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UNIQUENESS AND WEIGHTED SHARING OF ENTIRE
FUNCTIONS

Pulak SAHOO 1

Abstract

With the aid of weighted sharing method we study the uniqueness of entire func-
tions concerning nonlinear differential polynomials sharing one value. Though the
main concern of the paper is to improve a result in [4] but as a consequence of the
main result we also improve and supplement some former results.
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1 Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. For a ∈ C∪ {∞} we say that f and g share the value a CM (counting multiplic-
ities) if f − a and g − a have the same set of zeros with the same multiplicities and we
say that f and g share the value a IM (ignoring multiplicities) if we do not consider the
multiplicities.

It will be convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a nonconstant meromorphic
function h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)}(r →∞, r 6∈ E). We denote by T (r) the maximum
of T (r, f) and T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o{T (r)}
(r →∞, r 6∈ E).

In 1959, Hayman [7] proved the following theorem.

Theorem A. Let f be a transcendental entire function and n(≥ 1) is an integer. Then
fnf ′ = 1 has infinitely many solutions.

To establish the corresponding uniqueness theorem, Fang and Hua [5] proved the fol-
lowing theorem.

Theorem B. Let f and g be two nonconstant entire functions, n ≥ 6 be an integer. If
fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are

three constants satisfying (c1c2)n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.
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Fang [6] investigated the uniqueness of entire functions corresponding to general dif-
ferential polynomials and obtained the following results.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 4. If [fn](k) and [gn](k) share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1 or
f ≡ tg for a constant t such that tn = 1.

Theorem D. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM, then f ≡ g.

In 2008, Zhang-Lin [19] extended the results of Fang [6] corresponding to more general
differential polynomials. They proved the following theorems.

Theorem E. Let f and g be two nonconstant entire functions, and let n, m and k be
three positive integers with n ≥ 2k+m∗ + 4, and λ, µ be constants such that |λ|+ |µ| 6= 0.
If [fn(µfm + λ)](k) and [gn(µgm + λ)](k) share 1 CM, then one of the following holds:
(i) If λµ 6= 0, then fd(z) ≡ gd(z), d = GCD(n,m); especially when d = 1, f ≡ g.
(ii) If λµ = 0, then either f ≡ tg, where t is a constant satisfying tn+m∗

= 1 or f(z) =
c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)n+m∗
[(n+m∗)c]2k = 1

or
(−1)kµ2(c1c2)n+m∗

[(n+m∗)c]2k = 1

and m∗ is defined by m∗ = χµm, where

χµ =
{

0 if µ = 0
1 if µ 6= 0.

Theorem F. Let f and g be two nonconstant entire functions, and let n, m and k be
three positive integers with n > 2k +m + 4. If [fn(f − 1)m](k) and [gn(g − 1)m](k) share
1 CM, then either f ≡ g or f and g satisfy the algebraic equation R(f, g) = 0, where
R(w1, w2) = wn

1 (w1 − 1)m − wn
2 (w2 − 1)m.

Now the following question arises: is it really possible to relax in any way the nature
of sharing the value 1 in the above results?

The notion of weighted sharing of values is used in [17] to deal this problem. We now
explain the notion in the following definition which measure how close a shared value is
to being shared CM or to being shared IM.

Definition 1. [10, 11] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share
the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point
of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k)
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and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) and (a,∞) respectively.

Using the idea mentioned above, Zhang and Lu [17] proved the following theorem.

Theorem G. Let f and g be two nonconstant entire functions, and let n(≥ 1), k(≥ 1),
l(≥ 0) be three integers. Suppose that [fn](k) and [gn](k) share (1, l). If l ≥ 2 and n > 2k+4
or l = 1 and n > 3k+6 or l = 0 and n > 5k+7, then the conclusion of Theorem C holds.

In 2008, Banerjee [3] proved the following theorem which improves Theorem G.

Theorem H. Let f and g be two nonconstant entire functions and n(≥ 1), k(≥ 1),
l(≥ 0) be three integers. Suppose that [fn](k) and [gn](k) share (b, l) for a nonzero constant
b. If l ≥ 2 and n > 2k + 4 or if l = 1 and n > 5k+9

2 or if l = 0 and n > 5k + 7,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = b2 or f ≡ tg for some n-th root of unity t.

