ESTIMATES OF APPROXIMATION IN TERMS OF A WEIGHTED MODULUS OF CONTINUITY

Radu PĂLTĂNEA ${ }^{1}$

Abstract

Consider modulus $\omega_{\varphi}(f, h)=\sup \left\{|f(x)-f(y)|\left|x \geq 0, y \geq 0,|x-y| \leq h \varphi\left(\frac{x+y}{2}\right)\right\}\right.$, where $\varphi(x)=\frac{\sqrt{x}}{1+x^{m}}, x \in[0, \infty), m \in \mathbb{N}, m \geq 2$. We give a characterization of the class of functions f, for which $\omega_{\varphi}(f, h) \rightarrow \infty,(h \rightarrow 0)$ and then we obtain quantitative estimates of the approximation of the functions of this class by means of the Szász-Mirakjan operators and by the Baskakov operators.

2000 Mathematics Subject Classification: 41A36, 41A25, 41A35, 26A15
Key words: weighted modulus of continuity, uniform approximation on compacts, Szász-Mirakjan operators, Baskakov operators.

1 Introduction

In the approximation of functions defined on a non compact interval by sequences of positive linear operators, weighted moduli of continuity are useful tools. In References we give a part of the contributions in this direction. In our paper [13], starting from a class of "admissible" functions, we built a general weighted modulus and we obtain an estimate applicable to general positive linear operators. It was pointed out that for a particular example of weighted function this modulus allows the description of the class of functions, discovered by Totik [14], which can be uniformly approximated by the Szász-Mirajan operators.

In this paper we give a characterization of a class of functions which can be uniformly approximated on compact intervals, in terms of another particular case of the modulus given in [13].

Consider the weight function $\varphi(x)=\frac{\sqrt{x}}{1+x^{m}}, x \in[0, \infty)$, where $m \in \mathbb{N}, m \geq 2$ is a given parameter. Correspondingly we consider the following weighted modulus of continuity

$$
\begin{equation*}
\omega_{\varphi}(f, h)=\sup \left\{|f(x)-f(y)|\left|x \geq 0, y \geq 0,|x-y| \leq h \varphi\left(\frac{x+y}{2}\right)\right\} .\right. \tag{1}
\end{equation*}
$$

Denote by $\mathcal{F}([0, \infty))$ the linear space of real functions defined on interval $[0, \infty)$. For a real number $p>0$ consider the function $e_{p} \in \mathcal{F}[0, \infty), e_{p}(t)=t^{p}$. We denote by Π_{k} the set of polynomials of degree at most k.

[^0]Theorem 1. ([13]) Let $W \subset \mathcal{F}([0, \infty))$ be a linear subspace, such that $\Pi_{2 m+2} \in W$. If $L: W \rightarrow \mathcal{F}([0, \infty))$ is a positive linear operator, then for any $f \in W$, any $x \in(0, \infty)$ and any $h>0$ we have

$$
\begin{align*}
& |L(f, x)-f(x)| \leq|f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right| \tag{2}\\
& +\left(L\left(e_{0}, x\right)+\frac{4}{h^{2} x} L\left(\left(e_{1}-x e_{0}\right)^{2}\left(2 e_{0}+x^{2 m} e_{0}+e_{2 m}\right), x\right)\right) \omega_{\varphi}(f, h)
\end{align*}
$$

2 An equivalence theorem

Theorem 2. For a function $f \in \mathcal{F}([0, \infty))$ the following are equivalent:
i) $\lim _{h \rightarrow+0} \omega_{\varphi}(f, h)=0$,
ii) the function $f \circ e_{2}$ is uniformly continuous on the interval $[0,1]$ and the function $f \circ e_{\nu}, \nu=\frac{2}{2 m+1}$, is uniformly continuous on the interval $[1, \infty)$.
Proof. i) \Rightarrow ii) Let $\varepsilon>0$ be arbitrarily chosen. There is $h_{\varepsilon}>0$, such that for any $0<h<$ h_{ε} we have $\omega_{\varphi}(f, h)<\varepsilon$. It follows that the implication below holds true:

$$
\begin{equation*}
|y-x|<h_{\varepsilon} \varphi\left(\frac{x+y}{2}\right) x, y \in[0, \infty) \Rightarrow|f(y)-f(x)|<\varepsilon . \tag{3}
\end{equation*}
$$

