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Abstract

We formulate the n-dimensional Camassa-Holm (CH) equation on an arbitrary
compact Riemannian manifold with boundary, and show that these equations are
well-posed with respect to Dirichlet or Navier-slip boundary conditions. The method
of proof consists in showing that the physically relevant H!-like Riemannian metrics
admit a smooth geodesic spray on the diffeomorphism groups associated to the above
boundary conditions.
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1 Introduction

Like the KdV equation, the Camassa-Holm (CH) equation describes the unidirectional
propagation of waves at the free surface of shallow water under the influence of gravity,
[1]. In the dispersionless limit, the CH equation is given by

Up — Uggpt = —3UUE + 2UpUgy + Ulgyy,

where the fluid velocity vector u is a function of position z € R (or z € S! in the case
of periodic boundary conditions) and time ¢ € R. The main results for this equation
are its complete integrability, which is guaranteed by its Hamiltonian structure, and the
spontaneous emergence of singular solutions, [1]. Another important property, on which
we will focus in this note, is that this fluid model describes a geodesic flow on the group
of diffeomorphisms of R (or S*) relative to a H' metric.

The n-dimensional version of the dispersionless CH equation, is obtained by general-
izing the above geodesic property to n-dimensional manifolds. The resulting equation is
sometimes called EPDiff, which is short for Fuler-Poincaré equation on diffeomorphism
group, see [4].
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By extending the results of [6] and [3], we formulate the n-dimensional CH equation on
an arbitrary compact Riemannian manifold with boundary, and show that these equations
are well-posed with respect to Dirichlet or Navier-slip boundary conditions. The method
of proof consists in showing that the physically relevant H! Riemannian metrics admit a
smooth geodesic spray. This idea goes back to [2] and was applied there to prove that the
incompressible Euler equations are well-posed on a compact Riemannian manifold (M, g)
with boundary.

2 The geometry of the n-dimensional CH equation

We consider a compact and oriented n-dimensional Riemannian manifold M with smooth
boundary M. We denote by p € Q"(M) the Riemannian volume and by g € Q"~1(OM)
the naturally induced boundary volume form.

Diffeomorphism groups. For s > 1+ n/2 the group D° := D*(M) of all Sobolev
H? diffeomorphisms of M can be endowed with a smooth infinite dimensional Hilbert
manifold structure modeled on the space %ﬁ of all Sobolev H® vector field on M parallel
to the boundary.

We consider two subgroups of D® which correspond to Dirichlet or Navier-slip boundary
conditions. The Dirichlet diffeomorphism group is defined by D%, := {n € D* | Mo =
idppr}- The Navier diffeomorphism group is defined by Dy, := {n € D* | (Tnjan © n)tan =
0 on M}, where n denotes the outward-pointing unit normal vector field along M and
()t denotes the tangential part to the boundary of a vector in TM|OM.

The groups Dj, and D3, are smooth Hilbert submanifolds and subgroups of D* (see
[6]). The corresponding tangent spaces at the identity ids are

VS = Ty, DS = {u € x] ‘ s = o} — H* N H,
Vy = Tiq,, Dy = {u € Xj ‘ (Vntjon)'™ + Sp(u) = 0 on aM}

= {u € %ﬁ ‘ [Def (u)-u]" = 0 on 3M} ;

where S, : TOM — TOM is the Weingarten map defined by S,,(u) := —V,n and Def is
the deformation tensor given by Def u := % (Vu + VuT).

Weak Riemannian metrics. We consider two inner products associated to the follow-
ing elliptic differential operators

Agr:=-V'V=A+Ric and L:=—2Def*Def = A + grad div+2Ric,

where V is the Levi-Civita covariant derivative, A = —dd — d§ is the positive definite
Hodge Laplacian, Ric is the Ricci operator of the metric, and the star denotes the formal
L?-adjoint differential operator.
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Denote by (-,-), the L%-inner product on arbitrary tensors of the same type relative
to the given Riemannian metric. We recall the Green formulas

(Apu,v)g = —(Vu, Vo) + /aMg (Vou,v) pe, (1)
(Lu,v)g = —2(Def u, Def v)g + / 9 (V)" + Sp(u),v) po. (2)
oM

Thus, for all a > 0, we can consider the following weak inner products
(u,V)a, = (1 — ®ARr)u,v)g and  (u,v)z == (1 — aL)u,v)g

on V§ and V§; respectively. We denote by Ga, and G, the associated right-invariant
weak Riemannian metrics on D7, and DY, respectively. Using the general Euler-Poincaré
reduction theorem (see [5]), we conclude that a curve n(t) € D7, is a geodesic with respect
to the weak Riemannian metric Ga, if and only if the curve u(t) := i(t)on(t)~! € V5 is a
solution of the n-dimensional Camassa-Holm equations with Dirichlet boundary conditions

B (3)
u=0 on OM.

{ om +Vym +Vul-m +mdivu =0, m = (1-a?Ag)u,
Similarly, a curve n(t) € DY is a geodesic with respect to G, if and only if u(t) :=
n(t)on(t)~! € VY is a solution of the n-dimensional Camassa-Holm equations with Navier-
slip boundary conditions
om + Vym + Vul-m +mdivu =0, m=(1-a%L)u, 1)
g(u,n) =0, [Def(u)n]“™ =0 on OM.

Thus, in order to prove the well-posedness of these PDE’s, it suffices to show the local
existence of the geodesics associated to the weak Riemannian metrics Ga, and G, on the
corresponding diffeomorphism groups. This approach is due to [2] and used there to show
the well-posedness of the incompressible Euler equations. The same method is used in [6]
and [3], in the case of the averaged Euler equations.

3 Well-posedness

Theorem 1. The weak Riemannian Hilbert manifolds (D},,Gay,) and (DY, Gr) admit
smooth geodesic sprays, denoted by Sp and Sy, respectively.

The following corollary is obtained by solving the ordinary differential equations 7 =
Sp(n) and 7j = Sy (7)) on D}, and Dy;.

Corollary 1. Consider a compact manifold M with a smooth boundary (possibly empty)
and fir s > 1+4+n/2. Then for alluy € V3, the n-dimensional Camassa-Holm with Dirichlet
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boundary conditions (3) admits a unique local in time solution u; with initial condition
ug. Moreover we have

tu € CO(]— e, VH)NC' (] = e, V5,

and for all t € | — €, €[, the map uy € V} — u(t) € V}, is continuous. The same result
holds for Navier-slip boundary conditions.
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