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UNIQUENESS AND WEIGHTED SHARING OF ENTIRE
FUNCTIONS

Pulak SAHOO !

Abstract

With the aid of weighted sharing method we study the uniqueness of entire func-
tions concerning nonlinear differential polynomials sharing one value. Though the
main concern of the paper is to improve a result in [4] but as a consequence of the
main result we also improve and supplement some former results.
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1 Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. For a € CU{oo} we say that f and g share the value a CM (counting multiplic-
ities) if f —a and g — a have the same set of zeros with the same multiplicities and we
say that f and g share the value a IM (ignoring multiplicities) if we do not consider the
multiplicities.

It will be convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a nonconstant meromorphic
function h, we denote by T'(r,h) the Nevanlinna characteristic of h and by S(r,h) any
quantity satisfying S(r,h) = o{T(r,h)}(r — oco,r ¢ E). We denote by T'(r) the maximum
of T(r, f) and T'(r, g). The notation S(r) denotes any quantity satisfying S(r) = o{T'(r)}
(r—oo,r ¢ E).

In 1959, Hayman [7] proved the following theorem.

Theorem A. Let f be a transcendental entire function and n(> 1) is an integer. Then
f™f" =1 has infinitely many solutions.

To establish the corresponding uniqueness theorem, Fang and Hua [5] proved the fol-

lowing theorem.

Theorem B. Let f and g be two nonconstant entire functions, n > 6 be an integer. If
f"f" and g™g' share 1 CM, then either f(z) = c1e*, g(z) = cae™ %, where c1, ¢y and ¢ are
three constants satisfying (c1c2)"t'c? = —1 or f = tg for a constant t such that t"T' = 1.
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Fang [6] investigated the uniqueness of entire functions corresponding to general dif-
ferential polynomials and obtained the following results.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 4. If [f"]® and [¢g"]*) share 1 CM, then either f(z) = c1e,
g(2) = cae™%*, where c1, cz and c are three constants satisfying (—1)*(c1co)"(ne)?* =1 or
f =tg for a constant t such that t" = 1.

Theorem D. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 8. If [f*(f — 1)]® and [¢"(g — 1)]*®) share 1 CM, then f = g.

In 2008, Zhang-Lin [19] extended the results of Fang [6] corresponding to more general
differential polynomials. They proved the following theorems.

Theorem E. Let f and g be two nonconstant entire functions, and let n, m and k be
three positive integers with n > 2k +m* 4+ 4, and X, u be constants such that |A| + || # 0.
IF [F7(uf™ + N]%) and [g"(ug™ + N)]*) share 1 CM, then one of the following holds:

(i) If \u # 0, then f4(2) = ¢%(2), d = GCD(n,m); especially when d =1, f = g.

(i3) If \u = 0, then either f = tg, where t is a constant satisfying t"™™ =1 or f(z) =
c1e?, g(z) = cae™“*, where c1, co and c are three constants satisfying

(1) N2 (ere0)™ ™ [(n + m7)f? = 1

(—1) 2(ere2)™ ™ [(n 4+ m*)d? = 1

and m* is defined by m* = x,m, where

_J O ifp=0
X“_{l if 0.

Theorem F. Let f and g be two nonconstant entire functions, and let n, m and k be
three positive integers with n > 2k +m + 4. If [f*(f — 1)™®) and [¢"(g — 1)™]*) share
1 CM, then either f = g or f and g satisfy the algebraic equation R(f,g) = 0, where
R(wi,w2) = wi(wy —1)™ —wi(we — 1)™.

Now the following question arises: is it really possible to relax in any way the nature
of sharing the value 1 in the above results?

The notion of weighted sharing of values is used in [17] to deal this problem. We now
explain the notion in the following definition which measure how close a shared value is
to being shared CM or to being shared IM.

Definition 1. [10, 11] Let k be a nonnegative integer or infinity. For a € C U {co} we
denote by Ey(a; f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a;g), we say that f, g share
the value a with weight k.

The definition implies that if f, g share a value a with weight k, then zy is an a-point
of f with multiplicity m(< k) if and only if it is an a-point of g with multiplicity m(< k)
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and zy is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a,k) to mean that f, g share the value a with weight k. Clearly
if f, g share (a,k) then f, g share (a,p) for any integer p, 0 < p < k. Also we note that
f, g share a value a IM or CM if and only if f, g share (a,0) and (a,00) respectively.

Using the idea mentioned above, Zhang and Lu [17] proved the following theorem.