Recently X.Y. Zhang, J.F. Chen and W.C. Lin [18] investigated the uniqueness of entire
functions concerning some general differential polynomials. They proved the following
result.

Theorem I. Let f and g be two nonconstant entire functions and let n, m and k be three
positive integers with n ≥ 2k + 3m + 5. Let P (z) = amz

m + am−1z
m−1 + ... + a1z + a0

or P (z) = c0, where a0(6= 0), a1, ... ,am−1, am(6= 0), c0(6= 0) are complex constants. If
[fnP (f)](k) and [gnP (g)](k) share 1 CM, then
(i) when P (z) = amz

m + am−1z
m−1 + ... + a1z + a0, either f ≡ tg for a constant t such

that td = 1, where d = (n+m, ..., n+m− i, ..., n), am−i 6= 0 for some i = 0, 1, 2, ...,m or
f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(x, y) = xn(amx
m + am−1x

m−1 + ...+ a0)− yn(amy
m + am−1y

m−1 + ...+ a0);

(ii) when P (z) = c0, either f(z) = c1/c
1
n
0 e

cz, g(z) = c2/c
1
n
0 e

−cz, where c1, c2 and c are
three constants satisfying (−1)k(c1c2)n(nc)2k = 1 or f ≡ tg for a constant t such that
tn = 1.

Now one may ask the following questions which are the motivation of the paper.
Question 1. What can be said about the relation between two nonconstant entire func-
tions f and g, if we use the notion of weighted sharing of values in place of the CM sharing
value in Theorem E, Theorem F and Theorem I ?
Question 2. Whether one can deduce a generalised result which includes the results of
Zhang-Lu [17] and Banerjee [3] ?
Regarding the above mentioned questions recently Chen-Zhang-Lin-Chen [4] and Liu [12]
proved the following theorems respectively.
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Theorem J. [4] Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n > 5k + 13. If [fn(f − 1)](k) and [gn(g − 1)](k) share (1, 0), then
f ≡ g.

Theorem K. [12] Let f and g be two nonconstant entire functions, and let n, m and k
be three positive integers such that n > 5k+4m+9. If [fn(f − 1)m](k) and [gn(g− 1)m](k)

share (1, 0), then the conclusion of Theorem F holds.

In the paper, we will prove the following theorem which will not only improve Theorem
E, Theorem F and Theorem I by relaxing the nature of sharing the value 1 but also improve
Theorem G, Theorem J and Theorem K by reducing the lower bound of n. Our result will
improve and supplement Theorem H also. We now state the main result of the paper.

Theorem 1. Let f and g be two nonconstant entire functions, and let n(≥ 1), k(≥ 1)
and m(≥ 0) be three integers. Let P (z) = amz

m +am−1z
m−1 + ...+a1z+a0 or P (z) = c0,

where a0(6= 0), a1, ... ,am−1, am(6= 0), c0(6= 0) are complex constants. Let [fnP (f)](k)

and [gnP (g)](k) share (1, l) where l ≥ 0) is an integer. Then the conclusions (i) and (ii)
of Theorem I hold in each of the following cases:
(a) l ≥ 2 and n > 2k +m+ 4;
(b) l = 1 and n > 5k+3m+9

2 ;
(c) l = 0 and n > 5k + 4m+ 7.

Corollary 1. Under the condition of Theorem 1, we set P (z) = µzm + λ, where λ and µ
are two constants such that |λ|+ |µ| 6= 0 and m(≥ 1) is an integer. We assume that one
of the following conditions hold:
(a) l ≥ 2 and n > 2k +m∗ + 4;
(b) l = 1 and n > 5k+3m∗+9

2 ;
(c) l = 0 and n > 5k + 4m∗ + 7,
where m∗ is defined as in Theorem E. Then the conclusions (i) and (ii) of Theorem E
hold.

