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Abstract

Since about 1985, the theory of elliptic curves over finite fields has been applied
to various problems in cryptography. One of the main reasons for interest in cryp-
tosystems based on elliptic curves is that they can provide (a huge number of) finite
abelian groups having a rich algebraic structure.
In this paper we give three recent applications of the Weil-pairing on an elliptic curve
in crytography :
- the MOV attack (discrete logarithm on a supersingular elliptic curve),
- the tripartite Diffy-Helmann key exchange,
- identity based cryptography.
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1 Cryptology

1.1 Definitions

Cryptology is the science of encoded messages, which will be sent through an unsafe
channel. Its fundamental aim is to protect a piece of information so that only a specific
person (or machine) can access it.
Cryptology has two faces : cryptography and cryptanalysis.
Cryptography is the study of methods of encoding (or encrypting) messages so that only
the intended recipients can read them.
Cryptanalysis is the study of methods of cracking the codes.

1.2 Private key cryptography

The situation involves two persons, traditionally called Alice and Bob. Alice wants to
send a secret message to Bob. Using encryption, she converts it into a form that a spy,
Oscar, cannot understand. Then Bob receives the message and deciphers it.
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The original message is the plaintext, the disguised message (obtained after encryp-
tion) is the ciphertext.
Until the late seventies, all cryptography message transmission was by what can be called
“private key”. This means that someone who has enough information to encrypt messages
automatically has enough information to decipher messages as well. As a result, any two
users of the system who want to communicate secretly must have exchanged keys in a safe
way.

1.3 Public key cryptography

In 1976, Diffie and Helmann invented an entirely new type of cryptography, called “public
key”. At the heart of this concept is the idea of using a one-way function for encryption.

Definition 1.1. A function f : X → Y is a one-way function if it is easy to compute
f(x) for all x ∈ X, but hard to compute f−1(y) for most randomly selected y.

Example 1.2. Let G be a finite abelian group, with group law ∗, identity element eG. If
g ∈ G and n ∈ N∗, define :

• gn = g ∗ · · · ∗ g (n times)

• g−n = (g−1)n

• g0 = eG

The function
f : Z → G , f(a) = ga

is a one-way function. Computing a from ga is the discrete logarithm problem.

The first algorithms in public key cryptography were based on the discrete logarithm in
finite fields.

Example 1.3. (Diffie-Hellman key exchange) ([3])
A (Alice) and B(Bob) want to agree upon a large integer to serve as a key for some private
key cryptosystem. This must be done using open communication channels. They agree on
public data : a prime number p and an element g in F∗

p (p and ord g big enough).
Alice secretly chooses a random positive integer kA < p (her secrete key) and sends gkA to
Bob.
Bob does likewise : he chooses kB and sends gkB to Alice.
Their common secret is gkAkB = (gkA)kB = (gkB )kA.
The problem for an eavesdropper is : given g, gkA, gkB , find gkAkB .

People think that this problem is equivalent to the discrete logarithm problem, but it not
proven yet.
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1.4 Safety

In order to estimate the safety, one rates the complexity of known algorithms which can
solve the discrete log problem (dlp).

Proposition 1.4. ([3]) If G = Z/nZ, the dlp is polynomial : its complexity is O((log2 n)2).
If G = F∗

p (multiplicative group of the finite field Fp), where p is a prime number, the dlp
is sub-exponential : its complexity is

O(exp(β(log2 p)
1/3(log2 log2 p)

2/3))

where β is some (known) constant. The same holds for any finite field.
If G is a “generic” finite abelian group (with no exploitable structure), the dlp is exponen-
tial : its complexity is O(

√
#G).

The complexity of solving the dlp is a very relative notion. Today the dlp in a finite field
is difficult if p� 0 (at least 150 digits).
As soon as these systems developed, and at the same time the computers became more
and more powerful and fast, people tried to find new groups in order to improve the safety.
It turns out that the elliptic curves can provide a tremendous number of “generic” finite
abelian groups having a rich algebraic structure. For each q, there is only one F∗

q , and
there are many elliptic curves group E/Fq. Moreover, there is no subexponential algo-
rithm to break the system if E is suitably chosen.

