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EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION
OF ELECTRO-VISCOELASTIC CONTACT PROBLEM

Mohamed DALAH1, Ammar DERBAZI2 and Amar MEGROUS3

Abstract

In this work, the material is assumed to be electro-viscoelastic and the
foundation is assumed to be electrically conductive and the friction is mod-
eled with Tresca’s law. For each problem we present the mathematical model,
its variational formulation, and state an existence and uniqueness result.
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1 Introduction

Antiplane shear deformations are one the simplest examples of deformations
that solids can undergo : in the antiplane shear of a cylindrical body, the displace-
ment is parallel to the generators on the cylinder and is dependent of the axial
coordinate [7, 8, 9]. Piezoelectric materials for which the mechanical properties
are elastic are called electro-elastic materials see for more details [2, 3, 4, 5, 6]
and those for which the mechanical properties are elastic are called electro-elastic
materials. The Mathematics and Mechanics of the art on Contact Mechanics can
be found in [1].

The present paper is devoted to functional analysis of electro-viscoelastic an-
tiplane contact problem with friction. The process is static and the friction is
modeled with the well known Tresca’s law in which the friction bound is given.
The behavior of the material is described with a linear electro-viscoelastic consti-
tutive law.
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Our paper is structured as follows. In Section 2 we describe the model of
the frictional contact process between electro-viscoelastic body and a conductive
deformable foundation. In Section 3 we derive the variational formulation. It
consists of a variational inequality for the displacement field coupled with a de-
pendent variational equation for the electric potential. We state our main result,
the existence of a unique weak solution to the model in theorems 1 and 2. The
proof of Theorem 2 is provided in the end of section 3.2, where it is based on
arguments of evolutionary inequalities.

2 The Mathematical Model and its Well-Posedness

The physical setting is as follows. We consider a piezoelectric body B identified
with a region in R3 it occupies in a fixed and undistorted reference configuration.
We assume that B is a cylinder with generators parallel to the x3-axes with a
cross-section which is a regular region Ω in the x1, x2-plane, Ox1x2x3 being a
Cartesian coordinate system. The cylinder is assumed to be sufficiently long so
that the end effects in the axial direction are negligible. Thus, B = Ω×(−∞,+∞).
The cylinder is acted upon by body forces of density f0 and has volume free
electric charges of density q0. It is also constrained mechanically and electrically
on the boundary. To describe the boundary conditions, we denote by ∂Ω = Γ
the boundary of Ω and we assume a partition of Γ into three open disjoint parts
Γ1, Γ2 and Γ3, on the one hand, and a partition of Γ1 ∪ Γ2 into two open parts
Γa and Γb, on the other hand. We assume that the one-dimensional measure of
Γ1 and Γa, denoted meas Γ1 and meas Γa, are positive. The cylinder is clamped
on Γ1 × (−∞,+∞) and therefore the displacement field vanishes there. Surface
tractions of density f2 act on Γ2× (−∞,+∞). We also assume that the electrical
potential vanishes on Γa× (−∞,+∞) and a surface electrical charge of density q2

is prescribed on Γb× (−∞,+∞). The cylinder is in contact over Γ3× (−∞,+∞)
with a conductive obstacle, the so called foundation. The contact is frictional and
is modeled with Tresca’s law. We assume that

f0 = (0, 0, f0) with f0 = f0 (x1, x2) : Ω→ R, (1)

f2 = (0, 0, f2) with f2 = f2 (x1, x2) : Γ2 → R, (2)

q0 = q0 (x1, x2) : Ω→ R, (3)

q2 = q2 (x1, x2) : Γb → R. (4)

The forces (1), (2) and the electric charges (3), (4) would be expected to give rise
to deformations and to electric charges of the piezoelectric cylinder corresponding
to a displacement u and to an electric potential field ϕ which are independent on
x3 and have the form

u = (0, 0, u) with u = u (x1, x2) : Ω→ R, (5)

ϕ = ϕ (x1, x2) : Ω→ R. (6)
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Below in this paper the indices i and j denote components of vectors and
tensors and run from 1 to 3, summation over two repeated indices is implied, and
the index that follows a comma represents the partial derivative with respect to
the corresponding spatial variable. We use S3 for the linear space of second order
symmetric tensors on R3 or, equivalently, the space of symmetric matrices of order
3, and “ · ”, ‖·‖ will represent the inner products and the Euclidean norms on R3

and S3; we have :

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui) , v = (vi) ∈ R3

and

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij) , τ = (τij) ∈ S3.