Corollary 2. Under the condition of Theorem 1, we set P (z) = (z − 1)m. Then
(i) when m = 0 and l ≥ 2, n > 2k + 4 or l = 1, n > 5k+9

2 or l = 0, n > 5k + 7, then the
conclusion of Theorem C holds;
(ii) when m ≥ 1 and l ≥ 2, n > 2k+m+4 or l = 1, n > 5k+3m+9

2 or l = 0, n > 5k+4m+7,
then either f(z) ≡ tg(z) for a constant t such that td = 1, where d = (n+m, ..., n+m−
i, ..., n+ 1, n) or f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

Remark 1. Theorem 1 is an improvement of Theorem I.

Remark 2. Since Theorem H can be obtained as a special case of Corollary 2, Corollary
2 improves and supplements Theorem H.

Remark 3. Corollary 1 is an improvement of Theorem E.
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Remark 4. Corollary 2 improves and supplements Theorem F, Theorem J and Theorem
K.

Remark 5. Corollary 2 improves Theorem G for m = 0 and l = 1.

Though the standard definitions and notations of the value distribution theory are
available in [8, 14], we explain some definitions and notations which are used in the paper.

Definition 2. [9] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of
simple a points of f . For a positive integer m we denote by N(r, a; f |≤ m) the counting
function of those a-points of f (counted with multiplicities) whose multiplicities are not
greater than m. By N(r, a; f |≤ m) we denote the corresponding reduced counting function.

In an analogous manner we define N(r, a; f |≥ m) and N(r, a; f |≥ m).

Definition 3. [11] Let k be a positive integer or infinity. We denote by Nk(r, a; f) the
counting function of a-points of f , where an a-point of multiplicity m is counted m times
if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 4. [3] Let a, b ∈ C ∪ {∞} and p be a positive integer. Then we denote by
N(r, a; f |≥ p | g = b) (N(r, a; f |≥ p | g 6= b)) the reduced counting function of those
a-points of f with multiplicities ≥ p, which are the b-points (not the b-points) of g.

Definition 5. [1, 2] Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point of
g with multiplicity q. For a positive integer k, Nf>k(r, 1; g) denotes the reduced counting
function of those 1-points of f and g such that p > q = k. In an analogous way we can
define Ng>k(r, 1; f).

Definition 6. [1, 2] Let f and g be two nonconstant meromorphic functions such that f
and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point of g with
multiplicity q. We denote by NL(r, 1; f) the counting function of those 1-points of f and
g, where p > q, by N1)

E (r, 1; f) the counting function of those 1-points of f and g, where
p = q = 1 and by N (2

E (r, 1; f) the counting function of those 1-points of f and g, where
p = q ≥ 2, each point in these counting functions is counted only once. Similarly we can
define NL(r, 1; g), N1)

E (r, 1; g) and N (2
E (r, 1; g).

2 Lemmas and Propositions

In this section we present some lemmas and propositions which will be needed in the
sequel.

Proposition 1. [18] Let f be a transcendental entire function, and n, m, k be three
positive integers such that n ≥ k+2, and P (z) = amz

m +am−1z
m−1 + ...+a2z

2 +a1z+a0,
where a0, a1, a2, . . . , am−1, am are complex constants. Then [fnP (f)](k) = 1 has
infinitely many solutions.
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Proposition 2. [18] Let f and g be two nonconstant entire functions and let n, k be two
positive integers with n > k, and let P (z) = amz

m + am−1z
m−1 + ... + a2z

2 + a1z + a0

be a nonzero polynomial, where a0, a1, a2, . . . , am−1, am are complex constants. If
[fnP (f)](k)[gnP (g)](k) ≡ 1, then P (z) is reduced to a nonzero monomial, that is, P (z) =

aiz
i 6≡ 0 for some i = 0, 1, 2, ...,m; further, f(z) = c1/a

1
n+i

i ecz, g(z) = c2/a
1

n+i

i e−cz, where
c1, c2 and c are three constants satisfying

(−1)k(c1c2)n+i[(n+ i)c]2k = 1.

Lemma 1. [13] Let f be a nonconstant meromorphic function and P (f) = a0 + a1f +
a2f

2 + ...+ anf
n, where a0, a1, a2, ... ,an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2. [8, 14] Let f be a nonconstant entire function, and let k be a positive integer.
Then for any non-zero finite complex number c

T (r, f) ≤ N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ Nk+1(r, 0; f) +N
(
r, c; f (k)

)
−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
denotes the counting function which only counts those points such

that f (k+1) = 0 but f
(
f (k) − c

)
6= 0.

