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Abstract

Two one-dimensional variational models involving a cohesive energy are discussed.
In the first model the cohesive energy is recoverable, and in the second it is dissipa-
tive. The first model captures the response of several classes of inelastic materials at
loading, but fails to properly describe the response at unloading. This goal is achieved
by the dissipative model.
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1 Introduction

The variational approach is frequently used for the mathematical characterization of ma-
terial behavior. In it, the response of a material is obtained from the minimization of a
functional which, in addition to the elastic strain energy, involves an energetic term due
to inelastic phenomena such as fracture [2, 10], plasticity [3], or damage [9]. In particular,
this second term may be the cohesive energy associated with jump discontinuities in the
displacement field, in accordance with an idea of G.I. Barenblatt [1] which found large
application in fracture mechanics. At present, due to the technical difficulties met in the
multi-dimensional case, only the one-dimensional cohesive model has been satisfactorily
developed. Only recently, some results of multi-dimensional analyses began to appear.

The present communication is based on the paper [7] by L. Truskinovsky and myself.
In it two different models are discussed, in which the cohesive energy is assumed to be
totally recoverable and totally dissipative, respectively. Depending on the analytical shape
chosen for the cohesive energy, the elastic model reproduces the loading curves of different
classes of materials. In addition, the inelastic models provides an accurate description of
the behavior at unloading.

1Università di Ferrara, Ferrara, Italy.
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2 Materials with elastic cohesive energy

Consider a one-dimensional bar of length l which, due to axial displacements imposed at
the two ends, undergoes a (possibly discontinuous) axial displacement u. The energy of
the bar is

E(u) =
∫ l

0
w(u′(x)) dx +

∑
x∈S(u)

θ([u](x)) , (1)

where w is the strain energy density and θ is the cohesive energy. The first is a function
of the bulk deformation u′ and the second is a function of the jumps [u] of u at the
jump points x, which form the jump set S(u). It is assumed that w is strictly convex,
with w(0) = w′(0) = 0, and grows to infinity at extreme deformations in tension and in
compression:

w(+∞) = w(−1) = +∞ . (2)

It is also assumed that θ is lower semicontinuous, with θ(0) = 0, θ([u]) = +∞ for all
[u] < 0, θ differentiable with θ′([u]) ≥ 0 in (0,+∞), and that the limits

θ(0+) .= lim
[u]→0+

θ([u]) , θ′(0+) .= lim
[u]→0+

θ([u])
[u]

, (3)

exist. The displacements at the ends are u(0) = 0 , u(l) = βl, where βl is the prescribed
total elongation of the bar. It determines the boundary condition∫ l

0
u′(x) dx +

∑
S(u)

[u](x) = βl . (4)

An equilibrium configuration is a displacement field u at which the first variation of E is
non-negative

lim
ε→0+

1
ε

(
E(u + εη)− E(u)

)
≥ 0 , (5)

for all perturbations η which leave unchanged the total length of the bar. Notice that this
is a necessary condition for a minimum at u, and that the inequality sign is appropriate
because, due to the assumptions made on w and θ, the functional is non-smooth. It is
proved in [7] that this conditon is satisfied if and only if

(i) the bulk deformation u′ is the same at all x in (0, l) \ S(u),

(ii) the axial force at each jump point is equal to the axial force at the bulk points

θ′([u](x)) = w′(u′) ∀x ∈ S(u) , (6)

(iii) the axial force does not exceed the value θ′(0+).

Thus, in a bar at equilibrium the axial force has a constant value σ, and

σ
.= w′(u′) ≤ θ′(0+) . (7)
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Figure 1: Some types of cohesive energy: (a) Griffith, (b) Barenblatt, (c) bi-modal, (d)
convex-concave.