The infinitesimal strain tensor is denoted ε (u) = (εij (u)) and the stress field by
σ = (σij). We also denote by E (ϕ) = (Ei (ϕ)) the electric field and by D = (Di)
the electric displacement field. Here and below, in order to simplify the notation,
we do not indicate the dependence of various functions on x1, x2, x3 or t and we
recall that

εij (u) =
1

2
(ui,j + uj,i) , Ei (ϕ) = −ϕ,i .

The material’s is modeled by the following electro-elastic constitutive law

σ = 2θε(u̇) + ζ tr ε(u̇) I + 2µε(u) + λ tr ε(u) I− E∗E(ϕ), (7)

D = Eε (u) + αE (ϕ) , (8)

where ζ and θ are viscosity coefficients, λ and µ are the Lamé coefficients, tr ε(u) =
εii(u), I is the unit tensor in R3, β is the electric permittivity constant, E repre-
sents the third-order piezoelectric tensor and E∗ is its transpose.

In the antiplane context (5), (6), using the constitutive equations (7), (8) it
follows that the stress field and the electric displacement field are given by

σ =

 0 0 σ13

0 0 σ23

σ31 σ32 0

 , (9)

D =

eu,1−αϕ,1eu,2−αϕ,2
0

 (10)

where
σ13 = σ31 = µ∂x1u

and
σ23 = σ32 = µ∂x2u.

We assume that

Eε =

e (ε13 + ε31)
e (ε23 + ε32)

eε33

 ∀ε = (εij) ∈ S3, (11)



54 Mohamed Dalah, Ammar Derbazi and Amar Megrous

where e is a piezoelectric coefficient. We also assume that the coefficients µ, α
and e depend on the spatial variables x1, x2, but are independent on the spatial
variable x3. SinceEε · v = ε · E∗v for all ε ∈ S3, v ∈ R3, it follows from (11) that

E∗v =

 0 0 ev1

0 0 ev2

ev1 ev2 ev3

 ∀v = (vi) ∈ R3. (12)

We assume that the process is mechanically quasistatic and electrically static
and therefore is governed by the equilibrium equations

Divσ + f0 = 0, Di,i − q0 = 0 in B,

where Divσ = (σij,j) represents the divergence of the tensor field σ. Taking into
account (1), (3), (5), (6), (9) and (10), the equilibrium equations above reduce to
the following scalar equations

div(θ∇u̇) + div(µ∇u) + div(e∇ϕ) + f0 = 0, in Ω, (13)

div(e∇u)− div(α∇ϕ) = q0, in Ω. (14)

Here and below we use the notation

div τ = τ1,1 + τ1,2 in τ = (τ1 (x1, x2) , τ2 (x1, x2))

and

∇v = (v,1, v,2) , ∂νv = v,1 ν1 + v,2 ν2 for v = v (x1, x2) .

We now describe the boundary conditions. During the process the cylinder is
clamped on Γ1×(−∞,+∞) and the electric potential vanishes on Γ1×(−∞,+∞);
thus, (5) and (6) imply that

u = 0 on Γ1, (15)

ϕ = 0 on Γa. (16)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi (x1, x2) : Γ→ R, i = 1, 2. (17)

For a vector v we denote by vν and vτ its normal and tangential components on
the boundary, defined by

vν = v · ν, vτ = v − vνν. (18)

respectively. In (18) and everywhere in this paper “·” represents the inner product
on the space Rd (d = 2, 3). Moreover, for a given stress field σ we denote by σν
and στ the normal and the tangential components on the boundary, that is

σν = (σν) · ν, στ = σν − σνν. (19)



Existence and uniqueness of the weak solution 55

From (9), (10) and (17) we deduce that the Cauchy stress vector and the
normal component of the electric displacement field are given by

