based on proportion of passing tests and uniformity of the correspond-
ing P—values. This paper will introduce another two methods of integration of test
results based on maximum test statistics and sum of squares test statistics. The in-
tegration of test results are independent from the proposed test and may be used by
all the statistical tests based on confidence intervals. Some of the applications of the
Walsh-Hadamard statistical test and decision procedures are in the following areas:
(pseudo)randomness testing, cryptanalytic area and steganographic detection.

2000 Mathematics Subject Classification: 94A60.

1 Introduction

Some of the most used mathematical transformations used in IT technology (and also
in cryptography and steganography) are Discrete Fourier transform (signal processing),
Walsh-Hadamard transform (algorithmic processing) and Discrete Cosine Transform (im-
age processing). In many scientific areas we need to test, from statistical point of view the
randomness of a sequence. This paper focus on testing randomness of binary sequences
using the Walsh-Hadamard transform and propose some new methods of integrating the
results of one or more test results. This test detects a general class of randomness failure
such as: frequency and autocorrelations failure. Another goal of this test is to answer to
the question if the tested sequence is produced by some binary function (it is known that
Berlekamp-Massey test may detect the sequences produced by linear functions). Walsh
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Hadamard transform is used in testing several cryptographic criteria like: correlation im-
munity, balance and strict avalanche (described in detail in Forré [2], Massey [9], Preneel
[14] and [15]). The Walsh-Hadamard is also used in fast correlation attack for a general
class of cryptosystems (a correlation attack assume the existence of correlations between
linear combinations of internal and output bits, see for details Gdlic [3], Siegenthaler [17]
and Zhang [18] and fast correlation which is based on precomputing data).

We remember that a cipher system (see Schneier [16])is composed from three principal
elements:

- the cipher algorithm;

- the key generator algorithm;

- the key agreement protocol.

Let us denote by m the plain text and by k; the ciphering key at time ¢ and with c the
encrypted message (bold letters will denote vectors and the normal letters denotes scalar
elements). Therefore we have the connection written in vectorial form:

c = f(m;ky) (1)

where f is the encryption operator.
If k; = k for every t € T' (T is the ciphering time period which is a finite set) then we
can rewrite the above

c = f(m; k) (2)

where f is the encryption operator. In this case we say that we have a codification of the
information (the role of the coding theory is to protect the information from errors which
can appear in the communication channel; the role of the cryptography is to protect the
information from the eavesdropper).

In the codification case, after solving some nonlinear system, we can write

m = h(c; k) (3)

Thus the knowledge of f(.;.) allows us to find m from c. The system 1, which is a
stochastic system, is much difficult to solve then the system 2, which is a deterministic
system, because the time parameter ¢ is involved. Thus the solution of system 2, given by
3, is a particular solution of the system 1 in the case k; = k.

Many times we have the encryption function f given in scalar form like

¢i = f(mi, ki), for every i

where k; is the i*" key derived from base key k;.
If f can be factorized like

fmi k) = mi @ g(k),

then the encryption scheme is called stream encryption and we call the function g (pseudo)
random generator. Because this encryption scheme is very fast it is wide spread use in
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on line communications security, speech and data transmission. In this case the cracking
difficulty is due to the prediction or finding the function g (or some others functions which
give the same output). The problem is quite similar to the reverse engineering methods.
The techniques used to recover function g, analyze its properties and recovering plain text
are based on Walsh-Hadamard transform.

Random number generators are an important link in the computer security chain.
They are very important in the construction of encryption keys and other cryptographic
algorithm parameters.

In this paper, we have introduced new metrics, which may be employed to investigate
the randomness of cryptographic RNGs and thus gain additional confidence that random
number generators are acceptable from a statistical point of view.

As we saw in the above presentation, we need to develop dynamically statistical tools
for testing the degree of randomness of binary sequences. Such tools exist in the field of
public cryptography area:

- NIST 800-22 [10] is a publication of sixteen statistical tests, which can be founded
at the Internet page of Computer Security Research Center (http://csrc.nist.gov/) among
with an implementation of this tool. We must remark the fact that NIST 800-22 was one
of the cryptographic tools which which were involved in evaluation of the candidates for
Advanced Encryption Standard (FIPS PUB 197);

- In Donald Knuth’s book [5], The Art of Computer Programming, Seminumeri-
cal Algorithms, Volume 2, he describes several empirical tests which include the: fre-
quency, serial, gap, poker, coupon collector’s, permutation, run, maximum-of-t, collision,
birthday spacings, and serial correlation. For further information, visit http://www-cs-
faculty.stanford.edu/ knuth/taocp
.html;

- The Crypt-XS suite of statistical tests was developed by researchers at the Infor-
mation Security Research Centre at Queensland University of Technology in Australia.
Crypt- XS tests include the frequency, binary derivative, change point, runs, sequence
complexity and linear complexity. For additional information visit http://www.isrc.qut.
edu.au/cryptx/index.html.