An equilibrium configuration is metastable if it is a local minimizer for E relative to the
norm of the total variation

‖u‖ .=
∫ l

0
|u′(x)| dx +

∑
x∈S(u)

| [u](x)| . (8)

It is proved in [7] that there are only two types of metastable configurations:

(i) those for which θ′′([u](x)) ≥ 0 for all x in S(u),

(ii) those with θ′′([u](x)) > 0 for all x in S(u) except one, and with

l

w′′(u′)
+

∑
x∈S(u)

1
θ′′([u](x))

≤ 0 . (9)

An equilibrium process is a one-parameter family t 7→ ut of equilibrium configurations,
continuous with respect to the norm (8). For a given equilibrium process, the relation (7)1
determines the value σt of the axial force at t, and the boundary condition (4) determines
the corresponding value βt of the total elongation. The force-elongation relation

σ = σ̃(β) (10)

determines the force-elongation response curve for the given process. The shape of this
curve strongly depends on the analytical expression of the cohesive energy θ. Four possible
choices are shown in Fig. 1. Let us briefly discuss the corresponding response curves.

1. In the case of Griffith’s energy [11], θ is zero at [u] = 0 and takes a constant value
γ at all positive [u]. Then, by (6, 7), σ = 0 at all [u] > 0, that is, the axial force is zero in
every fractured equilibrium configuration. Moreover, by the assumptions made on w, the
bulk deformation u′ is zero as well, so that the total elongation βl is entirely due to the
jumps [u]. There are, therefore, only two types of response curves:

(i) σ = w′(β) for unfractured configurations,
(ii) σ = 0 for fractured configurations.
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Figure 2: The response curves for the Griffith (a) and for the Barenblatt (b) cohesive
energies.

They are shown in Fig. 2a.
2. The cohesive energy of Barenblatt [1] can be viewed as a regularization of the

discontinuity at [u] = 0 exhibited by Griffith’s energy. The function θ is assumed to be
concave, θ′′([u]) ≤ 0. Then, by the metastability condition, there can be at most one jump
point in a metastable configuration. There are again only two types of response curves:
the curve σ = w′(β) for unfractured configurations and, for fractured configurations with
one jump point, the curve provided by the system

σ = w′(u′) , w′(u′) = θ′([u]) , u′ + l−1[u] = β , (11)

after elimination of [u] and u′. The shape of the response curves is shown in Fig. 2b. The
branch OH corresponds to unfractured configurations, while the fractured configurations
may take different shapes depending on the geometric factor l, the length of the bar. The
figure shows two possible shapes, one for large (L) and one for small (S) values of l. With
respect to Griffith’s model, the Barenblatt regularization brings two main improvements:

(i) a fracture threshold: all metastable configurations with β > βH are fractured,
(ii) the size effect: for β > βH the reduction of the force is gradual for small l, and sharp

for large l.

Indeed, with reference to the figure, for large l one has σ ' σH for β slightly less than βH,
and σ < σK << σH for all β > βH. The curves (S) and (L) reproduce the features of ductile
fracture and of brittle fracture, respectively, and the difference in the two responses reflects
the common observation that large bodies are more brittle than small bodies made of the
same material.

3. A bi-modal energy [6] is characterized by the presence of two inflection points H, K
which, as shown in Fig. 1, separate a central convex branch of the (θ, [u]) curve from the
two concave lateral branches. The metastability condition now allows for the presence
of any number of jumps, provided that all jump amplitudes, except at most one, be in
the range ([u]H, [u]K). The response of fractured configurations is now determined by the
system

σ = w′(u′) , w′(u′) = θ′([u]i) , u′ + l−1
N∑

j=1

[u]j = β . (12)
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Figure 3: Response curves for a bi-modal cohesive energy, for large l.
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Figure 4: Response curves for a convex-concave cohesive energy for small (a) and for large
(b) values of l.

