Bulletin of the *Transilvania* University of Braşov • Vol 4(53), No. 1 - 2011 Series III: Mathematics, Informatics, Physics, 75-80

UNIVALENCE OF AN INTEGRAL OPERATOR Virgil PESCAR¹

Abstract

In this work we obtain sufficient conditions for the univalence of the integral operator $J_{\gamma_1,...,\gamma_n,\beta,n}$.

2000 Mathematics Subject Classification: 30C45. Key words: integral operator, univalence, starlike.

1 Introduction

We consider the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk \mathcal{U} . Let \mathcal{S} denote the subclass of \mathcal{A} consisting of the functions $f \in \mathcal{A}$, which are univalent in \mathcal{U} and \mathcal{S}^* denote the subclass of \mathcal{S} consisting in all starlike functions in \mathcal{U} .

We consider the integral operator H_{γ} for $f \in \mathcal{A}$ and γ , be a complex number, which is given by

$$H_{\gamma}(z) = \left\{ \frac{1}{\gamma} \int_{0}^{z} u^{-1} \left(f(u) \right)^{\frac{1}{\gamma}} du \right\}^{\gamma}. \tag{1}$$

Miller and Mocanu [2] have studied that the integral operator H_{γ} is in the class S for $f \in S^*$ and $\gamma > 0$.

We introduce a new integral operator

 $^{^1\}mathrm{Department}$ of Mathematics, $\mathit{Transilvania}$ University of Braşov, 500091,Braşov, Romania, e-mail: virgilpescar@unitbv.ro

Virgil Pescar

$$J_{\gamma_1,\ldots,\gamma_n,\beta,n}(z) =$$

$$= \left\{ \left(\sum_{j=1}^{n} \frac{1}{\gamma_{j}} \right) \int_{0}^{z} u^{-\beta} \left(f_{1}(u) \right)^{\frac{1}{\gamma_{1}} + \frac{\beta - 1}{n}} \dots \left(f_{n}(u) \right)^{\frac{1}{\gamma_{n}} + \frac{\beta - 1}{n}} du \right\}^{\frac{1}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}}}}, \tag{2}$$

for $f_j \in \mathcal{A}$ and complex numbers $\beta, \gamma_j \ (\gamma_j \neq 0), \ j = \overline{1, n}$.

For $\beta = 1$, from (2) we obtain the integral operator $J_{\gamma_1,...,\gamma_n}$ defined in [4].

For $n = 1, f_1 = f$ and $\gamma_1 = \gamma$, from (2) we get the integral operator $J_{\gamma,\beta}$ defined in [5].

For $n = 1, \beta = 1, \gamma_1 = \gamma, f_1 = f$, from (2) we obtain the integral operator H_{γ} given by (1).

2 Preliminary results

We need the following lemmas.

Lemma 1. [3]. Let α be a complex number, $Re \alpha > 0$ and $f \in \mathcal{A}$. If

$$\frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,\tag{1}$$

for all $z \in \mathcal{U}$, then the integral operator F_{α} defined by

$$F_{\alpha}(z) = \left[\alpha \int_{0}^{z} u^{\alpha - 1} f'(u) du\right]^{\frac{1}{\alpha}}$$
 (2)

is in the class S.

Lemma 2. (Schwarz [1]). Let f be the function regular in the disk $\mathcal{U}_R = \{z \in \mathbb{C} : |z| < R\}$ with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \ (z \in \mathcal{U}_R), \tag{3}$$

the equality (in the inequality (3) for $z \neq 0$) can hold if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

3 Main results

Theorem 1. Let γ_j , β be complex numbers, $Re \ \gamma_j \neq 0$, M_j real positive numbers, $j=\overline{1,n}$, $p=\sum_{j=1}^n Re \ \frac{1}{\gamma_j} > 0$ and $f_j \in \mathcal{A}$, $f_j(z)=z+a_{2j}z^2+a_{3j}z^3+..., \ j=\overline{1,n}$.

$$\left| \frac{zf_j'(z)}{f_j(z)} - 1 \right| \le M_j, \quad \left(z \in \mathcal{U}; \ j = \overline{1, n} \right) \tag{1}$$

and

$$\sum_{j=1}^{n} M_j \left[\frac{1}{|\gamma_j|} + \frac{|\beta - 1|}{n} \right] \le \frac{(2p+1)^{\frac{2p+1}{2p}}}{2},\tag{2}$$

then the integral operator $J_{\gamma_1,\gamma_2,...,\gamma_n,\beta,n}$ given by (2) is in the class S.