The elliptic curve cryptosystems are now well developed, and there are many usable im-
plementations.

2 Elliptic curves

2.1 Definitions

Let K be a (perfect) field and K its algebraic closure. For the properties of elliptic curves
in this second paragraph, see [5].

Definitions 2.1. A Weierstrass polynomial is an element f of the polynomial ring K[X,Y ]
of the following form :

f = Y 2 + a1XY + a3Y −X3 − a2X
2 − a4X − a6.

An elliptic curve E(K) over K is the union of

• the set of pairs (x, y) in K2 such that f(x, y) = 0 where f is a Weierstrass polynomial
and f, ∂f/∂X, ∂f/∂Y have no common solution in K,

• and a point called infinity (of the y-axis) and denoted by O.

Remark 2.2. For algebraic geometers there is an intrinsic definition : an elliptic curve
E(K) over K is a projective smooth irreducible curve of genus equal to 1.
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Definitions 2.3. If K is a subfield of K′, the same Weierstrass polynomial defines two
elliptic curves E(K) ⊂ E(K′). We say that E(K) (resp. E(K′)) is the set of points of the
elliptic curve E with value in K (resp. in K′).

Remark 2.4. If K is finite, the number of points of E(K) is also finite, but in general it
is not possible to know it exactly. There are only bounds, except for special curves, called
supersingular.
If E is supersingular, #E(Fp) = p+ 1.

2.2 Group law on an elliptic curve

Definition 2.5. Let P,Q two points of E(K).
If we agree that the point O is on any line with equation X = a, for all P,Q ∈ E(K), there
exists a unique R ∈ E(K) such that P,Q,R are on a line (If 2 or 3 points meet, the line
is tangent).
Let S such that R,O, S are on a line. Define P +E Q = S.

Theorem 2.6. This defines a group structure on the elliptic curve E(K), with neutral
element O.
If K ⊂ K′, E(K) is a subgroup of E(K′).

Definition 2.7. (Torsion subgroups) Let P a point of E(K). If m ∈ N∗, we can define :

[m]P = P +E · · ·+E P (m terms)

The m-torsion subgroup of E, denoted E[m], is the subgroup of points P ∈ E(K) such that
[m]P = O.

These subgroups are well known. We have the following result :

Proposition 2.8. Let p be the characteristic of the field K.

• If p = 0, or if m and p are relatively prime,

E[m] ' Z/mZ× Z/mZ.

• If p > 0, there are two possibilities :

– either ∀r ∈ N∗, E[pr] ' Z/prZ,

– either ∀r ∈ N∗, E[pr] = 0 and we say that the elliptic curve E is supersingular.

2.3 Weil pairing on an elliptic curve

Let m ∈ N∗ relatively prime with p. The Weil-pairing is a map :

em : E[m]× E[m] → µm(K) ⊂ K∗ (= mth roots of 1)

which has the following properties :
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• bilinear : em(S, T1 +E T2) = em(S, T1).em(S, T2) ;

• alternating : em(T, T ) = 1 (⇒ em(T, S) = em(S, T )−1) ;

• non degenerate : if em(S, T ) = 1 for all S ∈ E[m] then T = O ;

• Galois-invariant : if S, T ∈ E(K), then em(S, T ) ∈ K.

It is possible to compute explicitely this pairing.

3 Applications in cryptology

3.1 Discrete logarithm problem (dlp)

Elliptic curves on finite fields provide a lot of new groups wich are “generic”. There is no
known algorithm to solve the dlp using more that the group structure.
These groups can be used for any cryptosystem based on the discrete log problem, and
they are smaller with the same level of security.

3.2 MOV attack of the dlp on a supersingular elliptic curve

Supersingular elliptic curves are frequently used in cryptosystem based on the discrete log
problem for many reasons :

• the computations are easy on these curves (this can’t be explained here in detail) ;

• their number of points is exactly known : if E is a a supersingular curve on the finite
field Fp, then #E(Fp) = p+ 1 ;

• they have a non trivial automorphism (see the following examples).

