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Abstract
In this paper we consider a constrained weighted total variation minimization prob-

lem, which is motivated by landslide modeling and may be viewed as a relaxation of a
generalized Cheeger problem. We prove that level sets of minimizers are generalized
Cheeger sets and obtain qualitative properties of the minimizers: they are all bounded
and all achieve their essential supremum on a set of positive measure. We then propose
a method to find the maximal Cheeger sets and give numerical computations.

1 Introduction

We consider a landslide model proposed by Ionescu and Lachand-Robert [11] which is the
following :

• the ground is represented by Ω a nonempty open bounded subset of Rd with a
Lipschitz boundary,

• the forces applied on the ground are represented by f ∈ L∞(Ω), f ≥ f0 for a positive
constant f0,

• the geomaterial properties of the ground are represented by g ∈ C0(Ω), g ≥ g0 for a
positive constant g0,

and we have to study

µ := inf
u∈BV0

R(u) (1)

where
BV0 := {u ∈ BV (Rd), u ≡ 0 on Rd \ Ω}, (2)

and for u ∈ BV0 such that
∫
Ω fu 6= 0,

R(u) :=

∫
Rd

g(x) d|Du(x)|∣∣∣∣∫
Ω

f(x)u(x) dx

∣∣∣∣ . (3)
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Whenever
∫
Ω fu = 0, we set R(u) = +∞. What has been proven in [11], is that when

µ > 1 there is no landslide.
When g = f = 1 (which is not always a relevant assumption in landslides modeling), it

is well-known that the infimum in (1) coincides with the infimum of R over characteristic
functions of sets of finite perimeter. In this case, (1) appears as a natural relaxation of:

λ(Ω) := inf
A⊂Ω, χA∈BV

‖DχA‖(Rd)
|A|

(4)

where |A| and ‖DχA‖(Rd) denote respectively the Lebesgue measure of A and the total
variation of DχA. Problem (4) is famous and known as Cheeger’s problem [5], its value
λ(Ω) is called the Cheeger constant of Ω and its minimizers are called Cheeger sets of Ω
(see [9], [10] and the references therein). Note also that λ(Ω) is the first eigenvalue of the
1-Laplacian on Ω, see for instance [7], [8].

Let us remark that the space BV (Rd) is the natural one to search for a minimizer of
(1). Indeed the infimum is usually not achieved in a Sobolev space like W 1,1(Rd). It is
also clear that one always have R(|u|) ≤ R(u) so that we can restrict the minimization
problem to non-negative functions.

In what follows, every u ∈ BV (Ω) will be extended by 0 outside Ω, and thus will also
be considered as an element of BV (Rd), still denoted u. We reformulate (1) as the convex
minimization problem

µ = inf
u∈BVf

∫
Rd

g(x) d |Du(x)| (5)

where
BVf :=

{
u ∈ BV (Rd), u ≥ 0, u ≡ 0 on Rd \ Ω,

∫
Ω

fu = 1
}

. (6)

By analogy with the case g = f = 1, it is natural to consider the generalized Cheeger
problem:

λ := inf
A∈E

∫
Rd

g(x) d|DχA(x)|∫
A

f(x) dx

= inf
A∈E

R(χA) (7)

where
E := {A ⊂ Ω with

∫
A

f(x) dx > 0 and χA ∈ BV (Rd)}. (8)

Again (1) can be interpreted as a relaxed formulation of (7) as proven in Ionescu and
Lachand-Robert [11] or in [2]. Existence of minimizers for both problems (1) and (7) is
easily obtained by the direct method in the Calculus of Variations (see [11] or [2]). In
this paper we give an overview of the results obtained by the author in collaboration with
Giuseppe Buttazzo, Guillaume Carlier and Gabriel Peyré. The first section is devoted to
the link between (1) and (7) and to various properties of the solutions. Section two gives a
strategy to obtain the maximal Cheeger set and the last section presents some numerical
computations of the maximal Cheeger set.
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2 Existence results

All the results of this section have been proven in [2].

Theorem 1. Let Ω, f and g satisfy the previous assumptions. Then
1) the infimum of (5) is achieved in BVf ,
2) the infimum of (7) is achieved in E.

This result follows from the invariance property of the problem, that is :

Proposition 1. Let H ∈ W 1,∞(R, R) ∩ C∞(R, R) be such that H(0) = 0 and H ′ > 0 on
R. If u is a solution of (5) then so is TH(u) defined by

TH(u) :=
H ◦ u∫

Ω
f(x)H(u(x)) dx

. (9)

In fact this property may be slightly improved as follows :

Corollary 1. Let u be a solution of (5) and H ∈ W 1,∞(R, R) be a nondecreasing function
such that H(0) = 0. If H ◦ u 6= 0 then TH(u) defined by (9) also solves (5).