Proof. We observe that

$$J_{\gamma_1,\gamma_2,\dots,\gamma_n,\beta,n}(z) =$$

$$= \left\{ \left(\sum_{j=1}^{n} \frac{1}{\gamma_{j}} \right) \int_{0}^{z} u^{\sum_{j=1}^{n} \frac{1}{\gamma_{j}} - 1} \left(\frac{f_{1}(u)}{u} \right)^{\frac{1}{\gamma_{1}} + \frac{\beta - 1}{n}} \dots \left(\frac{f_{n}(u)}{u} \right)^{\frac{1}{\gamma_{n}} + \frac{\beta - 1}{n}} du \right\}^{\frac{1}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}}}}$$
(3)

We consider the function

$$g(z) = \int_0^z \left(\frac{f_1(u)}{u}\right)^{\frac{1}{\gamma_1} + \frac{\beta - 1}{n}} \dots \left(\frac{f_n(u)}{u}\right)^{\frac{1}{\gamma_n} + \frac{\beta - 1}{n}} du, \tag{4}$$

for $f_j \in \mathcal{A}$, $j = \overline{1, n}$. The function g is regular in \mathcal{U} .

We define the function h by

$$h(z) = \frac{zg''(z)}{g'(z)}, \quad (z \in \mathcal{U}).$$
 (5)

We have h(0) = 0 and from (4) and (5) we get

$$|h(z)| \le \sum_{j=1}^{n} \left[\frac{1}{|\gamma_j|} + \frac{|\beta - 1|}{n} \right] \left| \frac{zf_j'(z)}{f_j(z)} - 1 \right|, \quad (z \in \mathcal{U}).$$
 (6)

From (1) and (6) we obtain

$$|h(z)| \le \sum_{j=1}^{n} M_j \left[\frac{1}{|\gamma_j|} + \frac{|\beta - 1|}{n} \right], \tag{7}$$

for all $z \in \mathcal{U}$.

Applying Lemma 2 we have

$$\left| \frac{zg''(z)}{g'(z)} \right| \le \sum_{j=1}^{n} M_j \left[\frac{1}{|\gamma_j|} + \frac{|\beta - 1|}{n} \right] |z|, \tag{8}$$

for all $z \in \mathcal{U}$ and hence, we obtain

$$\frac{1 - |z|^{2p}}{p} \left| \frac{zg''(z)}{g'(z)} \right| \le \frac{1 - |z|^{2p}}{p} |z| \sum_{j=1}^{n} M_j \left[\frac{1}{|\gamma_j|} + \frac{|\beta - 1|}{n} \right], \quad (z \in \mathcal{U}).$$
(9)

Since

$$\max_{|z| \le 1} \frac{1 - |z|^{2p}}{p} |z| = \frac{2}{(2p+1)^{\frac{2p+1}{2p}}},$$
(10)

from (2) and (9) we have

$$\frac{1-|z|^{2p}}{p}\left|\frac{zg''(z)}{g'(z)}\right| \le 1\tag{11}$$

for all $z \in \mathcal{U}$.

From (4) we obtain $g'(z) = \left(\frac{f_1(z)}{z}\right)^{\frac{1}{\gamma_1} + \frac{\beta-1}{n}} \dots \left(\frac{f_n(z)}{z}\right)^{\frac{1}{\gamma_n} + \frac{\beta-1}{n}}$ and using (11), by Lemma 1, it results that the integral operator $J_{\gamma_1,\gamma_2,\dots,\gamma_n,\beta,n}$, given by (2), is in the class \mathcal{S} .

Corollary 1. Let γ be a complex number, $Re \ \gamma \neq 0$, $Re \ \frac{1}{\gamma} > 0$ and $f \in \mathcal{A}$,

$$f(z) = z + a_{21}z^2 + a_{31}z^3 + \dots$$

If

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le |\gamma| \frac{\left(2Re^{\frac{1}{\gamma}} + 1\right)^{\frac{2Re^{\frac{1}{\gamma} + 1}}{2}}}{2}}{2}, \quad (z \in \mathcal{U}),$$
 (12)

then the integral operator H_{γ} is in the class S.

Proof. For $n=1,\ \beta=1,\ \gamma_1=\gamma,\ f_1=f$ and $p=Re\ \frac{1}{\gamma},$ from Theorem 1 we obtain Corollary 1.

Corollary 2. Let the function $f \in A$, $f(z) = z + a_{21}z^2 + a_{31}z^3 + \dots$ If

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{3\sqrt{3}}{2}, \quad (z \in \mathcal{U}), \tag{13}$$

then the integral operator Alexander, given by

$$G(z) = \int_0^z \frac{f(u)}{u} du$$

is in the class S.

Proof. For n = 1, $\beta = 1$, $\gamma_1 = 1$, $f_1 = f$ from Theorem 1 we have Corollary 2.

References

- [1] Mayer, O.: The Functions Theory of One Variable Complex, Bucureşti, 1981.
- [2] Miller, S. S.; Mocanu, P. T." Differential Subordinations, Theory and Applications, Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
- [3] Pascu, N. N.: On a Univalence Criterion II, Itinerant Seminar Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), Preprint, vol. 85, University "Babeş-Bolyai", Cluj-Napoca, (1985), 153-154.
- [4] Pescar, V.: On the univalence of an integral operator, Applied Mathematics Letters, 23 (2010), 615-619.
- [5] Pescar, V.; Breaz, D.: On an integral operator, Applied Mathematics Letters, 23 (2010), 625-629.