First we show that if we take $\delta_{\varepsilon}^{1}=\frac{h_{\varepsilon}}{4}$, we have the implication

$$
\begin{equation*}
|v-u|<\delta_{\varepsilon}^{1} u, v \in[0,1] \Rightarrow\left|v^{2}-u^{2}\right|<h_{\varepsilon} \varphi\left(\frac{u^{2}+v^{2}}{2}\right) . \tag{4}
\end{equation*}
$$

Indeed using the inequality $|u+v| \leq \sqrt{2\left(u^{2}+v^{2}\right)}$ it results that if $|v-u|<\delta_{\varepsilon}^{1}$, then

$$
\begin{aligned}
\left|v^{2}-u^{2}\right| & \leq 2|v-u| \sqrt{\frac{u^{2}+v^{2}}{2}} \\
& <\frac{1}{2} \cdot h_{\varepsilon} \sqrt{\frac{u^{2}+v^{2}}{2}} \\
& \leq h_{\varepsilon} \sqrt{\frac{u^{2}+v^{2}}{2}}\left(1+\left(\frac{u^{2}+v^{2}}{2}\right)^{m}\right)^{-1} \\
& =h_{\varepsilon} \varphi\left(\frac{u^{2}+v^{2}}{2}\right) .
\end{aligned}
$$

If in relation (3) we take $x=u^{2}, y=v^{2}, u \in[0,1], v \in[0,1]$ then we obtain the implication

$$
\begin{equation*}
|v-u|<\delta_{\varepsilon}^{1}, u, v \in[0,1] \Rightarrow\left|f\left(v^{2}\right)-f\left(u^{2}\right)\right|<\varepsilon, \tag{5}
\end{equation*}
$$

i.e. function $f \circ e_{2}$ is uniformly continuous on the interval $[0,1]$.

Now we show that for $\delta_{\varepsilon}^{2}=\frac{1}{2} \cdot h_{\varepsilon}$, we have the implication

$$
\begin{equation*}
|u-v|<\delta_{\varepsilon}^{2}, u, v \in[1, \infty) \Rightarrow\left|u^{\nu}-v^{\nu}\right|<h_{\varepsilon} \varphi\left(\frac{u^{\nu}+v^{\nu}}{2}\right) \tag{6}
\end{equation*}
$$

Indeed, let $u, v \in[1, \infty),|v-u|<\delta_{\varepsilon}^{2}$. Suppose, for instance that $u \geq v$. Set $t=\frac{v}{u}$. The following inequality

$$
\begin{equation*}
\nu \int_{1}^{t} x^{\nu-1} d x \leq(t-1) t^{\nu-1} \tag{7}
\end{equation*}
$$

is immediately true, for any number $t \geq 1$. Then, by taking into account this inequality and the relation $\nu-1=\nu\left(\frac{1}{2}-m\right)$ we have successively

$$
\begin{aligned}
\left|v^{\nu}-u^{\nu}\right| & =\nu \int_{u}^{v} s^{\nu-1} d s=\nu u^{\nu} \int_{1}^{t} x^{\nu-1} d x \\
& \leq u^{\nu}(t-1) t^{\nu-1}=(v-u) v^{\nu-1} \\
& <\frac{h_{\varepsilon}}{2} \cdot v^{\nu-1}=\frac{h_{\varepsilon}}{2}\left(v^{\nu}\right)^{\frac{1}{2}-m} \\
& \leq \frac{h_{\varepsilon}}{2}\left(\frac{u^{\nu}+v^{\nu}}{2}\right)^{\frac{1}{2}-m} \leq h_{\varepsilon} \varphi\left(\frac{u^{\nu}+v^{\nu}}{2}\right) .
\end{aligned}
$$

Therefore the implication given in (6) is true. Now if we apply relation (3), taking $x=u^{\nu}$ and $y=v^{\nu}$, then we obtain the implication

$$
\begin{equation*}
|v-u|<\delta_{\varepsilon}^{2}, u, v \geq 1 \Rightarrow\left|f\left(v^{\nu}\right)-f\left(u^{\nu}\right)\right|<\varepsilon, \tag{8}
\end{equation*}
$$

i.e. function $f \circ e_{\nu}$ is uniformly continuous on the interval $[1, \infty)$.
ii) \Rightarrow i) Let $\varepsilon>0$ be arbitrarily chosen.
 for which the implication (5) is true. If we take in (5), $u=\sqrt{x}, v=\sqrt{y}$, for $x, y \in[0,1]$ we obtain the implication

$$
\begin{equation*}
|\sqrt{y}-\sqrt{x}|<\delta_{\varepsilon}^{1}, x, y \in[0,1] \Rightarrow|f(y)-f(x)|<\varepsilon . \tag{9}
\end{equation*}
$$