This allows us in particular to apply the invariance property to H(v) = (v − t0)+ and
H(v) = min(v, t0).

Idea of the proof of the theorem :
Let us denote by Xt(.) the flow of the ordinary differential equation

v̇ = −H(v).

In other words, for all v ∈ R, Xt(v) is defined by:

∂tXt(v) = −H(Xt(v)), X0(v) = v. (10)

For t ≥ 0, define ut by ut(x) = Xt(u(x)), it is immediate to check that ut ∈ BV0 and
ut ≥ 0. Let us also define

h(t) :=
∫

Rd

g(x) d|Dut(x)| − µ

∫
Ω

f(x)ut(x)dx.

Since ut belongs to BV0 and ut ≥ 0, we have h(t) ≥ 0 and since u0 = u solves (5), we have
h(0) = 0. For all t > 0, this yields:

h(t)− h(0)
t

≥ 0. (11)

This leads to

0 ≥
∫

Rd

g(x) d|D(H ◦ u)(x)| − µ

∫
Ω

f(x)H(u(x)) dx, (12)

and H ◦ u is solves (5) too. For more details see [2].
The invariance property (9) allows us to prove two other results :
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Theorem 2. Let u be a solution of (5) and for every t ≥ 0, define Et := {x ∈ Rd :

u(x) > t}. For every t ≥ 0 such that Et has positive Lebesgue measure
1∫

Et
f

χEt solves

(5). In particular,
1∫

{u>0} f
χ{u>0} solves (5).

and

Proposition 2. Let u ∈ BV0, u ≥ 0. If for every t ≥ 0 such that Et := {x ∈ Rd : u(x) >
t} has positive Lebesgue measure, χEt solves (1) then u solves (1).

Thanks to these results we are able to prove the link between problems (5) and (7)

Corollary 2. The values of problems (5) and (7) coincide:

µ = inf
u∈BV0

R(u) = λ = inf
A∈E

R(χA).

This was already proven in Ionescu and Lachand-Robert [11]. Here we have not used
the coarea formula, see [2].

Corollary 3. A ∈ E solves (7) if and only if there exists u solving (5) such that A = {u >
0}.

Corollary 4. Let (An)n be a sequence of solutions of (7) then
⋃

n An is also a solution of
(7).

The novelty of the last corollary is that most of the previous results about Cheeger
problem have been obtained in a convex case. For example Kawhol and Lachand-Robert
have given a total classification of the Cheeger sets for the convex case of R2, see [10].
Here we don’t have any convex assumption.

The invariance property (9) allows us to prove qualitative properties of the solutions
too :

Theorem 3. Let u be a solution of (5). Then u belongs to L∞(Ω).

Theorem 4. Let u be a solution of (5), then the set {u = ‖u‖∞} has positive Lebesgue
measure.

Except under special additional assumptions (for instance when f = g = 1 and Ω is
convex, see [4]), one cannot expect Cheeger sets to be unique and examples are known
where they are actually infinitely many (see for instance [9, 10]). On the other hand, the
family of Cheeger sets C is stable by countable union (see Theorem 3 of [2]). This implies
that C possesses a maximal element in the sense of inclusion, the maximal Cheeger set of
Ω. Is there any strategy to obtain the maximal Cheeger set? This is the subject of the
next section.
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3 Maximal Cheeger set

All the results of this section have been proven in [1].
The first approach is to consider the p− Laplacian problem for p > 1 and let p tends

to 1, since this problem admits an unique solution up > 0. In [1], we prove that, up to
a subsequence, (up)p converges in L1(Ω), as p → 1, to a solution u of (5). Unfortunately
the solution u has no particular propriety in term of maximal Cheeger set : it is neither
a characteristic function of the maximal Cheeger set, up to a multiplicative constant, nor
its support is the maximal Cheeger set. Some counter examples have been given in [1].
We have to find a different approach.

The idea relies on a concave penalization of the problem. We first write problem (5)
as a maximization problem

sup
{∫

Ω
fu dx : u ∈ BV0(Ω),

∫
Rd

g d|Du| ≤ 1
}

, (13)

and we approximate this maximization problem by the strictly concave penalization

sup
{∫

Ω
f
(
u− εΦ(u)

)
dx :

∫
Rd

g d|Du| ≤ 1, u ∈ BV0(Ω)
}

(14)

where ε > 0 is a perturbation parameter and Φ is a strictly convex nonnegative function
that satisfies:

Φ(0) = 0, 0 ≤ Φ(t) < +∞ ∀t ∈ R+. (15)

We recall that, from Theorem 3, the set Q of solutions of (13) is in fact included in L∞(Ω).
We obtain

Theorem 5. Let uε be the solution of (14); then the following holds:

• (uε)ε converges in L1(Ω), as ε → 0+, to the solution u of

inf
{∫

Ω
fΦ(u) dx : u ∈ Q

}
, (16)

• u = αχC0 for some α > 0 and C0 ⊂ Ω,

• C0 is the maximal Cheeger set, i.e. C0 ∈ C and C0 contains every other Cheeger set
(up to a Lebesgue negligible set).