Lemma 3. [16] Let f be a nonconstant meromorphic function and p, k be two positive
integers. Then

Np

(
r, 0; f (k)

)
≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 4. [4] Let f and g be two nonconstant entire functions and let n, k be two positive
integers with n > k. If [fn](k)[gn](k) ≡ 1, then f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2

and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1.

Lemma 5. [2] Let f and g be two nonconstant meromorphic functions that share (1, 0).
Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 6. [15] Let f and g be two nonconstant meromorphic functions sharing (1, 0).
Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 7. [2] Let f and g share (1, 0). Then
(i)Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f);
(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N⊕(r, 0; g′) + S(r, g),
where N⊕(r, 0; f ′) (N⊕(r, 0; g′)) denotes the counting function of those zeros of f ′ (g′)
which are not the zeros of f(f − 1) (g(g − 1)).
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Lemma 8. [1] Let f and g be two nonconstant meromorphic functions that share (1, 1).
Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>2(r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 9. [2] Let f and g share (1, 1). Then

Nf>2(r, 1; g) ≤ 1
2
N(r, 0; f) +

1
2
N(r,∞; f)− 1

2
N⊕(r, 0; f ′) + S(r, f),

where N⊕(r, 0; f ′) is defined as in Lemma 7.

Lemma 10. [8, 14] Let f be a transcendental meromorphic function, and let a1(z), a2(z)
be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f), i=1,2. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

3 Proof of the Theorem

Proof of Theorem 1. Let P (z) = amz
m +am−1z

m−1 + ...+a2z
2 +a1z+a0, where a0(6= 0),

a1, a2, . . . , am−1, am(6= 0) are complex constants. We consider F (z) = fnP (f) and
G(z) = gnP (g). Then F (k) and G(k) share (1, l). Let

H =

(
F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1

)
−

(
G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1

)
. (3.1)

We assume that H 6≡ 0. Let l ≥ 1. Suppose that z0 is a simple 1-point of F (k). Then z0
is a simple 1-point of G(k). So from (3.1) we see that z0 is a zero of H. Thus

N
(
r, 1;F (k) |= 1

)
≤ N(r, 0;H) ≤ T (r,H) +O(1)

≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.2)

From (3.1) we know that poles of H possibly result from those zeros of F (k+1) and G(k+1)

which are not common 1-points of F (k) and G(k) and from those common 1-points of F (k)

and G(k) such that each such point has different multiplicity related to F (k) and G(k).
Thus

N(r,∞;H) ≤ N(r, 0;F (k) |≥ 2) +N(r, 0;G(k) |≥ 2) +NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
, (3.3)

where N⊗
(
r, 0;F (k+1)

)
denotes the reduced counting function of those zeros of F (k+1)

which are not the zeros of F (k)
(
F (k) − 1

)
. N⊗

(
r, 0;G(k+1)

)
is defined similarly. Now we

consider the following three cases.
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Case 1. Let l ≥ 2. By (3.2) and (3.3) we obtain

N
(
r, 1;F (k)

)
≤ N

(
r, 1;F (k) |= 1

)
+N

(
r, 1;F (k) |≥ 2

)
≤ N(r, 0;F (k) |≥ 2) +N(r, 0;G(k) |≥ 2) +NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G). (3.4)

From (3.4) and Lemma 2 we obtain

T (r, F ) + T (r,G) ≤ Nk+1(r, 0;F ) +Nk+1(r, 0;G) +N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N

(
r, 1;G(k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
−N0

(
r, 0;F (k+1)

)
−N0

(
r, 0;G(k+1)

)
+S(r, F ) + S(r,G). (3.5)

It is clear that

Nk+1(r, 0;F ) +N
(
r, 0;F (k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N

(
r, 0;F (k) |≥ 2 | F = 0

)
+N

(
r, 0;F (k) |≥ 2 | F 6= 0

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N (r, 0;F |≥ k + 2) +N0

(
r, 0;F (k+1)

)
≤ Nk+2(r, 0;F ) +N0

(
r, 0;F (k+1)

)
. (3.6)