Take $h_{\varepsilon}^{1}=\sqrt{2} \cdot \delta_{\varepsilon}^{1}$. For $x, y \in[0,1],|y-x|<h_{\varepsilon}^{1} \varphi\left(\frac{x+y}{2}\right)$ we have successively

$$
\begin{aligned}
|\sqrt{y}-\sqrt{x}| & <\frac{h_{\varepsilon}^{1}}{\sqrt{x}+\sqrt{y}} \cdot \varphi\left(\frac{x+y}{2}\right) \\
& \leq \frac{h_{\varepsilon}^{1}}{\sqrt{x+y}} \cdot \varphi\left(\frac{x+y}{2}\right) \\
& =\frac{h_{\varepsilon}^{1}}{\sqrt{2}}\left(1+\left(\frac{x+y}{2}\right)^{m}\right)^{-1} \\
& \leq \delta_{\varepsilon}^{1} .
\end{aligned}
$$

Hence, taking into account relation (9) we proved the implication:

$$
\begin{equation*}
|y-x|<h_{\varepsilon}^{1} \varphi\left(\frac{x+y}{2}\right), x, y \in[0,1] \Rightarrow|f(y)-f(x)|<\varepsilon . \tag{10}
\end{equation*}
$$

Second, since function $f \circ e_{\nu}$ is uniformly continuous on the interval $[1, \infty)$ there is $\delta_{\varepsilon}^{2} \in(0,1)$ for which the implication (8) is true. If we choose in (8) $u=x^{1 / \nu}, v=y^{1 / \nu}$, for $x, y \in[1, \infty)$ we obtain the implication

$$
\begin{equation*}
\left|y^{m+\frac{1}{2}}-x^{m+\frac{1}{2}}\right|<\delta_{\varepsilon}^{2}, x, y \in[1, \infty) \Rightarrow|f(y)-f(x)|<\varepsilon . \tag{11}
\end{equation*}
$$

Take $h_{\varepsilon}^{2}=2^{1-2 m} \delta_{\varepsilon}^{2}$. For $x, y \in[1, \infty),|y-x|<h_{\varepsilon}^{2} \varphi\left(\frac{x+y}{2}\right)$ we have successively

$$
\begin{aligned}
\left|y^{m+\frac{1}{2}}-x^{m+\frac{1}{2}}\right| & =\frac{|y-x|}{\sqrt{x}+\sqrt{y}} \cdot \sum_{k=0}^{2 m}(\sqrt{x})^{k}(\sqrt{y})^{2 m-k} \\
& \leq|y-x|(\sqrt{x}+\sqrt{y})^{2 m-1} \\
& \leq|y-x|(2(x+y))^{m-\frac{1}{2}} \\
& <h_{\varepsilon}^{2} \varphi\left(\frac{x+y}{2}\right) 2^{2 m-1}\left(\frac{x+y}{2}\right)^{m-\frac{1}{2}} \\
& =\delta_{\varepsilon}^{2} \sqrt{\frac{x+y}{2}}\left(1+\left(\frac{x+y}{2}\right)^{m}\right)^{-1}\left(\frac{x+y}{2}\right)^{m-\frac{1}{2}} \\
& \leq \delta_{\varepsilon}^{2} .
\end{aligned}
$$

Hence, taking into account relation (11) we obtained the implication:

$$
\begin{equation*}
|y-x|<h_{\varepsilon}^{2} \varphi\left(\frac{x+y}{2}\right), x, y \in[1, \infty) \Rightarrow|f(y)-f(y)|<\varepsilon \tag{12}
\end{equation*}
$$

Define

$$
M:=\max _{t \in[0, \infty)} \varphi(t), q:=\min _{t \in[1 / 2,5 / 4]} \varphi(t), h_{\varepsilon}:=\frac{q}{M} \cdot \min \left\{h_{\varepsilon}^{1}, h_{\varepsilon}^{2}\right\} .
$$