Theorem G. Let f and g be two nonconstant entire functions, and let n(> 1), k(> 1),
1(>0) be three integers. Suppose that [f"]*) and [g"]*) share (1,1). Ifl > 2 and n > 2k+4
orl=1andn >3k+6 orl=0 andn > dk+7, then the conclusion of Theorem C holds.

In 2008, Banerjee [3] proved the following theorem which improves Theorem G.

Theorem H. Let f and g be two nonconstant entire functions and n(> 1), k(> 1),
1(>0) be three integers. Suppose that [f]*) and [¢g"]*) share (b,1) for a nonzero constant
b. Ifl >2andn >2k+4 orifl =1 and n > % orifl =0 and n > 5k + 7,
then either f(z) = c1e%, g(z) = coe™ %, where c1, ca and ¢ are three constants satisfying
(—=1)¥(c1e0)™(ne)?* = b2 or f =tg for some n-th root of unity t.

Recently X.Y. Zhang, J.F. Chen and W.C. Lin [18] investigated the uniqueness of entire
functions concerning some general differential polynomials. They proved the following
result.

Theorem 1. Let f and g be two nonconstant entire functions and let n, m and k be three
positive integers with n > 2k +3m + 5. Let P(2) = amz™ + am-12""1 + ... + a1z + ap
or P(z) = co, where ap(# 0), a1, ... ,am—1, am(# 0), co(# 0) are complex constants. If
[P P()]® and [g"P(g)]*) share 1 CM, then

(i) when P(z) = amz™ + am_12™"1 + ... + a1z + ao, either f = tg for a constant t such
that t* =1, where d = (n+m,...,n+m —i,...,n), @m_; # 0 for somei=0,1,2,....m or
f and g satisfy the algebraic equation R(f,g) =0, where

R(x,y) = 2™ (ama™ + am12™ 1 + ...+ ag) — Y (@my™ + @m_1y™ 4+ ... + ag);
1 1
(it) when P(z) = co, either f(z) = c1/cje®, g(z) = ca/cie” %, where ¢, ca and ¢ are
three constants satisfying (—1)F(cica)™(ne)?* = 1 or f = tg for a constant t such that
th =1.

Now one may ask the following questions which are the motivation of the paper.
Question 1. What can be said about the relation between two nonconstant entire func-
tions f and g, if we use the notion of weighted sharing of values in place of the CM sharing
value in Theorem E, Theorem F and Theorem I ?

Question 2. Whether one can deduce a generalised result which includes the results of
Zhang-Lu [17] and Banerjee [3] 7

Regarding the above mentioned questions recently Chen-Zhang-Lin-Chen [4] and Liu [12]
proved the following theorems respectively.
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Theorem J. [}] Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n > 5k + 13. If [f*(f — 1)]® and [¢™(g — 1)]*¥) share (1,0), then
f=g

Theorem K. [12] Let f and g be two nonconstant entire functions, and let n, m and k
be three positive integers such that n > 5k +4m+9. If [f*(f — 1)™]®) and [g"(g —1)™]*)
share (1,0), then the conclusion of Theorem F holds.

In the paper, we will prove the following theorem which will not only improve Theorem
E, Theorem F and Theorem I by relaxing the nature of sharing the value 1 but also improve
Theorem G, Theorem J and Theorem K by reducing the lower bound of n. Our result will
improve and supplement Theorem H also. We now state the main result of the paper.

Theorem 1. Let f and g be two nonconstant entire functions, and let n(> 1), k(> 1)
and m(> 0) be three integers. Let P(2) = amz™ + am_12™ " +...+a1z+ag or P(2) = ¢,
where ag(# 0), a1, ... ,am-1, am(# 0), co(# 0) are complex constants. Let [f*P(f)]*)
and [g"P(g)]*® share (1,1) where 1 > 0) is an integer. Then the conclusions (i) and (ii)
of Theorem I hold in each of the following cases:

(a) 1> 2 and n > 2k +m + 4;

(b)1=1 andn>5k+3%+9;

(¢)l=0 andn > 5k +4m + 7.

Corollary 1. Under the condition of Theorem 1, we set P(z) = puz" + A\, where A and u
are two constants such that |\| + |p| # 0 and m(> 1) is an integer. We assume that one
of the following conditions hold:

(a) 1> 2 and n > 2k +m* +4;

(b) 1 =1 and n > SHE3m19,

(c)l =0 and n > 5k +4m* 4+ 7,

where m* is defined as in Theorem E. Then the conclusions (i) and (ii) of Theorem E

hold.