A similar result holds for G also. Since G is entire, we have

N
(
r, 1;F (k) |≥ 2

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;G(k) |= 2

)
+ 2NL

(
r, 1;F (k)

)
+ 2NL

(
r, 1;G(k)

)
+N (3

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;G(k)

)
≤ T

(
r,G(k)

)
+O(1)

≤ T (r,G) + S(r,G). (3.7)

So from (3.5), (3.6) and (3.7) we obtain

T (r, F ) ≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) + S(r, F ) + S(r,G).
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From this and using Lemma 1 we obtain

(n+m)T (r, f) ≤ (2k + 2m+ 4)T (r) + S(r). (3.8)

Similarly

(n+m)T (r, g) ≤ (2k + 2m+ 4)T (r) + S(r). (3.9)

Combining (3.8) and (3.9) we get

(n− 2k −m− 4)T (r) ≤ S(r),

which contradicts the fact that n > 2k +m+ 4.
Case 2. Let l = 1. In view of Lemmas 3, 8, 9, (3.2) and (3.3) we obtain

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;F (k) |= 1

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(2
E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;F (k) |= 1

)
+N

(
r, 1;G(k)

)
−NL

(
r, 1;F (k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>2

(
r, 1;G(k)

)
≤ N(r, 0;F (k) |≥ 2) +N(r, 0;G(k) |≥ 2)

+
1
2
N
(
r, 0;F (k)

)
+ T

(
r,G(k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤ N(r, 0;F (k) |≥ 2) +N(r, 0;G(k) |≥ 2)

+
1
2
Nk+1(r, 0;F ) + T (r,G) +N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G). (3.10)

Using (3.6) and (3.10) we obtain from Lemma 2 that

T (r, F ) ≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) +
1
2
Nk+1(r, 0;F ) + S(r, F ) + S(r,G).

From this and using Lemma 1 we obtain

(n+m)T (r, f) ≤
(

5k + 5m+ 9
2

)
T (r) + S(r). (3.11)

Similarly

(n+m)T (r, g) ≤
(

5k + 5m+ 9
2

)
T (r) + S(r). (3.12)
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From (3.11) and (3.12) we get(
n− 5k + 3m+ 9

2

)
T (r) ≤ S(r),

which contradicts our assumption that n > 5k+3m+9
2 .

Case 3. Let l = 0. In this case (3.2) changes to

N
1)
E

(
r, 1;F (k)

)
≤ N(r, 0;H) ≤ T (r,H) +O(1)

≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.13)

Using Lemmas 3, 5, 6, 7, (3.3), (3.6) and (3.13) we obtain

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

1)
E

(
r, 1;F (k)

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N (2

E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+NL

(
r, 1;F (k)

)
+ T

(
r,G(k)

)
+NF (k)>1

(
r, 1;G(k)

)
+NG(k)>1

(
r, 1;F (k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤ N(r, 0;F (k) |≥ 2) +N
(
r, 0;G(k) |≥ 2

)
+2Nk+1(r, 0;F ) +Nk+1(r, 0;G) + T (r,G)

+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+S(r, F ) + S(r,G)

≤ Nk+1(r, 0;F ) +Nk+2(r, 0;F ) +Nk+2(r, 0;G)

+T (r,G) +N0

(
r, 0;F (k+1)

)
+N0

(
r, 0;G(k+1)

)
+S(r, F ) + S(r,G). (3.14)

Using Lemma 2 we get

T (r, F ) ≤ 2Nk+1(r, 0;F ) +Nk+2(r, 0;F ) +Nk+1(r, 0;G) +Nk+2(r, 0;G)
+S(r, F ) + S(r,G).

In view of Lemma 1 we obtain

(n+m)T (r, f) ≤ (5k + 5m+ 7)T (r) + S(r). (3.15)

Similarly

(n+m)T (r, g) ≤ (5k + 5m+ 7)T (r) + S(r). (3.16)
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Combining (3.15) and (3.16) we get

(n− 5k − 4m− 7)T (r) ≤ S(r),

a contradiction since n > 5k + 4m+ 7.
We now assume that H ≡ 0. That is

F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1
≡ G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1
.