σν = (0, 0, θ∂u̇+ µ∂νu+ e∂νϕ) , D · ν = e∂νu− α∂νϕ. (20)

Taking into account (2), (4) and (20), the traction condition on Γ2× (−∞,∞)
and the electric conditions on Γb × (−∞,∞) are

θ∂u̇+ µ∂νu+ e∂νϕ = f2 on Γ2, (21)

e∂νu− α∂νϕ = q2 on Γb. (22)

We now describe the frictional contact condition and the electric conditions on
Γ3 × (−∞,+∞). First, from (5) and (17) we infer that the normal displacement
vanishes, uν = 0, which shows that the contact is bilateral, that is, the contact is
kept during the whole process. Using now (5) and (17)–(19) we conclude that

uτ = (0, 0, u) , στ = (0, 0, στ ) (23)

where
στ = (0, 0, θ∂u̇+ µ∂νu+ e∂νϕ) .

We assume that the friction is invariant with respect to the x3 axis and is
modeled with Tresca’s friction law, that is{

|στ | ≤ g,

|στ | = −g u
|u| if u 6= 0 on Γ3.

(24)

Here g : Γ3 → R+ is a given function, the friction bound. Using now (23) it is
straightforward to see that the friction law (24) implies{

|θ∂u̇+ µ∂νu+ e∂νϕ| ≤ g,

|θ∂u̇+ µ∂νu+ e∂νϕ| = −g u
|u| if u 6= 0 on Γ3.

(25)

Finally, we collect the above equations and conditions to obtain the follow-
ing mathematical model which describes the antiplane shear of an electro-elastic
cylinder in frictional contact with a conductive foundation.

Problem P.

Find the displacement field u : Ω → R and the electric potential ϕ : Ω → R
such that

div(θ∇u̇) + div (µ∇u) + div (e∇ϕ) + f0 = 0, in Ω, (26)

div (e∇u)− div (α∇ϕ) = q0 in Ω, (27)

u = 0 on Γ1, (28)

θ∂u̇+ µ∂νu+ e∂νϕ = f2 on Γ2, (29)
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{
|θ∂u̇+ µ∂νu+ e∂νϕ| ≤ g,

|θ∂u̇+ µ∂νu+ e∂νϕ| = −g u
|u| if u 6= 0 on Γ3,

(30)

ϕ = 0 in Γa. (31)

e∂νu− α∂νϕ = q2 on Γb, (32)

Note that once the displacement field u and the electric potential ϕ which solve
Problem P are known, then the stress tensor σ and the electric displacement field
D can be obtained by using the constitutive laws (7) and (8), respectively.

3 Variational Formulation and Main Results

3.1 Variational Formulation

We derive now the variational formulation of Problem P. To this end we
introduce the function spaces

V = {v ∈ H1 (Ω) : v = 0 on Γ1}, W = {ψ ∈ H1 (Ω) : ψ = 0 on Γa}

where, here and below, we write w for the trace γw of a function w ∈ H1 (Ω) on
Γ. Since meas Γ1 > 0 and meas Γa > 0, it is well known that V and W are real
Hilbert spaces with the inner products

(u, v)V =

∫
Ω
∇u · ∇v dx ∀u, v ∈ V, (ϕ,ψ)W =

∫
Ω
∇ϕ · ∇ψ dx ∀ϕ, ψ ∈W.

Moreover, the associated norms

‖v‖V = ‖∇v‖L2(Ω)2 ∀v ∈ V, ‖ψ‖W = ‖∇ψ‖L2(Ω)2 ∀ψ ∈W (33)

are equivalent on V and W , respectively, with the usual norm ‖·‖H1(Ω). By
Sobolev’s trace theorem we deduce that there exist two positive constants cV > 0
and cW > 0 such that

‖v‖L2(Γ3) ≤ cV ‖v‖V ∀v ∈ V, ‖ψ‖L2(Γ3) ≤ cW ‖ψ‖W ∀ψ ∈W. (34)

Let X = V ×W be a real Hilbert space with inner product (·, ·) and the norm
‖ · ‖X .