Corollary 2. Under the condition of Theorem 1, we set P(z) = (2 —1)"™. Then

(i) when m =0 andl>2,n>2k+4 orl=1,n> ‘r’k%g orl=0,n>5k+7, then the
conclusion of Theorem C holds;

(ii) whenm > 1 andl > 2, n > 2k+m+4 orl=1,n> %"'327"“'9 orl=0,n>5k+4m+7,
then either f(z) = tg(z) for a constant t such that t¢ =1, where d = (n +m,...,n +m —
i,...,n+1,n) or f(z) and g(z) satisfy the algebraic equation R(f,g) =0, where

R(z,y) =2"(z—-1)" —y"(y— 1)™.
Remark 1. Theorem 1 is an improvement of Theorem I.

Remark 2. Since Theorem H can be obtained as a special case of Corollary 2, Corollary
2 improves and supplements Theorem H.

Remark 3. Corollary 1 is an improvement of Theorem E.
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Remark 4. Corollary 2 improves and supplements Theorem F, Theorem J and Theorem
K.

Remark 5. Corollary 2 improves Theorem G for m =0 and [ = 1.

Though the standard definitions and notations of the value distribution theory are
available in [8, 14], we explain some definitions and notations which are used in the paper.

Definition 2. [9] For a € CU {oo} we denote by N(r,a; f |= 1) the counting function of

simple a points of f. For a positive integer m we denote by N(r,a; f |< m) the counting

function of those a-points of f (counted with multiplicities) whose multiplicities are not

greater than m. By N(r,a; f |< m) we denote the corresponding reduced counting function.
In an analogous manner we define N(r,a; f |>m) and N(r,a; f |> m).

Definition 3. [11] Let k be a positive integer or infinity. We denote by Ny(r,a; f) the
counting function of a-points of f, where an a-point of multiplicity m is counted m times
if m <k and k times if m > k. Then

Ni(rya; f) = N(r,a; f) + N(r,a; f |> 2) + ... + N(r,a; f [> k).
Clearly N1(r,a; f) = N(r,a; f).
Definition 4. [3] Let a,b € CU {co} and p be a positive integer. Then we denote by
N(rya;f |>p|g=05b) (N(rya;f |>p| g #0b)) the reduced counting function of those
a-points of f with multiplicities > p, which are the b-points (not the b-points) of g.

Definition 5. [1, 2] Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. Let zy be a 1-point of f with multiplicity p, a 1-point of
g with multiplicity q. For a positive integer k, Nf>k(7", 1;9) denotes the reduced counting
function of those 1-points of f and g such that p > q = k. In an analogous way we can

define Ng>k(r, 1; f).

Definition 6. [1, 2] Let f and g be two nonconstant meromorphic functions such that f
and g share the value 1 IM. Let zg be a 1-point of f with multiplicity p, a 1-point of g with
multiplicity q. We denote by Nr(r,1; f) the counting function of those 1-points of f and
g, where p > q, by N}E) (r,1; f) the counting function of those 1-points of f and g, where

p=gq=1 and by Ng(r, 1; f) the counting function of those 1-points of f and g, where
p=q > 2, each point in these counting functions is counted only once. Similarly we can

define Nr(r, 15 9), NJ(r, 15 9) and N (r, 1; ).

2 Lemmas and Propositions

In this section we present some lemmas and propositions which will be needed in the
sequel.

Proposition 1. [18] Let f be a transcendental entire function, and n, m, k be three
positive integers such that n > k+2, and P(z) = Am 2™+ A 12™ a2+ a1z +ao,
where ag, ai, as, . . . , Gm_1, QG are complex constants. Then [f”P(f)](k) =1 has
infinitely many solutions.
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Proposition 2. [18] Let f and g be two nonconstant entire functions and let n, k be two
positive integers with n > k, and let P(z) = a;pz™ + Am12™ N+ o ae2® 4+ a1z + ag
be a nonzero polynomial, where ag, ai, az, . . . , Qm—1, Gy are complex constants. If
[ P(f)]®[g"P(g)]*®) = 1, then P(z) is reduced to a nonzero monomial, that is, P(z) =

1 1

a;zt #Z 0 for some i =0,1,2,...,m; further, f(z) = c1/a]"" e, g(z) = ca/a" e, where

(2 (2
c1, co and c are three constants satisfying
—1)*(cre0)™ (0 + ) c)?F = 1.
(

Lemma 1. [13] Let f be a nonconstant meromorphic function and P(f) = ap + a1 f +
asf? 4 ...+ anf", where ag, a1, as, ... ,a, are constants and a, # 0. Then

T(r, P(f)) =nT(r,f) + S(r, f).