Integrating both sides of the above equality twice we get

1
F (k) − 1

≡ BG(k) +A−B

G(k) − 1
, (3.17)

where A(6= 0) and B are constants. From (3.17) it is clear that F (k) and G(k) share 1 CM
and hence F (k) and G(k) share (1, 2). Thus n > 2k+m+ 4. we now discuss the following
three cases separately.
Case I. Let B 6= 0 and A = B. Then from (3.17) we get

1
F (k) − 1

=
BG(k)

G(k) − 1
. (3.18)

If B = −1, then from (3.18) we obtain

F (k)G(k) ≡ 1,

i.e.,

[fnP (f)](k)[gnP (g)](k) ≡ 1. (3.19)

So we have

[fn(amf
m + ...+ a0)]

(k) [gn(amg
m + ...+ a0]

(k) ≡ 1,

which by the assumptions and Proposition 2 is a contradiction.
If B 6= −1, then it follows from (3.18) and the fact that f and g are entire that

F (k) −
(

1 +
1
B

)
= − 1

BG(k)
6= 0.

So using Lemma 2 we get

(n+m)T (r, f) = T (r, F ) +O(1)
≤ Nk+1(r, 0;F ) + S(r, f)
≤ (k + 1)N(r, 0; f) +mT (r, f) + S(r, f)
≤ (k + 1 +m)T (r, f) + S(r, f),
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i.e.,

[n− (k + 1)]T (r, f) ≤ S(r, f),

which is a contradiction because n > 2k +m+ 4.
Case II. Let B 6= 0 and A 6= B. Then from (3.17) we get

G(k) +
A−B

B
6= 0.

So by Lemma 2 we have

(n+m)T (r, g) = T (r,G) +O(1) ≤ Nk+1(r, 0;G) + S(r,G).

Proceeding as case I we obtain

[n− (k + 1)]T (r, g) ≤ S(r, g),

which is also a contradiction.
Case III. Let B = 0 and A 6= 0. Then from (3.17) we obtain

F (k) =
1
A
G(k) + 1− 1

A
, (3.20)

i.e.,

F =
1
A
G+ ψ(z), (3.21)

where ψ(z) is a polynomial of degree at most k. By (3.21) and Lemma 1 we can say that

T (r, f) = T (r, g) + S(r, f). (3.22)

By the assumptions and Proposition 1, it is clear that either both f and g are transcen-
dental entire functions or both are polynomials.
First we suppose that both f and g are transcendental entire functions. If ψ(z) 6≡ 0, then
in view of (3.22), Lemma 1 and the second fundamental theorem of Nevanlinna we obtain

(n+m)T (r, f) = T (r, F ) +O(1)
≤ N(r,∞;F ) +N(r, 0;F ) +N(r, ψ(z);F ) + S(r, F )
≤ N(r, 0;F ) +N(r, 0;G) + S(r, F )
≤ 2(m+ 1)T (r, f) + S(r, f),

which is impossible. Hence in this case ψ(z) ≡ 0.
Now we assume that both f and g are polynomials. We suppose that f and g have γ and
δ pairwise distinct zeros respectively. Then f and g are of the form

f(z) = c(z − p1)l1(z − p2)l2 ...(z − pγ)lγ ,
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g(z) = d(z − q1)m1(z − q2)m2 ...(z − qδ)mδ ,

so that

fn(z) = cn(z − p1)nl1(z − p2)nl2 ...(z − pγ)nlγ , (3.23)

gn(z) = dn(z − q1)nm1(z − q2)nm2 ...(z − qδ)nmδ , (3.24)

where c and d are nonzero constants, nli > 2k +m+ 4, nmj > 2k +m+ 4, i = 1, 2, ..., γ,
and j = 1, 2, ..., δ. Differentiating (3.20) we obtain

F (k+1) =
1
A
G(k+1),

i.e.,

(amf
n+m)(k+1) + ...+ (a0f

n)(k+1) =
1
A

[
(amg

n+m)(k+1) + ...+ (a0g
n)(k+1)

]
. (3.25)

Using (3.23) and (3.24), (3.25) can be written as

(z − p1)nl1−(k+1)(z − p2)nl2−(k+1)...(z − pγ)nlγ−(k+1)α(z) = (z − q1)nm1−(k+1)