- The DIEHARD suite of statistical tests developed by George Marsaglia [7] consists
of fifteen tests, namely the: birthday spacings, overlapping permutations, ranks of 31x31
and 32x32 matrices, ranks of 6x8 matrices, monkey tests on 20-bit Words, monkey tests
OPSO (Overlapping-Pairs-Sparse-Occupancy), OQSO (Overlapping-Quadruples-Sparse-
Occupancy), DNA,
count the 1’s in a stream of bytes, count the 1’s in specific bytes, parking lot, minimum
distance, random spheres, squeeze, overlapping sums, runs, and craps. Additional infor-
mation may be found at http://stat.fsu.edu/ geo/diehard.html.

National Institute of Standards and Technologies, update the statistically test period-
ically, at this time they have more then 200 statistical tests for randomness.

Another problem is to integrate the results of one or more different tests, applied on
several sequences produced by the same (pseudo)generator and to give a unique answer at
the question of the randomness of the tested sequences. This is a hard problem because
the statistical test are not quite independent.
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Another application is the steganographic one: we can detect with some probability
if in a given message (text, image, audio, video etc.) there is a hidden foreign message.
Steganography is used to hide the occurrence of communication. Recent suggestions in
US newspaper (Kelly [4]) indicates that terrorist use steganography to communicate in
secret with their accomplices. In particular, images on the Internet were mentioned as the
communication medium.

In general, the information hiding process consist of the following steps:

1. Identification of redundant bits in a cover medium (trash message). Redundant bits
are those that can be modified without degrading the quality of the cover medium.

2. Selection of a subset of the redundant bits to be replaced with data from a secret
message (information message). The stego medium (mized message) is created by replacing
the selected redundant bits with message bits.

The modification of redundant bits can change the statistical properties of the cover
medium. As a result, statistical analysis may reveal the hidden content. The test we
present in this paper is a generalized autocorrelations test and can detect the most signif-
icant generalized autocorrelations.

The statistical steganographic procedure for detecting message insertion is at follows:

-elaborate a mathematical model (this step includes also the design of a statistical
testing procedure);

-determine the test value for a pure class message (message with no hidden insertion);

-compute the test statistics for the analyzed message;

-decide if in the tested message there is something hidden;

-determine the hidden message (if it exists).

If the hidden technique is interleaving with a constant step: read m—bits from original,
insert n—bits from message etc., then the autocorrelation tests (if the message source
and hidden source are stochastically different) will detect the value m + n. Exhaustive
searching algorithm is required to detect the exact values of m and n. The complexity of
this technique is O(n?) (the brute force attack has the complexity O(n?)). Of course the
possibility of a false detection is present. The presented test can detect a more generally
hidden technique: the algorithmic techniques where the mixing technique is made via
a boolean function. The mathematical model is a boolean function f : Z3' x Z5 —
Z5. Let us denote by x the cover medium y the message to be hidden and z the stego
medium. Suppose that we know the bit probability of trash message equal with Pr(X = 1).
The eavesdropper does not know the values m, n,p and function f, trash message x and
information message y. Of course after the steganographic step is made we can encrypt the
result (the mixed sequence can be easy detect in the communication channel because the
bit probability of mixed message Pr(Z = 1) = 0.5) or we can encrypt the text before the
steganographic step (in this case the bit probability of information message is Pr(Y = 1) =
0.5). A statistical survey of probabilistic and statistic techniques used in steganographic
detection is made in Povros [13]. The stego basic principle is the following: hide message
in cover medium in such way cover medium doesn’t change statistical properties, visual
properties etc.

Therefore, for the reason presented above, we have the following abordation:
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In section 2 of this paper we introduce the Walsh-Hadamard transform and present its
properties.

In section 3 we focus on Walsh-Hadamard statistical test presenting the concept of
statistical test, the test function and practical implementations. In fact there are done a
class of autocorrelation tests with the correlation mask given by the rows of Hadamard
matrix.