Lemma 2. [8, 1/] Let f be a nonconstant entire function, and let k be a positive integer.
Then for any non-zero finite complex number c

T(r, )

IN

N(r,0; f)+ N (T, ¢ f(k)> -N (r’O;f(kH)) +50J)

N1 (1, 0: £) + N (ryes fO) = No (r,0: 540 + S0, ),

IA

where Ny (r, 0; f(k+1)) denotes the counting function which only counts those points such
that f*+D =0 but f (f* —c) £0.

Lemma 3. [16] Let f be a nonconstant meromorphic function and p, k be two positive
integers. Then

Ny (1,0 F8) < Ny, 0: f) + BN (7,003 ) + S(r, /).

Lemma 4. [}] Let f and g be two nonconstant entire functions and let n, k be two positive
integers with n > k. If [f*]®[g"®) = 1, then f(2) = c1e%, g(z) = cae™%, where c1, ¢
and c are three constants satisfying (—1)F(c1co)™(nc)?* = 1.

Lemma 5. [2] Let f and g be two nonconstant meromorphic functions that share (1,0).
Then

N1 f) 4 2N4(r 13 9) + N2(r, 15 f) = Nps1(r, 15.9) — Nysa (1, 15 f)

< N(r,1;9) = N(r, 1;9).
Lemma 6. [15] Let f and g be two nonconstant meromorphic functions sharing (1,0).
Then

Nip(r,1; ) < N(r,0; f) + N(r,00; f) + S(r, f).

Lemma 7. [2] Let f and g share (1,0). Then

(Z)Ni>1(7“,17g) S Nﬁ'voaf) —|—NLI“,OO,f) - N@(T7O; f/) —|—S(’l“, f)7

(1) Ny=1 (1,13 /) < N(r, 0;6) + N(r, 005 9) — Na(r, 0 ¢) + 5(r. ),

where Ng(r,0; f') (Ng(r,0;¢")) denotes the counting function of those zeros of f' (g')
which are not the zeros of f(f —1) (g(g —1)).
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Lemma 8. [1] Let f and g be two nonconstant meromorphic functions that share (1,1).
Then

ONL(r, 13 f) + 2N 1 (r, 1;.9) + N2 (r, 1 f) = N ysa(r, 159) < N(r, 1;9) — N(r, 15 g).

Lemma 9. [2] Let f and g share (1,1). Then

N poalr, 159) < SN0, 0, 1) + 5N (005 ) = 5Na(r,0; 1) + (1, ),

where Ng(r,0; f') is defined as in Lemma 7.

Lemma 10. /8, 14] Let f be a transcendental meromorphic function, and let a1(z), as(z)
be two distinct meromorphic functions such that T(r,a;(z)) = S(r, f), i=1,2. Then

T(r,f) < N(r,o0; f) + N(r,a1; f) + N(r,az2; f) + S(r, f).

3 Proof of the Theorem

Proof of Theorem 1. Let P(2) = a;ypz2™ + am-12""1 + ...+ a2z + a1 2 + ag, where ag(# 0),

ap, az, . . . , Gm_1, am(# 0) are complex constants. We consider F'(z) = f"P(f) and
G(z) = g"P(g). Then F*) and G®) share (1,1). Let
pk+2)  op(ktl) (k+2)  oc(k+1)
H = - _ (€ _ 2 . (3.1)
POt Rk — 1 ) o) — 1

We assume that H # 0. Let [ > 1. Suppose that z is a simple 1-point of F'*). Then z,
is a simple 1-point of G(¥). So from (3.1) we see that zy is a zero of H. Thus

N (r,l;F(k’) E 1) < N(r0;H) < T(r,H)+O0(1)
< N(r,o0;H)+ S(r, F) + S(r,G). (3.2)

From (3.1) we know that poles of H possibly result from those zeros of F(*+1) and G(#+1)
which are not common 1-points of F*) and G*) and from those common 1-points of F'¥)
and G®*) such that each such point has different multiplicity related to F*) and G*).
Thus