4 Numerical computation

The aim of this section is to give numerical computation and examples of maximal Cheeger
sets in dimension 2 and 3. All the results of this section have been proven in [3].

A natural choice for the perturbation Φ is of course

Φ(t) :=
t2

2
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in which case, the perturbed problem (14) is easily seen to be equivalent to the projection
problem

inf
{∫

Ω
f
(
u− 1

ε

)2
dx :

∫
Ω

g d|Du|+
∫

∂Ω
g|u|dHd−1 ≤ 1, u ∈ BV (Ω)

}
. (17)

The solution of the previous problem uε can of course be expressed as

uε = ΠK

(1
ε

)
(18)

where ΠK denotes the projection (for the weighted L2 inner product (u, v) :=
∫
Ω fuv) on

the closed subset K of L2(Ω) defined by

K :=
{

u ∈ L2(Ω) ∩BV (Ω) :
∫

Ω
g d|Du|+

∫
∂Ω

g|u|dHd−1 ≤ 1
}

. (19)

If we further assume that g ∈ C1(Ω) then it is well-known that K can be described by a
set of linear constraints as follows

K =
{

u ∈ L2(Ω) :
∫

Ω
div(gp)u ≤ 1, ∀p ∈ C1(Ω, Rd), ‖p‖∞ ≤ 1

}
. (20)

From now on we suppose that f, g ∈ C1(Ω).
In fact we are interested in projecting u0 ∈ L2(Ω) onto K i.e.

inf
u∈K

F (u), F (u) =
∫

Ω
f(u− u0)2. (21)

For sake of simplicity, we work in the case d = 2 and Ω = (0, 1)2.
Given a step size h = 1/N , we then consider the following discretization of (21). First,

let Eh be the set of matrices u with entries ui,j , i, j ∈ {0, N}2, by convention we extend u
by setting ui,j = 0 when either i or j belongs to {−1, N + 1}. For u = (ui,j)ij ∈ Eh we set

∂h
xui,j :=

{
h−1(ui+1,j − ui,j) if − 1 ≤ i ≤ N, −1 ≤ j ≤ N − 1
0 if − 1 ≤ i ≤ N, j = N.

∂h
y ui,j :=

{
h−1(ui,j+1 − ui,j) if − 1 ≤ i ≤ N − 1, −1 ≤ j ≤ N
0, if − 1 ≤ j ≤ N, i = N.

We also set ∇hui,j = (∂h
xui,j , ∂

h
y ui,j). Denoting fh

ij and gh
ij some discrete approximation of

the weights f and g (e.g. fh
i,j = f(ih, jh), gh

i,j = g(ih, jh)) and u0
i,j some discretization of u0

(approximation by mean values say) we then discretize G(u) =
∫
Ω g d|Du|+

∫
∂Ω g|u|dHd−1,

by definining, for all u ∈ Eh:

Gh(u) := h2
N∑

i=−1

N∑
j=−1

gh
i,j |∇hui,j |.
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Defining Kh by Kh := {u ∈ Eh : Gh(u) ≤ 1} and

Fh(u) := h2
N−1∑
i=0

N−1∑
j=0

fh
i,j(ui,j − u0

i,j)
2,

we then approximate (21) by
inf

u∈Kh

Fh(u) (22)

and denote by uh the solution of (22). Denoting by Cij the square (ih, (i+1)h)× (jh, (j +
1)h), we define vh as the piecewise constant function having value uh

i,j on Cij . Denoting
by M(Ω, R2) the space of bounded R2-valued measures on Ω, we then have the following
convergence result.

Theorem 6. Let vh be defined as above, then vh converges to ΠK(u0) strongly in L2(Ω)
and ∇vh converges weakly ? to ∇ΠK(u0) in M(Ω, R2) as h → 0.

The projection (22) of the discretized problem is computed numerically using the
iterative algorithm of Combettes and Pesquet [6], see [3] for more details. Finally let us
show some numerical results due to Gabriel Peyré.

The original shape is composed of two rectangles linked with a tube of increasing
width. The corresponding Cheeger sets are displayed on the right.

Sh
ap

e
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Cheeger sets in 3D with constant weights f = g = 1.

W
ei

gh
t

C
he

eg
er

Cheeger sets in a 2D square with f = 1 and several non-constant weights g.

Weight w f = g = 1 g = w, f = 1 g = 1, f = w

Comparison of the Cheeger with constant weights and with varying weights g or f .
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