Finally another focus of this paper is to give some new methods of integrating the
results of one or more tests. NIST Special Publication 800-22 [10] gives two methods of
integrating the results of one or more results of the same statistical tests by terms of the
corresponding P—values:

-proportion of the sequences passing a given test;

-uniformity of the P—values.

We propose another two methods, based on confidence intervals, namely the mazimum
value test and a sum of square test, which can detects a more general failure in the random
and pseudorandom generators.

Thus focus of this paper was to design a new statistical test (which includes also de-
cisions rules) which is suitable for different purposes:

(pseudo)randomness testing, cryptographic design, cryptanalysis techniques and stegano-
graphic detection.

2 Review of Walsh-Hadamard transform

2.1 Definition of Walsh-Hadamard transform

Let us consider the binary function f : Z5 — Zy written in algebraic normal form. We

A
define f transform by the formula
A
f ) =1-2f(x) = (-1)/®),

A
thus f: 25 — {—1,1}.
For a binary sequence x define the transformation X by a similar formula:

;/1},-: 1 —2z; = (—1)" for every i.

The Hadamard matriz of order n = 2™ is defined recursively by the formula

_ HQm—l H2m—1
H2m - ( Hmel _Hmel )

1 1
(1),

1
The Hadamard matrix is symmetric and its inverse is om H,.

with
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A
Definition 1. For a function f: Z5 — {—1,1} we define the Walsh-Hadamard transform
A
F by the formula

I/; (w) = Z JAE (x)(—=1)** for every w

XEZY

where w.x is the scalar product of w and x. Note that the Walsh Hadamard transform
can be defined for any real function.

Definition 2. For a binary sequence X we define the Walsh-Hadamard transform by the
formula

A A > .
wi= Z zj (=1)*7 for every i
where 1.7 is the scalar product of the binary representation of i and j.

A
Remark 1. It is easy to see that the Walsh-Hadamard transform of a function f can be

written like the matricial product

A A
F=HF.

Similar relation for the Walsh-Hadamard transform for sequences.

Remark 2. The general term of the Hadamard matriz is h;; = (—1)4 where i.j represent
the scalar product of the binary representations of numbers i and j.

1
Remark 3. The inverse of H is 2—mH and it follows that
A 1 I A
f= om F.
2.2 Properties of Walsh-Hadamard transform

A
We present the main properties for the Walsh-Hadamard transform for a function f .
The results for the Walsh-Hadamard transform for sequences have similar properties.

Theorem 1. The operator N defined for real functions is linear. The fixed point of the
Walsh-Hadamard transform is 0.

A
Theorem 2. The inverse Walsh-Hadamard transform of the function f: Z% — {—1,1} is
given by the formula:

Fe =5 3 Flo)

weZy
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A
Theorem 3. For a function f: Z5 — {—1,1} we have the following property regarding
the sum of values of Walsh-Hadamard transform:

w€eZy

Theorem 4. If variable x; is idle (does not appear in the algebraic normal form:
f(ml,...,xi,...,xn) = f([]?l,... ,.i‘i,... ,a:n)) then

A
F (w) =0 for every w: w; = 1.

A
Remark 4. i) The Walsh-Hadamard transform of the function f (x) defined by the func-
tion f(z) = c (constant function) is equal with the vector (2"(1 — 2¢),0,...,0)".

it) The Walsh-Hadamard transform of the function}"\ (x) defined by the function f(x) =
c+x; (i projection function) is equal with (0,...,2"(1 — 2c),...,0)!, with the non zero
factor on position 2071,

i11) From the above remarks we can see that the free term c has influence on the sign
of non zero factor of Walsh-Hadamard transform.

3 Walsh-Hadamard statistical test

3.1 The concept of statistical test

The concept of statistical testing can be found in every statistical book. Statistical
testing in cryptography can be found in Maurer [8]. Here we have two statistical hypothesis
regarding the binary sequence which is under test:

Hj : the sequence x is produced by a binary memory less source: Pr(X = 1) = py
and Pr(X = 0) = 1 — pg, (in this case we say that the sequence does not present any
predictable component)

and the alternative:

H; : the sequence x is produced by a binary memory less source: Pr(X = 1) = p;
and Pr(X = 0) = 1 — p; with p; # po,(in this case we say that the sequence present a
predictable component regarding the probability p).

In statistical testing there are two kinds of errors: the first order error denoted by
a (also called level of significance, it is the probability of occurrence of a false positive
result) and second order of error denoted by (3 (is the probability of the occurrence of a
false negative result). This errors have the following interpretation:

a = Pr(reject Hy|Hy is true) = 1 — Pr(accept Hy|Hj is true)

and

B = Pr(accept Hy|Hj is false) = 1 — Pr(reject Hy|Hj is false).