N(r,00; H) < N(r,0; F®) |> 2) + N(r,0,G® |> 2) + N}, (r, 1; F<k>)
+Np, (T, 1;G(k)> + Ng (r,O;F(kH)) + Ng (T,O; G<k+1)> , (3.3)

where Ng (T,O;F(kﬂ)) denotes the reduced counting function of those zeros of F®*+1)
which are not the zeros of F(*) (F(k) — 1). Ng (T, 0; G(k‘H)) is defined similarly. Now we

consider the following three cases.
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Case 1. Let [ > 2. By (3.2) and (3.3) we obtain
W<r,1;F(k)> < N (r,l,F E 1) W(r,l;F(k) > 2)
< N(r0;F® > 2) + N(r,0;G* \>2)+NL<7~ 1; >)
N, (r, 1;G(’“)> +N (r, 1, F®) |> 2) +No (7‘ 0: F(k“))
+Ng (7“, 0; G<k‘+1>) +8(r, F) + 8(r,G). (3.4)
From (3.4) and Lemma 2 we obtain
T, F)+T(r,G) < Nipa(r,0;F) + Ny (r,0,G) + N (1,0, F9) |> 2)
4N (r,o; G > 2) TN, (r, 1;F(k)) + N, (r, 1;G(k))
N <r, 1, F®) > 2) N (r, 1: G<k>) + Ny <r, 0; F<k+1>>
+Ne (7,0;GE) = Ny (r,0; FEFD) = Ny (1,0, G
+8(r, F) + S(r, G). (3.5)
It is clear that
Nig1(r,0; F) + N (r 0; F) |> 2) + Ny (r 0; F<k+1>)
< Nppa(r,0;F) + N (r,O;F(k) >2|F = 0)

+N(r0F |>2|F¢0)+N®(TOF<HU)

IN

Niy1(r,0; F) + N (r,0; F |> k +2) + Ny (r,O; F(k“))
< Njyo(r, 0, F) + Ny (r, 0; F<k+1>) . (3.6)
A similar result holds for G also. Since G is entire, we have
N (T, 1; P | > 2) + Ny, (r, 1; F(k)> +Np (r, 1; G(k)) +N (T, 1; G(k)>

< N (r, 1;,GW |= 2) 19N, (r, 1;F(k)> 9N, (7“, 1;G(’“))
N (n160) + N (r1,60)
N (r1;60)
T (r,cM) +00)
T(r,G)+ S(r,G). (3.7)
So from (3.5), (3.6) and (3.7) we obtain

IA

IN

IN

T(r,F) < Niy2(r,0; F) + Ni1o(r,0;G) + S(r, F) + S(r, G).
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From this and using Lemma 1 we obtain
(n+m)T(r, f) < 2k +2m+4)T(r)+ S(r). (3.8)
Similarly
(n+m)T(r,g) < (2k+2m+4)T(r) + S(r). (3.9)
Combining (3.8) and (3.9) we get
(n—2k—m—4)T(r) < S(r),

which contradicts the fact that n > 2k +m + 4.
Case 2. Let [ = 1. In view of Lemmas 3, 8, 9, (3.2) and (3.3) we obtain

N (r, 1;F(k)> +N <'r, I;G(’“)> < N (r, 1, F®) |= 1) iy <r, 1;F(k)>

+Np, (r, 1; G(k)> +N§§ (r, 1; F(k)> +N (r, 1; G(k))

IN

N (7“, 1, F® |= 1) +N (r, 1; GUf)) . (r, 1;F(k))
—Np, <7’, 1; G(k)> + NF(k)>2 (7’, 1; G(k)>

N(r,0; F®) |>2) + N(r,0; G® |> 2)

+5N (1,0;F®) 7 (7, G 4 N (r,0,F0D)

IN

+Ne (1,0;G) 4 S(r, F) + (1, G)

IN

N(r,0, F*®) |> 2) + N(r,0,G"¥ |> 2)

1 _
5Nt (1, 0:F) + T(r, G) + N (r, 0: F<k+1>)

+No (7“, 0; G<k+1>) +S(r, F) + 8(r, Q). (3.10)
Using (3.6) and (3.10) we obtain from Lemma 2 that
1
T(r,F) < Ngpo(r,0;F) + Ngio(r, 0, G) + §Nk+1(7"70;F) +S(r, F) 4+ S(r, G).

From this and using Lemma 1 we obtain

(n+m)T(r, f) < (W) T(r) + S(r). (3.11)
Similarly
(n+m)T(r,g) < (5’”52””9) () + S(r). (3.12)
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From (3.11) and (3.12) we get

(- 2520 70 < 50

which contradicts our assumption that n > W.