In the study of Problem P we assume that the viscosity coefficient and the
electric permittivity coefficient satisfy

θ ∈ L∞(Ω) and there exists θ∗ > 0 such that θ(x) ≥ θ∗ a.e. x ∈ Ω, (35)

β ∈ L∞(Ω) and there exists β∗ > 0 such that β(x) ≥ β∗ a.e. x ∈ Ω. (36)

The forces, tractions, volume and surface free charge densities have the regu-
larity

f0 ∈ L2(Ω), f2 ∈ L2(Γ2), (37)
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q0 ∈ L2(Ω), and q2 ∈ L2(Γb) such that q2 = 0 a.e. x ∈ Γb. (38)

Finally, we assume that the electric conductivity coefficient and the friction
bound function g satisfies the following properties

g ∈ L∞ (Γ3) and g(x) ≥ 0 a.e. x ∈ Γ3. (39)

We define now the functional j : V −→ R+ by the formula

j(v) =

∫
Γ3

g|v| da ∀v ∈ V. (40)

We also define the mappings f ∈ V and q ∈W , respectively, by

(f, v)V =

∫
Ω
f0v dx+

∫
Γ2

f2v da, (41)

(q, ψ)W =

∫
Γb

q2ψ da−
∫

Ω
q0ψ dx, (42)

for all v ∈ V and ψ ∈ W . The definitions of f and q are based on Riesz’s
representation theorem.

Next, we define the bilinear forms aθ : V × V → R, aµ : V × V → R,
ae : V ×W → R, ae : W × V → R, and aα : W ×W → R, by equalities

aθ (u, v) =

∫
Ω
θ∇u · ∇v dx, (43)

aµ (u, v) =

∫
Ω
µ∇u · ∇v dx, (44)

ae (u, ϕ) =

∫
Ω
e∇u · ∇ϕdx = ae (ϕ, u) , (45)

aα (ϕ,ψ) =

∫
Ω
α∇ϕ · ∇ψ dx, (46)

for all u, v ∈ V , ϕ,ψ ∈W . Assumptions (40)–(42) imply that the integrals above
are well defined and, using (33) and (34), it follows that the forms aθ, aµ, ae and
ae are continuous; moreover, the forms aµ and aα are symmetric and, in addition,
the forms aθ and aα are W -elliptic, since

aα (ψ,ψ) ≥ α∗ ‖ψ‖2V ∀ψ ∈W (47)

and

aθ (v, v) ≥ θ∗ ‖v‖2W ∀v ∈ V. (48)

The variational formulation of Problem P is based on the following result.
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3.2 Main Results

Lemma 1. If (u, ϕ) is a smooth solution to Problem P, then (u, ϕ) ∈ X and

aθ(u, v−u)+aµ(u, v−u)+ae(ϕ, v−u)+ j(v)−j(u) ≥ (f, v−u)V ∀v ∈ V, (49)

aα(ϕ,ψ)− ae(u, ψ) = (q, ψ)W ∀ψ ∈W. (50)

Proof of Lemma 3.1

Let (u, ϕ) denote a smooth solution to Problem P, we have u ∈ V and ϕ ∈W
and, from (26), (28) and (29), we get∫

Ω
θ∇u · ∇(v − u) dx+

∫
Ω
µ∇u · ∇(v − u) dx+

∫
Ω
e∇ϕ · ∇(v − u) dx = (51)∫

Ω
f0 (v − u) dx+

∫
Γ

(µ∂νu+ e∂νϕ) (v − u) da ∀v ∈ V, (52)

and from (27) and (32) we have∫
Ω
α∇ϕ · ∇ψ dx−

∫
Ω
e∇u · ∇ψ dx =

∫
Γ
(µ∂νu− e∂νϕ)ψ da−

∫
Ω
q0ψ dx (53)

∀ψ ∈W.