100 Andrei-George Oprina, Adrian Popescu, Emil Simion, Gheorghe Simion

This two errors can’t be minimized simultaneous (Neymann-Pearson tests minimize
the value of (3 for a given «). The testing procedure we present here is the following:
for a fixed value of o we find a confidence region for the test statistic and check if the
statistical test value is in the confidence region. The confidence region is computed using

the quantiles of order @ and 1 — i (For example the quantile u, of order « is defined

by Pr(X < u,) = «.) Let us denote fis the value of test function. Another equivalent
method is to compare the P — value = Pr(X < fiest) with a and decide the randomness
if P—wvalue > «.

3.2 Test function

To define the test statistics for the Walsh-Hadamard test we start with some results.
Let be x the binary sequence under the test definite above. Suppose that the length of

A

x is n = 2™. We construct the transformed sequence x and the Walsh-Hadamard transform
A

of it denoted by w .

Theorem 5. For the first component c/‘\Jo of the Walsh-Hadamard we have the following:
i) the mean value of L/JQ is mo = 2"(1 — 2p).

i1) the variance of lf)o is o8 = 2" 2p(1 — p).
A

Wy —m.
i11) the distribution of 2070 s well approximated (for m > 7) by the normal distri-

a0
bution N(0,1).

Theorem 6. For the i'" component u@l (i > 1) of the Walsh-Hadamard we have the
following:
i) the mean value of u@z is m; = 0.
ii) the variance of iy is 0?2 =2 2p(1 — p).
A

Wi —my

i11) the distribution of ' s well approximated (for m > 7) by the normal distri-

bution N(0,1).

or

Remark 5. For p = 0.5 (symmetric source) the mean value of c/L\J, s equal with 0, for
every i. The random variables w; have the same distribution.

A
Theorem 7. For symmetric source the vector w has a normal multidimensional distribu-
tion.

The statistical test is done using the above test functions. In fact when we test a
binary sequence of length 2™ using the above procedures we perform 2" tests. This test
is a basic test for the 22 tests (we do not perform all tests).
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3.3 The randomness test

The test purpose is to detect autocorrelation patterns in the tested sequence.

Inputs:

-Binary sequence x of length n;

-Block size of length 2™;

-Rejection limit «;

-Number of classes K for Goodness-of-Fit Distributional Test.

- p the probability of occurrence of the symbol 1.

Output: Decision regarding the randomness at level of significance a regarding "
test function (also called i*" type autocorrelation).

A
Step 1. Transform the binary sequence x in a sequence of 1 or —1: x=1 — 2x.
Step 2. Compute lower and upper rejection limits of the test us and Uj_o.

Step 3. Compute the number of blocks to be processed [2%] . Split the sequence X

into [2%] adjacent blocks.

Step 4. For j =0 to [2%]—1d0
For i =0 to 2™ —1 do

Compute the i test statistic

A
tij = i T _mi,
or}
where o?)ij is the " Walsh-Hadamard transform component of the block j; values m;
and o; are given by theorems 3.1 and 3.2. For every t;; we can compute the P—values
P;j = Pr(X < t;;). Decision rules can be made by apartanance of ¢;; at a confidence
interval or by comparing P;; with value « (given in NIST 800-22 [10] specifications).
Step 5. For i = 0 to 2™ — 1 take the decision regarding i type autocorrelation
i) Majority decision also named crude decision, based on confidence in-
terval: if there is a value
tij & [ugsui—gl,

(uq is the quantile of order a of the normal distribution) then reject the hypothesis of
randomness (regarding i’ test function) of sequence x at significance level a and display
the values of ¢ and j. This decision rule is suitable for small values of integer j < —.

o

Equivalent, in terms of P—value, the randomness is decided if P — value > «.

ii) Proportion of passing test rule (see NIST 800-22 [10]), based on
P—value: when value j is increasing we have naturally a failure given in majority decision
rule. Therefore it is suitable to use the statistics given by the numbers of test failures

(a integer between 0 and 2%) Using the confidence interval defined by the quantiles of

normal distribution:

n n n
[O‘2m + 2—ma(1 - a)u%; o + Q—ma(l - a)ulg] .
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If the number of test falls outside this interval, then there is evidence that the data is
nonrandom. Note that other standard deviation values could be used. The confidence
interval was calculated using a normal distribution as an approximation to the binomial
distribution, which is reasonably accurate for large sample sizes (e.g., n = 1000).

