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Abstract

We formulate the n-dimensional Camassa-Holm (CH) equation on an arbitrary
compact Riemannian manifold with boundary, and show that these equations are
well-posed with respect to Dirichlet or Navier-slip boundary conditions. The method
of proof consists in showing that the physically relevant H1-like Riemannian metrics
admit a smooth geodesic spray on the diffeomorphism groups associated to the above
boundary conditions.
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1 Introduction

Like the KdV equation, the Camassa-Holm (CH) equation describes the unidirectional
propagation of waves at the free surface of shallow water under the influence of gravity,
[1]. In the dispersionless limit, the CH equation is given by

ut − uxxt = −3uux + 2uxuxx + uuxxx,

where the fluid velocity vector u is a function of position x ∈ R (or x ∈ S1 in the case
of periodic boundary conditions) and time t ∈ R. The main results for this equation
are its complete integrability, which is guaranteed by its Hamiltonian structure, and the
spontaneous emergence of singular solutions, [1]. Another important property, on which
we will focus in this note, is that this fluid model describes a geodesic flow on the group
of diffeomorphisms of R (or S1) relative to a H1 metric.

The n-dimensional version of the dispersionless CH equation, is obtained by general-
izing the above geodesic property to n-dimensional manifolds. The resulting equation is
sometimes called EPDiff, which is short for Euler-Poincaré equation on diffeomorphism
group, see [4].
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By extending the results of [6] and [3], we formulate the n-dimensional CH equation on
an arbitrary compact Riemannian manifold with boundary, and show that these equations
are well-posed with respect to Dirichlet or Navier-slip boundary conditions. The method
of proof consists in showing that the physically relevant H1 Riemannian metrics admit a
smooth geodesic spray. This idea goes back to [2] and was applied there to prove that the
incompressible Euler equations are well-posed on a compact Riemannian manifold (M, g)
with boundary.

2 The geometry of the n-dimensional CH equation

We consider a compact and oriented n-dimensional Riemannian manifold M with smooth
boundary ∂M . We denote by µ ∈ Ωn(M) the Riemannian volume and by µ∂ ∈ Ωn−1(∂M)
the naturally induced boundary volume form.

Diffeomorphism groups. For s > 1 + n/2 the group Ds := Ds(M) of all Sobolev
Hs diffeomorphisms of M can be endowed with a smooth infinite dimensional Hilbert
manifold structure modeled on the space Xs

‖ of all Sobolev Hs vector field on M parallel
to the boundary.

We consider two subgroups ofDs which correspond to Dirichlet or Navier-slip boundary
conditions. The Dirichlet diffeomorphism group is defined by Ds

D := {η ∈ Ds | η|∂M =
id∂M}. The Navier diffeomorphism group is defined by Ds

N := {η ∈ Ds | (Tη|∂M ◦ n)tan =
0 on ∂M}, where n denotes the outward-pointing unit normal vector field along ∂M and
(·)tan denotes the tangential part to the boundary of a vector in TM |∂M .

The groups Ds
D and Ds

N are smooth Hilbert submanifolds and subgroups of Ds (see
[6]). The corresponding tangent spaces at the identity idM are

Vs
D := TidM

Ds
D =

{
u ∈ Xs

‖

∣∣∣ u|∂M = 0
}

= Hs ∩H1
0 ,

Vs
N := TidM

Ds
N =

{
u ∈ Xs

‖

∣∣∣ (∇nu|∂M )tan + Sn(u) = 0 on ∂M
}

=
{

u ∈ Xs
‖

∣∣∣ [Def(u)·u]tan = 0 on ∂M
}

,

where Sn : T∂M → T∂M is the Weingarten map defined by Sn(u) := −∇un and Def is
the deformation tensor given by Def u := 1

2

(
∇u +∇uT

)
.

Weak Riemannian metrics. We consider two inner products associated to the follow-
ing elliptic differential operators

∆R := −∇∗∇ = ∆ + Ric and L := −2 Def∗ Def = ∆ + grad div +2 Ric,

where ∇ is the Levi-Civita covariant derivative, ∆ = −δd − dδ is the positive definite
Hodge Laplacian, Ric is the Ricci operator of the metric, and the star denotes the formal
L2-adjoint differential operator.



Well-posedness of higher dimensional Camassa-Holm equations 57

Denote by 〈·, ·〉0 the L2-inner product on arbitrary tensors of the same type relative
to the given Riemannian metric. We recall the Green formulas

〈∆Ru, v〉0 = −〈∇u,∇v〉0 +
∫

∂M
g (∇nu, v) µ∂ , (1)

〈Lu, v〉0 = −2〈Def u, Def v〉0 +
∫

∂M
g

(
(∇nu)tan + Sn(u), v

)
µ∂ . (2)

Thus, for all α > 0, we can consider the following weak inner products

〈u, v〉∆R
:= 〈(1− α2∆R)u, v〉0 and 〈u, v〉L := 〈(1− α2L)u, v〉0

on Vs
D and Vs

N respectively. We denote by G∆R
and GL the associated right-invariant

weak Riemannian metrics on Ds
D and Ds

N , respectively. Using the general Euler-Poincaré
reduction theorem (see [5]), we conclude that a curve η(t) ∈ Ds

D is a geodesic with respect
to the weak Riemannian metric G∆R

if and only if the curve u(t) := η̇(t)◦η(t)−1 ∈ Vs
D is a

solution of the n-dimensional Camassa-Holm equations with Dirichlet boundary conditions{
∂tm +∇um +∇uT ·m + m div u = 0, m = (1− α2∆R)u,

u = 0 on ∂M.
(3)

Similarly, a curve η(t) ∈ Ds
N is a geodesic with respect to GL if and only if u(t) :=

η̇(t)◦η(t)−1 ∈ Vs
N is a solution of the n-dimensional Camassa-Holm equations with Navier-

slip boundary conditions{
∂tm +∇um +∇uT ·m + m div u = 0, m = (1− α2L)u,

g(u, n) = 0, [Def(u)·n]tan = 0 on ∂M.
(4)

Thus, in order to prove the well-posedness of these PDE’s, it suffices to show the local
existence of the geodesics associated to the weak Riemannian metrics G∆R

and GL on the
corresponding diffeomorphism groups. This approach is due to [2] and used there to show
the well-posedness of the incompressible Euler equations. The same method is used in [6]
and [3], in the case of the averaged Euler equations.

3 Well-posedness

Theorem 1. The weak Riemannian Hilbert manifolds (Ds
D,G∆R

) and (Ds
N ,GL) admit

smooth geodesic sprays, denoted by SD and SN , respectively.

The following corollary is obtained by solving the ordinary differential equations η̈ =
SD(η̇) and η̈ = SN (η̇) on Ds

D and Ds
N .

Corollary 1. Consider a compact manifold M with a smooth boundary (possibly empty)
and fix s > 1+n/2. Then for all u0 ∈ Vs

D, the n-dimensional Camassa-Holm with Dirichlet
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boundary conditions (3) admits a unique local in time solution ut with initial condition
u0. Moreover we have

t 7→ ut ∈ C0 ( ]− ε, ε[ ,Vs
D) ∩ C1

(
]− ε, ε[ ,Vs−1

D

)
,

and for all t ∈ ] − ε, ε[, the map u0 ∈ Vs
D 7→ u(t) ∈ Vs

D is continuous. The same result
holds for Navier-slip boundary conditions.
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