Example 3.1. If p ≡ 3[4], (then −1 is not a square in Fp), the elliptic curve E defined
on Fp by Y 2 = X3 +X is supersingular.
It has an automorphism ψ defined by ψ(x, y) = (−x, iy) where i =

√
−1 ∈ Fp.

Example 3.2. If p ≡ 2[4], (then −1 is not a cube in Fp), the elliptic curve E defined on
Fp by Y 2 = X3 + 1 is supersingular.
It has an automorphism ψ defined by ψ(x, y) = (jx, y) where j = 3

√
−1 ∈ Fp.

The MOV (Menezes, Okamoto and Van Stone) attack ([4]) proves that
the dlp on a supersingular curve on the field Fp can be reduced to the dlp in
the field Fp2 . We describe it briefly below.

The problem is the following : let P ∈ E(Fp), Q = xP , find x.
We can suppose that P is in a subgroup de E(Fp) of prime order `, which divides #E(Fp) =
p+ 1. Then :

• P ∈ E[`],
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• we can consider the Weil-paitring e` : E[`]× E[`] → µ`(Fp),

• ` divides p2 − 1, therefore µ`(Fp) ⊂ Fp2 because Fp2 is the splitting field on Fp of
the polynomial Xp2 −X.

Now we can choose another point R ∈ E[`] such that e`(P,R) 6= 1.
Then e`(Q,R) = e`(xP,R) = e`(P,R)x ∈ Fp2 .
So we can find x by solving the dlp in Fp2 .

3.3 Tripartite Diffie-Hellman key exchange

We explained in 1.3 the Diffie-Hellman key exchange for two persons, A and B. The
question is : is it possible to adapt it for three persons ?
We fix a prime number p and an element g in F∗

p. We suppose that A has a secret key
kA, B a secret key kB and C a secret key kC , and we would like gkAkBkC to be their be
common secret ? So the question is :

is it possible to compute gkAkBkC if you know kA, gkB and gkC ?
The answer is : Yes, but with a second “round” :
A sends gkAkB to C and gkAkC to B, B sends gkBkC to A.
gkAkBkC = (gkBkC )kA = (gkAkC )kB ) = (gkAkB )kC ).

Using the Weil pairing on a supersingular elliptic curve on Fp, Antoine Joux defined in
2004 a Tripartite Diffie-Hellman key exchange. We describe it briefly below.

Let p be a prime number and ` be an integer relatively prime with p, E a supersingular
elliptic curve on Fp, with an automorphism ψ defined as above.
First we define a modified Weil pairing on E[`] by

ê`(P,Q) = e`(P,ψ(Q)).

This new pairing has an interesting property : P 6= 0 ⇒ ê`(P, P ) 6= 1.
First, A, B and C agree on public data : E, ` and P ∈ E[`].
Then A secretly chooses a random positive integer a (secrete key) and sends aP to B and
C, B chooses b and sends bP to A and C, C chooses c and sends cP to A and B.
Their common secret is ê`(P, P )abc = ê`(bP, cP )a.

3.4 Identity based cryptography

The original motivation for identity-based encryption (idea of Shamir, 1984) is to help the
deployment of a public key infrastructure and to simplify systems that manage a large
number of public keys. Rather than storing a big database of public keys the system can
derive these public keys from usernames or electronic addresses.
The first practical identity based encryption IBE scheme was proposed by Boneh and
Franklin in 2001 ([1]). Again we describe it briefly below.
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A key generator chooses an elliptic curve E over Fq, a number ` relatively prime with p,
a point P ∈ E(Fq) and an integer s.
The public data are : E, P and Q = sP .
There is a function which associates to every user Bob (defined for example by his e-mail
address bob@bob.com) a point PB of E.
Alice chooses a random integer r and sends rP to Bob.
The key generator sends sPB to Bob (his secrete key).
Their common secret is

e`(rQ, PB) = e`(rsP, PB) = e`(P, PB)rs = e`(rP, sPB).

For more details, see : http://crypto.stanford.edu/ibe/
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