(z − q2)nm2−(k+1)...(z − qδ)nmδ−(k+1)β(z), (3.26)

where α(z) and β(z) are polynomials such that deg α(z) = m

γ∑
i=1

li + (γ − 1)(k + 1)

and deg β(z) = m

δ∑
j=1

mj + (δ − 1)(k + 1). Now

γ∑
i=1

[nli − (k + 1)]−m

γ∑
i=1

li =
γ∑

i=1

[(n−m)li − (k + 1)]

> γ(k + 3)
> (γ − 1)(k + 1),

i.e.,

γ∑
i=1

[nli − (k + 1)] > m

γ∑
i=1

li + (γ − 1)(k + 1).

Similarly,

δ∑
j=1

[nmj − (k + 1)] > m
δ∑

j=1

mj + (δ − 1)(k + 1).
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Thus from (3.26) we deduce that there is ζ such that

fn(ζ) [amf
m(ζ) + ...+ a1f(ζ) + a0] = gn(ζ) [amg

m(ζ) + ...+ a1g(ζ) + a0] = 0,

where ζ has multiplicity greater than 2k + m + 4. This together with (3.21) implies
ψ(z) = 0. Thus from (3.20), (3.21) together with the fact that F (k) and G(k) share 1 CM
we obtain A = 1 and so F ≡ G. That is

fnP (f) ≡ gnP (g). (3.27)

Hence

fn [amf
m + ...+ a1f + a0] ≡ gn [amg

m + ...+ a1g + a0] .

Let h = f
g . If h is a constant, then by putting f = gh in above we get

amg
n+m(hn+m − 1) + am−1g

n+m−1(hn+m−1 − 1) + ...+ a0g
n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, ..., n + m − i, ..., n + 1, n), am−i 6= 0 for some
i = 0, 1, ...,m. Thus f ≡ tg for a constant t such that td = 1, d = (n + m, ..., n + m −
i, ..., n+ 1, n), am−i 6= 0 for some i = 0, 1, ...,m.

If h is not a constant, then from (3.27) we can say that f and g satisfy the algebraic
equation R(f, g) = 0, where

R(x, y) = xn(amx
m + am−1x

m−1 + ...+ a0)− yn(amy
m + am−1y

m−1 + ...+ a0).

We omit the proof of the case when P (z) = c0, where c0 (6= 0) is a complex constant, since
using Lemma 4 and proceeding in the same way the proof can be carried out in the line
of proof as above. This completes the proof of the theorem.

Proof of Corollary 1. By (3.19)

[fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1. (3.28)

We consider following subcases.
Subcase(i) We assume that λ = 0 and µ 6= 0. Then as n > k, by Lemma 4 we
obtain f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kµ2(c1c2)n+m[(n+m)c]2k = 1. Similar result holds for λ 6= 0 and µ = 0.
Subcase (ii) Let λµ 6= 0. Since f and g are entire functions from above it is clear that

f 6= 0 and g 6= 0. (3.29)

Let f(z) = eα(z), where α(z) is an entire function. Then we obtain

[µfn+m](k) = t1(α′, α′′, ..., α(k))e(n+m)α(z) (3.30)

and
[λfn](k) = t2(α′, α′′, ..., α(k))enα(z), (3.31)
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where ti(α′, α′′, ..., α(k)) 6≡ 0 (i = 1, 2) are differential polynomials. Since g is an entire
function, we have from (3.28) that

[fn(µfm + λ)](k) 6= 0.

So from (3.30) and (3.31) we get

t1(α′, α′′, ..., α(k))emα(z) + t2(α′, α′′, ..., α(k)) 6= 0. (3.32)

Since α is an entire function, we have T (r, α′) = S(r, f) and

T (r, α(j)) ≤ T (r, α′) + S(r, f) = S(r, f)

for j = 1, 2, ..., k. Hence we have

T (r, ti) = S(r, f) (3.33)

for i = 1, 2. So by (3.32), (3.33), Lemma 1 and Lemma 10 we get

mT (r, f) ≤ T (r, t1emα) + S(r, f)
≤ N(r, 0; t1emα) +N(r, 0; t1emα + t2) + S(r, f)

≤ T

(
r,

1
t1

)
+ S(r, f)

= S(r, f),

which is a contradiction.
Again from (3.27) we have

fn(µfm + λ) ≡ gn(µgm + λ). (3.34)

If λµ = 0, then from |λ|+ |µ| 6= 0 we get f = tg, where t is a constant such that tn+m∗
= 1.