Case 3. Let [ = 0. In this case (3.2) changes to
NY (r,l;F(k)> < N(r0;H) < T(rH)+O0(1)
< N(r,o0;H)+ S(r, F)+ S(r,G). (3.13)

Using Lemmas 3, 5, 6, 7, (3.3), (3.6) and (3.13) we obtain

N (r,l;F(k)> —i—ﬁ(r,l;G(k)) < N}E) (r,l;F(k ) +N (r 1; F%) ) + Ny (T,l;G(k))

+Ng (R FO) 4+ N (1,1,60)

IN

N (T,O;F(k) |>2)+ N (T‘,O; G® |> 2)
+N; <r, 1; F(k)> + T <r, G(k)> +NFU€)>1 (7", 1; G(k)>
+NGw 1 (7” 1§F(k)) +Ng <7‘a0;F(k+1))

N (1.0:G5) 4 S(r, F) + (1, G)

IN

N(r,0; F® |2 2) + N (r,0,GM |> 2)
+2Ngy1(r,0; F) + Niyq(r,0; G) + T'(r, G)
+Ng (r,o;F(kzﬂ)) + N, (r’O;G(kﬁ-l))
+8(r, F) + S(r, G)
Niy1(7,0; F) 4+ Niyo(r,0; F) + Ny jo(r, 0; G)
+T'(r,G) + Ny (r, 0; F(k+1)) + Np (7,70; G(k+1)>
+8(r, F) + S(r, G). (3.14)

IN

Using Lemma 2 we get

T(r,F) < 2Npi1(r,0; F)+ Niyo(r,0; F) + Niy1(r,0; G) + Ni12(r, 0; G)
+S(r, F) 4+ S(r,G).

In view of Lemma 1 we obtain
(n+m)T(r, f) < bk +5m+7)T(r)+ S(r). (3.15)
Similarly

(n+m)T(r,g) < (bk+5m+T7)T(r) + S(r). (3.16)
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Combining (3.15) and (3.16) we get
(n—=>5k—4m —"17)T(r) < S(r),

a contradiction since n > 5k +4m + 7.

We now assume that H = 0. That is
P2 opktl) g2 gkt
Flt+l)  pk) —1 ~ g+ gk —1°

Integrating both sides of the above equality twice we get

1 :BG(k)+A—B
k) —1 Gk —1 7

(3.17)

where A(# 0) and B are constants. From (3.17) it is clear that F*) and G*) share 1 CM
and hence F*) and G*) share (1,2). Thus n > 2k + m + 4. we now discuss the following
three cases separately.

Case I. Let B # 0 and A = B. Then from (3.17) we get

(k)
T = T (3.18)
If B = —1, then from (3.18) we obtain
FRGH =1,
i.e.,
P Wg"Pg)® = 1. (3.19)
So we have

[f"(amf™+ ...+ ao)](k) 6" (amg™ + ... + ao](k) =1,

which by the assumptions and Proposition 2 is a contradiction.
If B # —1, then it follows from (3.18) and the fact that f and g are entire that

1 1
(k) _ L N
r <1+ B) =am 0

So using Lemma 2 we get

(n+m)T(r, f) T(r,F)+0(1)

Nk+1(r£; F)+S(r, f)

(k+1)N(r,0; f) + mT(r, f)+ S(r, f)
(k+1+m)T(r,f)+ S(r,f),

ININ TN
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[n—(k+DIT(r, f) < S(r, f),

which is a contradiction because n > 2k + m + 4.

Case II. Let B # 0 and A # B. Then from (3.17) we get

A—B
B

G 4 £0.
So by Lemma 2 we have

(n+m)T(r,g) =T(r,G)+ O(1) < Ni1(r,0;G) + S(r,G).
Proceeding as case I we obtain

[n - (k + 1)]T(T7 g) < S(h g),

which is also a contradiction.
Case III. Let B =0 and A # 0. Then from (3.17) we obtain

1 1
FE — —qgk) 11 _ = 2
AG + 1T (3.20)
ie.,
1
F = ZG +(z), (3.21)

where 1(2) is a polynomial of degree at most k. By (3.21) and Lemma 1 we can say that
T(r,f)=T(r,g)+ S(r, ). (3:22)

By the assumptions and Proposition 1, it is clear that either both f and g are transcen-
dental entire functions or both are polynomials.

First we suppose that both f and g are transcendental entire functions. If ¥)(z) # 0, then
in view of (3.22), Lemma 1 and the second fundamental theorem of Nevanlinna we obtain

(n+m)T(r, f) T(r,F)+ O(1)

N(r,00; F) + N(r,0; F) + N(r,%(2); F) + S(r, F)
N(r,0; F) + N(r,0;G) + S(r, F)
, f)

2(m+ )T (r, f) + S(r, f),

VARRVANNVAN

which is impossible. Hence in this case ¢ (z) = 0.