Let $x \in[0, \infty), y \in[0, \infty)$ be such that $|y-x| \leq h_{\varepsilon} \varphi\left(\frac{x+y}{2}\right)$ and $x \leq y$. If x, y are both in interval $[0,1]$, or if they are both in interval $[1, \infty)$, then applying relation (10) or relation (12), respectively we deduce that $|f(y)-f(x)|<\varepsilon$. If $x \in[0,1]$ and $y \in[1, \infty)$ we have

$$
|1-x| \leq|y-x| \leq \frac{q}{M} h_{\varepsilon}^{1} \varphi\left(\frac{x+y}{2}\right) \leq q h_{\varepsilon}^{1} \leq h_{\varepsilon}^{1} \varphi\left(\frac{x+1}{2}\right)
$$

Also, since $q \leq \varphi(1)=\frac{1}{2}$ and $h_{\varepsilon}^{2}<1$ we have

$$
|y-1| \leq|y-x| \leq \frac{q}{M} h_{\varepsilon}^{2} \varphi\left(\frac{x+y}{2}\right) \leq q h_{\varepsilon}^{2}<\frac{1}{2} .
$$

It follows $y \leq \frac{3}{2}$. Then, using the definition of q we get $q \leq \varphi\left(\frac{1+y}{2}\right)$. Consequently we obtain $|y-1| \leq h_{\varepsilon}^{2} \varphi\left(\frac{1+y}{2}\right)$.

From relations (10) and (12) it follows $|f(1)-f(x)|<\varepsilon$ and $|f(y)-f(1)|<\varepsilon$. So we derived the following implication

$$
\begin{equation*}
|y-x| \leq h_{\varepsilon} \varphi\left(\frac{x+y}{2}\right), x, y \in[0, \infty) \Rightarrow|f(y)-f(x)|<2 \varepsilon . \tag{13}
\end{equation*}
$$

Since $\varepsilon>0$ was chosen arbitrarily we obtain $\lim _{h \rightarrow+0} \omega_{\varphi}(f, h)=0$.

3 Applications

1. Szász-Mirakjan operators

These operators are defined by:

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) e^{-n x} \frac{(n x)^{k}}{k!} \tag{14}
\end{equation*}
$$

$x \in[0, \infty), n \in \mathbb{N}$ and $f \in W$, where $W \subset \mathcal{F}([0, \infty))$ is the linear subspace of the functions f for which the series above is convergent.

Theorem 3. For any compact interval $[a, b] \subset[0, \infty)$ and for any integer $m \geq 2$ there is a constant $C>0$, depending only on a, b and m such that, for $f \in W, x \in[a, b]$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|S_{n}(f, x)-f(x)\right| \leq\left(9+8 x^{2 m}+\frac{C}{n}\right) \omega_{\varphi}\left(f, \frac{1}{\sqrt{n}}\right) \tag{15}
\end{equation*}
$$

Particularly, if $f \circ e_{2}$ is uniformly continuous on interval $[0,1]$ and $f \circ e_{\nu}, \nu=\frac{2}{2 m+1}$, is uniformly continuous on interval $[1, \infty)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{n}(f)-f\right\|_{[a, b]}=0 \tag{16}
\end{equation*}
$$

Proof. For $j=0,1, \ldots, n \in \mathbb{N}$ and $x \in[a, b]$, set $M_{n}^{j}(x):=S_{n}\left(e_{j}, x\right)$. We have $M_{n}^{0}(x)=1$ and the following recurrence relation

$$
M_{n}^{j+1}(x)=x M_{n}^{j}(x)+\frac{x}{n} \cdot\left(M_{n}^{j}(x)\right)^{\prime}
$$

holds. From this we deduce by induction that there are the coefficients $a_{j, k}$, such that

$$
M_{n}^{j}(x)=\sum_{k=0}^{j-1} \frac{a_{j, k}}{n^{k}} \cdot x^{j-k}, j \geq 1
$$