It has a multiplicity of solutions, depending on the number N of the jumps. The shapes of
the response curves are again influenced by the length l. The behavior for large l is shown
in Fig. 3a: after reaching the fracture threshold at σ = σc, the axial force drops to σH.
Then it grows to σK, it again drops at the opening of a second fracture, and so on. Thus,
with growing β the force oscillates between σH and σK. As shown in the figure, at each new
fracture opening the slope of the response curve decreases. This means that the level of
damage in the bar increases with the number of fractures. In fact, with a proper choice of
the expression of the cohesive energy it is possible to reproduce some experimental curves
typical of damaged materials [5].

4. A convex-concave energy can be viewed as a bi-modal energy for which the inflection
point H is sent to zero. According to the previous metastability analysis, the jumps must
have an amplitude greater than [u]K. Indeed, there is an interval larger than (0, [u]K) in
which the equilibrium condition (7) is violated. Moreover, because θ′′([u]) is negative for
all [u] > [u]K, a metastable configuration has at most one jump.

The response curves for N = 0 and N = 1 are shown in Fig. 4, for small (a) and for
large (b) values of l. From them one sees that, due to the initial convexity of θ, there is an
interval (βc , βL) in which there are no metastable configurations. For these values of β it
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seems reasonable to look whether an energy minimum can be attained at some generalized
solution, obtained by suitably extending the domain of the energy functional. In fact, it
is proved in [7] that the infimum for E is

inf E = l
(
w(βc) + σc(β − βc)

)
, (13)

with σc and βc defined by
σc

.= w′(βc)
.= θ′(0+) , (14)

and that the sequence N 7→ uN in which u′N = βc and each uN has N jumps of equal
amplitude

[uN ]i =
l

N
(β − βc) (15)

is a minimizing sequence. The limit element of this sequence is then a global energy
minimizer. But the limit element is of a special nature. One indeed can see that, for all
x in (0, l),

lim
N→∞

uN (x) = βx , lim
N→∞

u′N (x) = βc . (16)

Therefore, N 7→ uN converges uniformly to a continuous function. But the fact that the
limit βc of the derivatives does not coincide with the derivative β of the limit reveals
that in the limit the jumps do not disappear, but diffuse across the beam becoming
macroscopically invisible. In the language of measure theory, the distributional derivative
of each uN has a singular part represented by the jumps. In the limit, it transforms into
the Cantor part of the derivative of the limit element. In the language of mechanics, this
can be interpreted as the formation of a microstructure.

Because σ = w′(u′) and the u′N are all equal to βc, the response curve corresponding to
the generalized solution is the horizontal line σ = w′(βc) = σc shown in Fig. 4. It is that
this same curve may correspond to very different physical situations. Indeed, the energy
minimization provides the number and amplitudes of the jumps, but not their location.
Two examples made in [7] show the effect of uniform diffusion of the jumps and of their
concentration on points of the Cantor set, respectively. An example in [4], Section 6.3,
shows the effect of their concentration at a single point.

The above example show two main features of the cohesive energy model:

(i) the model describes in a unified way a number of material responses, each corre-
sponding to an appropriate choice of the analytic expression of the cohesive energy
θ,

(ii) the response is determined by the shape of θ near the origin: initial concavity gives
fracture-like behavior, and initial convexity gives plastic-like behavior.

3 Dissipative cohesive energy

The cohesive energy model leads to a satisfactory reproduction of the loading curves,
but is inadequate to describe the response at unloading. Indeed, in the absence of any
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source of dissipation, the response is totally reversible: fractures may heal, damage can
be recovered, and plastic deformation can be eliminated at no energy cost.

For this reason, in [7] was introduced a second model which leaves unchanged the
response at loading but, at the same time, provides a more realistic response at unloading.
In the new model, the basic change is the assumption that the cohesive energy is totally
dissipated. In this case one still has to minimize the total energy (1), now subject to a
dissipation inequality

θ′([u](x)) [u̇](x) ≥ 0 , (17)

which states that in an equilibrium process the cohesive energy cannot decrease at any
point of the jump set. The minimization of elastic energy plus dissipation, formally
proposed in [8], is now a standard tool to determine the quasi-static evolution of rate-
independent materials [12].