Now we assume that both f and g are polynomials. We suppose that f and g have v and
0 pairwise distinct zeros respectively. Then f and g are of the form

f(2) = ez = p1)" (2 = p2)2.c(z = py)",
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9(z2) =d(z—q1)"™ (2 — q2)"%...(z — q5)™°,
so that

ff(z)=c"(z— pl)"ll(z — pg)"b...(z — p«,)”lﬂ (3.23)

9" (z)=d"(z—q)"™ (z — q2)"™...(z — q5)""?, (3.24)

where ¢ and d are nonzero constants, nl; > 2k +m +4, nm; >2k+m+4,1=1,2,...,7,
and j = 1,2,...,0. Differentiating (3.20) we obtain

F(k-‘rl) _

1
= (k+1)
a6
ie.,
1
(amf”””)(k“)+...+(aof")(k+1):Z (amg™ ™) * D 44 (aog™)*HD| . (3.25)

Using (3.23) and (3.24), (3.25) can be written as
)”ll—(k+1)(z _ p2)nl2—(k+1)m(z _ pv)nlw—(kJrl)a(z) = (z— ql)nm1—(k‘+1)
(Z - q2)nm2*(k+1)m(z _ qé)nmtgf(kJrl)lg(Z)7 (326)

(z —p1

g
where a(z) and [((z) are polynomials such that deg a(z) =m Z Li+(y—-1)(k+1)
i=1
0
and deg ((z) = mij + (0 —=1)(k+1). Now
j=1
g g g
S nli—(k+1D]=m> L = > [(n—m)l— (k+1)]
i=1 i=1 i=1
> v(k+3)
> (y=Dk+1),
i.e.,
g g
S ki = (k+1)]>m L+ (y—1)(k+1).
i=1 i=1
Similarly,
0 0

> lnmj = (k+ 1] >m> mj+ (0 —1)(k+1).

j=1 j=1
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Thus from (3.26) we deduce that there is ¢ such that

(O [amf™(€) + - + a1 f(¢) + ao] = ¢"(¢) [amg™ (C) + - + a19(C) + ao] =0,

where ¢ has multiplicity greater than 2k + m + 4. This together with (3.21) implies
¥(z) = 0. Thus from (3.20), (3.21) together with the fact that F*) and G*) share 1 CM
we obtain A =1 and so F' = G. That is

fP(f) = g"P(g). (3.27)
Hence
P lamf™+ ...+ a1 f +aol = ¢" [amg™ + ... + a19 + ao] .

Let h = g. If h is a constant, then by putting f = gh in above we get
amgn+m(hn+m o 1) + am_lgnerfl(thrmfl o 1) 4.+ aogn(hn _ 1) — 0’

which implies h? = 1, where d = (n +m,....n+m —i,...,n 4+ 1,n), an_; # 0 for some
i=0,1,....,m. Thus f = tg for a constant ¢t such that t = 1, d = (n+m,...,n+m—
iy..,n+1,n), am—; # 0 for some i =0,1,...,m.

If h is not a constant, then from (3.27) we can say that f and g satisfy the algebraic
equation R(f,g) = 0, where

R(z,y) = 2" (amz™ + 2™V L+ ag) — y" (amy™ + Am_1y™ L+ agp).

We omit the proof of the case when P(z) = cg, where ¢g (# 0) is a complex constant, since
using Lemma 4 and proceeding in the same way the proof can be carried out in the line
of proof as above. This completes the proof of the theorem. O

Proof of Corollary 1. By (3.19)
L (ef™ + g™ (g™ + M)®) = 1. (3.28)

We consider following subcases.

Subcase(i) We assume that A = 0 and g # 0. Then as n > k, by Lemma 4 we
obtain f(z) = c1e%, g(z) = coe %, where c¢1, c2 and ¢ are three constants satisfying
(—1)*u2(cre2)™™[(n + m)c)?) = 1. Similar result holds for A # 0 and p = 0.