• Proof of (49)

From the friction law (30) we can write

−(θ∂ν u̇+ µ∂νu+ e∂νϕ)u = −g|u| on Γ3, (54)

it’s very easy to see that for all x and y ∈ R, xy ≥ −|x||y|, then equation (54)
takes the form

(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) ≥ g|u| − g|v| on Γ3. (55)

By integration on Γ, we get∫
Γ
(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) da ≥

∫
Γ
(g|u| − g|v|) da on Γ3. (56)

The left term in inequality (56) can be written as follows∫
Γ
(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) da =

∫
Γ1

(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) da+∫
Γ2

(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) da+

∫
Γ3

(θ∂ν u̇+ µ∂νu+ e∂νϕ)(v − u) da ∀v ∈ V.
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Using (28), (29) in the last equation, then for all v ∈ V we have:∫
Γ
(θ∂ν u̇+µ∂νu+ e∂νϕ)(v− u) da =

∫
Γ3

(θ∂ν u̇+µ∂νu+ e∂νϕ)(v− u) da ∀v ∈ V.

(57)

We combine (56) and (57)∫
Γ
(θ∂ν u̇+µ∂νu+e∂νϕ)(v−u) da ≥

∫
Γ3

g|u| da−
∫

Γ3

g|v| da on Γ3 ∀v ∈ V. (58)

Now, we use (29), (40), (41), (44), (45) and (58) in (52), then

aθ(u, v−u)+aµ(u, v−u)+ae(ϕ, v−u)+ j(v)− j(u) ≥ (f, v−u)V ∀v ∈ V. (59)

• Proof of (50)

On the other hand, the integral on Γ in the left of inequality (53) can be
written as

∫
Γ
(µ∂νu− e∂νϕ)ψ da =

∫
Γa

(µ∂νu− e∂νϕ)ψ da+

∫
Γb

(µ∂νu− e∂νϕ)ψ da. (60)

Using (31) and (32), then we get∫
Γ
(µ∂νu− e∂νϕ)ψ da =

∫
Γb

q2ψ da. (61)

Now, we combine equality (61) with (53), we infer∫
Ω
α∇ϕ · ∇ψ dx−

∫
Ω
e∇u · ∇ψ dx =

∫
Γb

q2ψ da−
∫

Ω
q0ψ dx ∀ψ ∈W. (62)

Keeping in mind (42), (45) and (46), we find the second equality in Lemma 1,
i.e.,

aα(ϕ,ψ)− ae(u, ψ) = (q, ψ)W ∀ψ ∈W, (63)

which conclude the proof.

Now, the use of Lemma 3.1 gives the following variational Problem:

Problem PV.

Find a displacement field u : Ω→ R and an electric potential field ϕ : Ω→ R
such that

aθ(u, v−u)+aµ(u, v−u)+ae(ϕ, v−u)+j(v)−j(u) ≥ (f, v−u)V , ∀v ∈ V, (64)

aα(ϕ,ψ)− ae(u, ψ) = (q, ψ)W , ∀ψ ∈W. (65)
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Now, let us define the bilinear form a(·, ·) : X × X → R, the functional
J(.) : X → R and the element F as follows:

a(x, y) = aθ(u, v − u) + aµ(u, v − u) + aα(ϕ,ψ) + ae(ϕ, v − u),

∀x = (u, ϕ) ∈ X, ∀y = (v, ψ) ∈ X, (66)

J(x) = j(u), ∀x = (u, ϕ) ∈ X, (67)

and
F = (f, q) ∈ X. (68)

Using expressions (66), (67) and (68) in (64) and (65), we obtain the new
Problem:

Problem PVG.

Find a displacement field x ∈ X such that

a(x, y − x) + J(y)− J(x) ≥ (F, y − x)X , ∀y ∈ X. (69)

Our main equivalent result between Problems PV and PVG is the following:

Theorem 1. The Problems PV and PVG are equivalent.

Proof of Theorem 3.2

We start with the Proof of Theorem 1 which will be carried out in several
steps.

• Proof that PV implies PVG:

In the first step we will suppose that (u, ϕ) is solution of Problem PV. We
change in (65) the element ψ by (ψ − ϕ) and we add the resulting equation to
both sides of inequality (64), hence we have

aθ(u, v − u) + aµ(u, v − u) + ae(ϕ, v − u) + aα(ϕ,ψ − ϕ)− ae(u, ψ − ϕ)+

+ j(v)− j(u) ≥ (f, v − u)V + (q, ψ − ϕ)W .