Since we have the recurrence relation $a_{j+1, k}=(j+1-k) a_{j, k-1}+a_{j, k}, 0 \leq k \leq j$, (where
$a_{j,-1}=0$), we obtain $a_{j, 0}=1$ and $a_{j, 1}=\frac{j(j-1)}{2}$. It follows

$$
\begin{aligned}
& S_{n}\left(\left(e_{1}-x e_{0}\right)^{2}\left(2 e_{0}+x^{2 m} e_{0}+e_{2 m}\right), x\right) \\
& =\left(2+x^{2 m}\right)\left(M_{n}^{2}(x)-2 x M_{n}^{1}(x)+x^{2} M_{n}^{0}(x)\right)+M_{n}^{2 m+2}(x)-2 x M_{n}^{2 m+1}(x)+x^{2} M_{n}^{2 m}(x) \\
& =\left(2+x^{2 m}\right) \frac{x}{n}+\left(x^{2 m+2}+\frac{(2 m+2)(2 m+1)}{2 n} \cdot x^{2 m+1}+\sum_{k=2}^{2 m+1} \frac{a_{2 m+2, k}}{n^{k}} \cdot x^{2 m+2-k}\right) \\
& -2 x\left(x^{2 m+1}+\frac{(2 m+1) 2 m}{2 n} \cdot x^{2 m}+\sum_{k=2}^{2 m} \frac{a_{2 m+1, k}}{n^{k}} \cdot x^{2 m+1-k}\right) \\
& +x^{2}\left(x^{2 m}+\frac{(2 m-1) 2 m}{2 n} \cdot x^{2 m-1}+\sum_{k=2}^{2 m-1} \frac{a_{2 m, k}}{n^{k}} \cdot x^{2 m-k}\right) \\
& =2\left(1+x^{2 m}\right) \cdot \frac{x}{n}+O\left(\frac{1}{n^{2}}\right),
\end{aligned}
$$

whith $O\left(\frac{1}{n^{2}}\right)$, uniform with regard to $x \in[a, b]$. Then we apply Theorem 1 for $h=\frac{1}{\sqrt{n}}$. The particular case follows from Theorem 2.

2. Baskakov operators

These operators are defined by:

$$
\begin{equation*}
V_{n}(f, x)=(1+x)^{-n} \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right)\binom{n+k-1}{k}\left(\frac{x}{1+x}\right)^{k} . \tag{17}
\end{equation*}
$$

$x \in[0, \infty), n \in \mathbb{N}$ and $f \in W_{1}$, where $W_{1} \subset \mathcal{F}([0, \infty))$ is the linear subspace of the functions f for which the series above is convergent.

Theorem 4. For any compact interval $[a, b] \subset[0, \infty)$ and for any integer $m \geq 2$ there is a constant $C>0$, depending only on a, b and m such that, for $f \in W, x \in[a, b]$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|V_{n}(f, x)-f(x)\right| \leq\left(1+8\left(1+x^{2 m}\right)(1+x)+\frac{C}{n}\right) \omega_{\varphi}\left(f, \frac{1}{\sqrt{n}}\right) . \tag{18}
\end{equation*}
$$

Particularly, if $f \circ e_{2}$ is uniformly continuous on interval $[0,1]$ and $f \circ e_{\nu}, \nu=\frac{2}{2 m+1}$, is uniformly continuous on interval $[1, \infty)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|V_{n}(f)-f\right\|_{[a, b]}=0 \tag{19}
\end{equation*}
$$

Proof. For $j=0,1, \ldots, n \in \mathbb{N}$ and $x \in[a, b]$, set $M_{n}^{j}(x):=V_{n}\left(e_{j}, x\right)$. We have $M_{n}^{0}(x)=1$ and the following recurrence relation

$$
M_{n}^{j+1}(x)=x M_{n}^{j}(x)+\frac{x(1+x)}{n} \cdot\left(M_{n}^{j}(x)\right)^{\prime}
$$

holds. From this we deduce by induction that there are polynomials $Q_{j, k}, 1 \leq k \leq j-1$, of degree j, such that

$$
V_{n}(f, x)=x^{j}+\sum_{k=1}^{j-1} \frac{Q_{j, k}(x)}{n^{k}}, j \geq 1
$$

Also we have the recurrence $Q_{j+1,1}(x)=x Q_{j, 1}+j x^{j}(x+1)$, from which we obtain that $Q_{j, 1}(x)=\frac{j(j-1)}{2} \cdot x^{j-1}(1+x)$. Then it follows