iii) Uniformity of P—wvalues (see NIST 800-22 [10]), based on P—value:
when value j is increasing we have naturally a failure given in majority decision rule.
The distribution of P—values is examined to ensure uniformity. This may be visually
illustrated using a histogram, whereby, the interval between 0 and 1 is divided into k sub-
intervals, and the P—values that lie within each sub-interval are counted and displayed.
Uniformity may also be determined via an application of a x? test and the determination
of a P—value corresponding to the Goodness-of-Fit Distributional Test on the P—values
obtained for an arbitrary statistical test (i.e., a P—value of the P—values).

where F} is the number of P—values in sub-interval j, and s is the sample size. If x7 ¢
[0, X?(K — 1,a)] the reject the hypothesis of randomness (regarding i*" test function) of
sequence x at significance level a and display the values of i. (x?(K — 1, ) is the quantile
of order a of the distribution x?(K — 1)).
iv) Maximum wvalue decision, based on confidence interval: compute
T% = max tiju if
J

T; ¢ [u 1 ],
(%)[2%] (1_%)[2%]

then reject the hypothesis of randomness (regarding i** test function) of sequence x at
significance level o and display the values of ¢. The test can be modified in terms of using
P—value.

v) Sum of square decision, based on confidence interval: compute

3] -1
Co= )t
=0

if C; ¢ [0, x%( [2%} , )] the reject the hypothesis of randomness (regarding it" test func-

tion) of sequence x at significance level o and display the values of i. (x2( [2%] ,«) is the

n
quantile of order a of the distribution x?( [27,1} )). This test is in some connection with
the test of uniformity of P—values.

Step 6. Over all decision: majority decision, proportion of passing test, uniformity
of P—values, maximum decision or sum of square decision to statistics #;;, 1; respectively

C;.
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2m_1 M1 . @) _(1_9
Remark 6. Let us note that . t;j = Y Yig T g (29" = p))
i=0 i=0 i (p(1—p)

is the first component of the j* sequence.

, where
a:((]j)

Remark 7. If almost t;; =~ 0 (small variance) then proportion of passing test, uniformity
of P—uwalues and sum of square decision does not detect any failure. We can detect if
something is wrong with maximum value decision.

Remark 8. The Walsh-Hadamard randomness statistical test is a collection of 2™ statis-
tical tests in the following sence: the first test value to; is the test statistics corresponding
to frequency test, the second test value t1; is the test statistics corresponding to the au-
tocorrelation test at distance d = 2 (for a definition of frequency test and autocorrelation
test at distance d the reader may consult Maurer [8]). In fact for every power d = 2P
(p < m) the Walsh-Hadamard test function have a component which is equivalent with
autocorrelation test at distance 2P.

Remark 9. The decision procedures also called linking procedures and are suitable when
we have many results of the same test statistics.

4 Practical implementation

In practical situation of testing there are some tricks for optimizing the implementation.
First of all let us notice that computing the Walsh-Hadamard transform of a binary se-
quence of length 2™ needs 2™ output cells of memory and the number of elementary
operations (additions and multiplications by —1) are 22" additions and 227~2 multipli-
cations by —1. Dynamic allocation data is required. Some time if the size of the tested
sequence is large we perform test on smaller size by sliding technique (see above). After
we slide with a window all the sequence we can perform an over all test routine such for
example majority decision, maximum of ¢ decision or chi-square decision. The spikes in
the test functions indicates us a failure at the null hypothesis: the sequence is obtained
using a binary recurrence of level m. This test is usually applied on decimated sequences,
decimation factor depends on codification of trash message (8 or 16 on *.wav files, 24
on *.bmp files etc.). An additional factor may be involved: the position from which the
insertion of information message will be done. The stego detection basic principle is the
following: for the codification element (which is on m-bits) there is a control equation
po = f(p1,--.,Pm—1) which holds in probability. A more exactly analysis can be made if
our model will be a Markov process.

5 Conclusions

This paper presented a new randomness test based on Walsh-Hadamard transform and
new methods of integrating the test results. The test statistics may detect possible non-
linearity patterns present in (pseudo)random generators. Thus the focus of this paper
is to design a statistical test which is suitable for different purposes: pseudo-randomness
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testing, cryptographic design, cryptanalysis techniques, steganographic detection, data
classification etc.
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