Using now notations (66), (67) and (68), then for all ψ ∈W and for all y ∈ X,
we get

a(x, y − x) + J(y)− J(x) ≥ (F, y − x)X , (70)

which conclude the proof of the first setp.
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• Proof that PV implies PVG:

In the second step we will suppose that x = (u, ϕ) is the solution of Problem
PVG. We change the bilinear form a(·, ·) by (66), (F, y − x)X by (68) and the
functional J(·) by (67); then for all (v, ψ) ∈ X we obtain

aθ(u, v − u) + aµ(u, v − u) + ae(ϕ, v − u) + aα(ϕ,ψ − ϕ) + j(v)− j(u)

≥ (f, v − u)V + (q, ψ − ϕ)W . (71)

We test in the last inequality (71) with ψ = ϕ, then we obtain (64). Next, we
take v = u and ψ − ϕ = ϕ± ψ − ϕ in (71) , it follows that for all ψ ∈W

aα(ϕ,±ψ)− ae(u,±ψ) ≥ (q,±ψ)W ∀ψ ∈W, (72)

which conclude the proof of the second setp. Then, the Problems PV and PVG
are equivalent.

Our main existence and uniqueness result, which we state now and prove in
the next section, is the following :

Theorem 2. Assume that (36)–(42) hold. Then the variational problem PVG
possesses a unique solution x = (u, ϕ) satisfies

a(x, y − x) + J(y)− J(x) ≥ (F, y − x)X , ∀y ∈ X. (73)

We note that an element x = (u, ϕ) which solves Problem PV is called a weak
solution of the antiplane contact Problem PV. We conclude by Theorem 1 that
the element x = (u, ϕ) also solves Problem PVG, then the element x is called
a weak solution of the antiplane contact Problem PVG. Hence, the antiplane
contact Problem P has a unique weak solution, provided that (36)–(42) hold.

Proof of Theorem 2

The proof of Theorem 2 is based on an abstract result for evolutionary
variational inequalities that we present in what follows.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated
norm ‖ · ‖X and consider the problem of finding a displacement field x ∈ X such
that

a(x, y − x) + J(y)− J(x) ≥ (F, y − x)X , ∀y ∈ X. (74)

In the study of Problem (73) we assume that

a : X ×X → R is a bilinear symmetric form and (75)

(a) there exists M > 0 such that |a(u, v)| ≤M.‖u‖X‖v‖X , for all u, v ∈ X (76)

(b) there exists m > 0 such that a(v, v) ≥ m‖v‖2X , for all v ∈ V. (77)
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b : X ×X → R is a bilinear symmetric form and there exists M ′ > 0 (78)

such that |b(u, v)| ≤M ′.‖u‖X‖v‖X , for all u, v ∈ X. (79)

j : X → R is a convex lower semicontinuous functional. (80)

We start with the Proof of Theorem 2 which will be carried out in several
steps. To this end, in the rest of this section we assume that (36)–(42) hold. In
the first step we will use (80), then we obtain that the bilinear form (66) satisfies

|a(x, y)| ≤
(
‖µ‖L∞(Ω) + ‖α‖L∞(Ω) + 2‖e‖L∞(Ω)

)
‖x‖X .‖y‖Y , ∀x, y ∈ X, (81)

i.e., then the bilinear form a(·, ·) is continuous. It follows that a(·, ·) is elliptic
because

a(x, y) ≥ µ∗.‖u‖2V + α∗.‖ϕ‖2W , ∀x ∈ X, (82)

consequently, from the last inequality we get

a(x, y) ≥ min (µ∗, α∗) .‖x‖2X , ∀x ∈ X. (83)

Now, using the hypothesis (39), then we have

J(x) = j(u) ≤ c‖u‖L2(Γ3) ≤ c‖u‖V ≤ c‖x‖X , ∀x ∈ X, (84)

where c > 0 dependent on function g. It follows that the functional J defined in
(67) is a seminorm continuous on space X, then J is convex and is a convex lower
semicontinuous functional. Now we have all the ingredients to prove Theorem
1. Using Theorem 2, it follows that Problem PVG has a unique solution x =
(u, ϕ) ∈ X. Now, we coupled Theorems 1 and 2, it follows that Problem PV has
a unique solution x = (u, ϕ)X . This solution can be interpreted as weak solution
of the antiplane contact Problem P.
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