Subcase (ii) Let Ay # 0. Since f and g are entire functions from above it is clear that

f#0 and g #0. (3.29)

Let f(z) = e™®), where a(z) is an entire function. Then we obtain
[ = ¢ (o, o ..., aB))entmalz) (3.30)

and

AP =ty (o, @, ..., aB))er (@) (3.31)
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where t;(a/,a”,...,a®)) # 0 (i = 1,2) are differential polynomials. Since g is an entire
function, we have from (3.28) that

£ (uf™ + NI £ 0.
So from (3.30) and (3.31) we get
t1(, o, ...,a(k))ema(z) +ta(, ", ..., a(k)) # 0. (3.32)
Since « is an entire function, we have T'(r,o’) = S(r, f) and
T(r,aV)) < T(r,o/) + S(r, ) = S(r, f)
for j =1,2,...,k. Hence we have
T(r t;) = S(r, f) (3.33)

for i = 1,2. So by (3.32), (3.33), Lemma 1 and Lemma 10 we get

mT(r, f) < T(rtie™)+ S(r, f)
< N(r,0;t1™) + N(r,0;t1™ + t2) 4+ S(r, f)
1
S T<T’t) +S(T7f)
1
= S(T7 f)?
which is a contradiction.
Again from (3.27) we have
U uf™+2) =g"(pg™ + A). (3.34)

If A\u = 0, then from |A|+ |u| # 0 we get f = tg, where t is a constant such that "™ = 1.
Let A # 0 and h = 5. So from (3.34) we obtain
pug™ (™™ — 1) = X(1 — h™).
If AT = 1, by the above equation we get h™ = 1, i.e., f* = ¢g" and f™ = g™.
If A™™ =£ 1, then substituting f = gh in (3.34) we get

A 1+h+..+h"1
pl+h+.. 4 hotm=1"

m

g =

Since g is an entire function, every zero of A" —1 is a zero of h™ — 1 and hence of ™ —1.
Noting that n > 2k + m + 4, we obtain h is a constant, which is a contradiction as f and
g are nonconstant. Therefore h»*™ = 1, that is f*™" = g"*™. This completes the proof
of Corollary 1. O
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Proof of Corollary 2. By (3.19) we have

[ = D)™ B (g — 1)™©® = 1. (3.35)

Then we consider following two subcases.
Subcase(I) Let m = 0. Then
(B gM® =1. (3.36)

—Cz

Since n > k by Lemma 4 we obtain f(z) = c1e%, g(2) = coe™ %, where c¢i, ¢z and c are

three constants satisfying
(=1)*(c1e2)™(ne)? = 1.

Subcase(II) Let m > 1. Since f and g are entire functions, we have f # 0 and g # 0. Let
f(2) = e*®) where a(z) is a nonconstant entire function. Clearly

[fn—l—m(z)](k) _ Sm(O/,Oé”, m?a(k))e(n-i-m)a(z). (3.37)
(_1)m71[mclfn+z(z)](k) _ Si(O/,O/I, mja(k))e(n+i)a(z)' (338)
(=D™[f(2)]®) = so(e, 0, ..., a®))ere2), (3.39)

where s;(o/,a”,...,a®)) (i =0,1,2,...,m) are differential polynomials. Obviously
si(a/,a”, ...,a(k)) 20
fort=0,1,2,...,m, and
[ =1m® #o.
From (3.37) and (3.38) we have
sm(a, o, ...,a®)eme®) 4 os(a (k)y £ 0. (3.40)

(of
Since «a(z) is an entire function, we obtain T'(r, o) (7", ) and T(r,a9)) = S(r, f)
for j =1,2,....,k. Hence T'(r,s;) = S(r, f) for i =1,

So from (3.40), Lemmas 1 and 10 we obtain

mT(r, f)

2,.

T(r,sme™ + ...s1€%) + S(r, f)

N(7,0; 87m™* + ... + 51€%) + N(7r,0; 5™ + ... + 51% + 50) + S(7, )
N(r,0; sme™ D 4 4 51)+ S(r, f)

(m = 1T(r, f) + S(r, f),

which is a contradiction.

Again by (3.27) we have

IN A IA

fff=0m"=g"(g-1" (3.41)
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If m = 0, then by (3.41) we get f = tg for a constant ¢ such that t" = 1.
Now let m > 1. Then from (3.41) we get

F™ 4 e+ (D) " Ci [ (D)™ = g g™
H(=1)! " Coi g+ (1) (3.42)

Let h = g. If h is a constant, by putting f = gh in (3.42) we get
g RTT™ —1) 4 (1) O g TR ) 44 (1) (R — 1) = 0,

which implies h? = 1, where d = (n +m,....,n +m —i,...,n + 1,n). Thus f = tg for a
constant ¢ such that t=1,d= (n+m,...,n+m —i,...n+1,n).

If h is not a constant, then from (3.41) we can say that f and g satisfy the algebraic
equation R(f,g) = 0, where R(z,y) = 2" (x — 1) — y™(y — 1)". This completes the proof
of Corollary 2. O
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