In [7] is studied the case of θ′ strictly positive, in which the dissipation inequality
reduces to

[u̇](x) ≥ 0 , (18)

that is, to the requirement that the jump amplitudes can never decrease. This assumption
leaves out some important cases, such as the case of complete fracture, see [7], Sect. 5.5.
Here we make the same assumption, and we take (18) instead of (17) as the dissipation
inequality.

A major effect of this supplementary restriction is that the equilibrium condition (6)
now becomes an inequality:

θ′([u](x)) ≥ w′(u′) ∀x ∈ S(u) . (19)

Consequently, there are now many more equilibrium configurations. Indeed, the equilib-
rium configurations are not anymore only those represented by points on the response
curves, but also all points located below the same curves. The following properties of the
new equilibrium configurations are proved in [7]:

(i) all equilibrium configurations u for which inequality (19) is strict at all jump points
are metastable,

(ii) for all such configurations the evolution is purely elastic. That is, [u̇](x) = 0 for all
equilibrium processes from u.

For configurations with at least one jump point at which inequality (19) is strict, the
evolution of u is determined by an incremental minimum problem: given a loading program
t 7→ βt and an initial configuration u0 equilibrated with β0, determine the increment u̇0 of
u at t = 0.

This means to consider a formal expansion of u

ut(x) = u0(x) + t u̇0(x) + o(t) , (20)

and to minimize E(ut) for small t. It is proved in [7] that this problem reduces to the
minimization of the quadratic functional

I([u̇0]i) = w′′(u′0)
(1

l

( ∑
S(u

‖
0)

[u̇0]i
)2− 2β̇0

∑
S(u

‖
0)

[u̇0]i
)

+
∑

S(u
‖
0)

θ′′([u0]i)[u̇0]2i , (21)
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Figure 5: Directions of the quasi-static evolution in the dissipative model, for Barenblatt’s
(a), bi-modal (b), and convex-concave (c) cohesive energy. All curves refer to small values
of l.

under the restrictions [u̇0]i ≥ 0. Here S(u‖0) is the set of all jump points of u0 at which
(19) holds as an equality. It is also proved there that if all θ′′([u0]i) have the same sign
then the minimum is achieved at

[u̇0]i =

1
θ′′([u0]i)

l

w′′(u′0)
+

∑
S(u

‖
0)

1
θ′′([u0]j)

lβ̇0 . (22)

If M of them are negative and N−M positive, then [u̇0]i = 0 for all i for which θ′′([u0]i) >
0, and the remaining [u̇0]i are given by the above equation, with the sum restricted to the
i with negative θ′′([u0]i).

In Fig. 5 the gray areas represent the new equilibrium configurations introduced by
the dissipative model. The arrows show the directions of the evolution, provided by the
incremental minimization, at points A of the loading curve and B at the interior of the new
equilibrium zones. These directions are parallel to the loading curve if the point is on the
loading curve and β̇ is positive, and parallel to the curve N = 0 in all other cases.

4 Future developments

To summarize, the cohesive energy model provides a unified approach to the analysis of
material response, and the assumption of the dissipative character of the cohesive energy
captures the differences between the responses at loading and at unloading. Neverteless,
many questions remain open. Namely,

(i) both assumptions of a totally elastic and of a totally dissipative cohesive energy are
extreme. Quite likely, a good choice could be to assume that the cohesive energy
has a recoverable and a dissipative part,

(ii) in a three-dimensional context, the bulk energy is diffused across the volume and the
cohesive energy is concentrated on surfaces. Perhaps it would be more realistic to
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assume that both are volume densities, and to obtain the localization of the cohesive
energy on singular surfaces as a result of the minimization,

(iii) an extension to higher dimension of the simple one-dimensional schemes exhamined
here is far from trivial. It involves mathematical difficulties, for example, in the
description of the singular sets at which the cohesive energy concentrates. There are
also some uncetrainties about the correct mechanical characterization.
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