$$
\begin{aligned}
& V_{n}\left(\left(e_{1}-x e_{0}\right)^{2}\left(2 e_{0}+x^{2 m} e_{0}+e_{2 m}\right), x\right) \\
& =\left(2+x^{2 m}\right)\left(M_{n}^{2}(x)-2 x M_{n}^{1}(x)+x^{2} M_{n}^{0}(x)\right)+M_{n}^{2 m+2}(x)-2 x M_{n}^{2 m+1}(x)+x^{2} M_{n}^{2 m}(x) \\
& =\left(2+x^{2 m}\right) \frac{x(1+x)}{n} \\
& +\left(x^{2 m+2}+\frac{(2 m+2)(2 m+1)}{2 n} \cdot x^{2 m+1}(1+x)+\sum_{k=2}^{2 m+1} \frac{Q_{2 m+2, k}(x)}{n^{k}}\right) \\
& -2 x\left(x^{2 m+1}+\frac{(2 m+1) 2 m}{2 n} \cdot x^{2 m}(1+x)+\sum_{k=2}^{2 m} \frac{Q_{2 m+1, k}(x)}{n^{k}}\right) \\
& +x^{2}\left(x^{2 m}+\frac{(2 m-1) 2 m}{2 n} \cdot x^{2 m-1}(1+x)+\sum_{k=2}^{2 m-1} \frac{Q_{2 m, k}(x)}{n^{k}}\right) \\
& =2(1+x)\left(1+x^{2 m}\right) \cdot \frac{x}{n}+O\left(\frac{1}{n^{2}}\right),
\end{aligned}
$$

whith $O\left(\frac{1}{n^{2}}\right)$, uniform with regard to $x \in[a, b]$. Then we apply Theorem 1 for $h=\frac{1}{\sqrt{n}}$. The particular case follows from Theorem 2.

References

[1] Amanov, N. T.: On the weighted approximation by Szász-Mirakjan operators, Anal. Math. 18 (1992), no. 3, 167-184.
[2] Becker, M.: Global approximation theorems for Szász-Mirakjan and Baskakov type operators, Indiana Univ. Math. J. 27 (1978), 127-138.
[3] Bustamente, J.: Estimates of positive linear operators in terms of second-order moduli, J. Math. Anal. Appl. 345 (2008), 203-212.
[4] Bustamente, J.; Morales de la Cruz, L.: Positive linear operators and continuous functions on unbounded interval, Jaen J. Approx. 1 (2009), no. 2, 145-173.
[5] Bustamente, J.; Quesada, J. M.; Morales de la Cruz, L.: Direct estimate for positive linear operators in polynomial weighted spaces, J. Approx. Theory 160 (2010), 14951508.
[6] Felten, M.: Direct and inverse estimates for Bernstein polynomials, Constr. Approx. 14 (1998), 459468.
[7] Gadjiev, A. D.; Aral, A.: The estimates of approximation by using new type of weighted modulus of continuity, Comput. Math. Appl. 54 (2007), 127-135.
[8] Gavrea, I.; Gonska, H.; Păltănea, R.; Tachev, G.: General Estimates for the DitzianTotik Modulus, East Journal of Approx. 9, No. 2 (2003), 175-194.
[9] Gonska, H.; Tachev, G.: On the constants in ω_{2}^{φ} - inequalities, Rendiconti Circ. Mat. Palermo (2)Suppl. 68 (2002), 467-477.
[10] Lopez-Moreno, A. J.: Weighted simultaneous approximation with Baskakov type operators, Acta. Math. Hungar. 104 (2004), no. 1-2, 143-151.
[11] Păltănea, R.: Approximation Theory Using Positive Linear Operators, Birkhäuser, Boston, 2004.
[12] Păltănea, R.: Weighted second order moduli on a simplex, Results in Mathematics 53 (2009), no. 3-4, 361-369.
[13] Păltănea, R.: Estimates for general positive linear operators on non-compact interval using weighted moduli of continuity, Stud. Univ. Babeş-Bolyai Math. 56 (2011), no. 2, 497-504.
[14] Totik, V.: Uniform approximation by Szász-Mirakjan type operators, Acta Math. Hungar. 41 (1983), no. 3-4, 291-307.
[15] Walczak, Z.: On certain linear positive operators in polynomial weighted spaces, Acta Math. Hungar. 101 (2003), no. 3, 179-191.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: radupaltanea@yahoo.com