Let λµ 6= 0 and h = f
g . So from (3.34) we obtain

µgm(hn+m − 1) = λ(1− hn).

If hn+m = 1, by the above equation we get hn = 1, i.e., fn = gn and fm = gm.
If hn+m 6= 1, then substituting f = gh in (3.34) we get

gm = −λ
µ

1 + h+ ...+ hn−1

1 + h+ ...+ hn+m−1
.

Since g is an entire function, every zero of hn+m−1 is a zero of hn−1 and hence of hm−1.
Noting that n > 2k +m+ 4, we obtain h is a constant, which is a contradiction as f and
g are nonconstant. Therefore hn+m ≡ 1, that is fn+m ≡ gn+m. This completes the proof
of Corollary 1.
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Proof of Corollary 2. By (3.19) we have

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1. (3.35)

Then we consider following two subcases.
Subcase(I) Let m = 0. Then

[fn](k)[gn](k) ≡ 1. (3.36)

Since n > k by Lemma 4 we obtain f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are
three constants satisfying

(−1)k(c1c2)n(nc)2k = 1.

Subcase(II) Let m ≥ 1. Since f and g are entire functions, we have f 6= 0 and g 6= 0. Let
f(z) = eα(z), where α(z) is a nonconstant entire function. Clearly

[fn+m(z)](k) = sm(α′, α′′, ..., α(k))e(n+m)α(z). (3.37)

.

(−1)m−i[mCif
n+i(z)](k) = si(α′, α′′, ..., α(k))e(n+i)α(z). (3.38)

.

(−1)m[fn(z)](k) = s0(α′, α′′, ..., α(k))enα(z). (3.39)

where si(α′, α′′, ..., α(k)) (i = 0, 1, 2, ...,m) are differential polynomials. Obviously

si(α′, α′′, ..., α(k)) 6≡ 0

for i = 0, 1, 2, ...,m, and

[fn(f − 1)m](k) 6= 0.

From (3.37) and (3.38) we have

sm(α′, α′′, ..., α(k))emα(z) + ...+ s0(α′, α′′, ..., α(k)) 6= 0. (3.40)

Since α(z) is an entire function, we obtain T (r, α′) = S(r, f) and T (r, α(j)) = S(r, f)
for j = 1, 2, ..., k. Hence T (r, si) = S(r, f) for i = 1, 2, ...,m.
So from (3.40), Lemmas 1 and 10 we obtain

mT (r, f) = T (r, sme
mα + ...s1e

α) + S(r, f)
≤ N(r, 0; sme

mα + ...+ s1e
α) +N(r, 0; sme

mα + ...+ s1e
α + s0) + S(r, f)

≤ N(r, 0; sme
(m−1)α + ...+ s1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction.
Again by (3.27) we have

fn(f − 1)m ≡ gn(g − 1)m. (3.41)
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If m = 0, then by (3.41) we get f ≡ tg for a constant t such that tn = 1.
Now let m ≥ 1. Then from (3.41) we get

fn[fm + ...+ (−1)i mCm−i f
m−i + ...+ (−1)m] = gn[gm + ...

+(−1)i mCm−i g
m−i + ...+ (−1)m]. (3.42)

Let h = f
g . If h is a constant, by putting f = gh in (3.42) we get

gn+m(hn+m − 1) + ...+ (−1)i mCm−i g
n+m−i(hn+m−i − 1) + ...+ (−1)mgn(hn − 1) = 0,

which implies hd = 1, where d = (n + m, ..., n + m − i, ..., n + 1, n). Thus f ≡ tg for a
constant t such that td = 1, d = (n+m, ..., n+m− i, ..., n+ 1, n).

If h is not a constant, then from (3.41) we can say that f and g satisfy the algebraic
equation R(f, g) = 0, where R(x, y) = xn(x− 1)m− yn(y− 1)m. This completes the proof
of Corollary 2.
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