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A CLOSER LOOK AT THE SOLUTIONS OF A DEGENERATE
STOCHASTIC DIFFERENTIAL EQUATION
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Abstract

In an attempt to better understand the existence and uniqueness of strong solu-
tions of stochastic differential equations, we study a classical example of a degenerate
stochastic differential equation, attributed to H. Tanaka, for which the existence and
uniqueness of strong solutions fails, but for which we can explicitly describe the set of
all (weak) solutions.
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1 Introduction

Consider the stochastic differential equation (SDE)

Xt = X0 +

∫ t

0
σ (Xs) dBs +

∫ t

0
b (Xs) ds, t ≥ 0, (1)

where Bt is a 1-dimensional Brownian motion starting at the origin and σ, b : R→ R are
given functions.

A fundamental problem in the study of stochastic process is to determine the necessary
and sufficient conditions on σ and b which guarantee the existence and the uniqueness of
the solution of the above SDE.

There are mainly two notions of solutions to the above SDE: strong and weak solutions.
The main difference between them resides in the measurability of the solution. A strong
solution Xt of the above SDE is required to be measurable with respect to the augmented
filtration Ft = σ

(
FBt ∪N

)
of the driving Brownian motion Bt (see [3], pp. 285 for the

precise definition), and in the case of a weak solution (Xt, Bt, (Ft)t≥0) we just require that
Xt and Bt to be measurable with respect to the same filtration Ft (not necessary the
augmented filtration of Bt).
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So, a strong solution Xt is a measurable functional of the path Bs, 0 ≤ s ≤ t (and
the initial condition X0), which shows that given the “input” Bt (and the initial condition
X0) we can determine the “output” Xt from the SDE (1) above. This is the principle of
causality for dynamical systems, which corresponds to the intuition that if we model a
certain system by a SDE like (1) which involves the probabilistic quantity Bt, then the
solution Xt can be determined from the information available up to time t, that is the
augmented σ-algebra generated by Bs, 0 ≤ s ≤ t. In the case of a weak solution this is no

longer the case; a weak solution is a triple
(
Xt, Bt, (Ft)t≥0

)
which satisfies (1) and both

processes Xt and Bt are measurable with respect to the same σ-algebra Ft. If Ft is the
augmented σ-algebra generated by FBt and Gt, then the σ-algebra Gt can be interpreted
as the supplementary amount of information needed to predict the behaviour of Xt from
the behaviour of Bt.

Starting with the pioneering work of K. Itô (see for example [2]), several well-known
authors studied the problem of existence and uniqueness of SDEs like (1) above.

In the driftless case b ≡ 0, the problem of weak existence and uniqueness was completely
solved by Engelbert and Schmidt ([1]), as follows.

Consider the zero set of the function σ defined by

Z (σ) = {x ∈ R : σ (x) = 0}

and the set of non-local integrability of σ−2, defined by

I (σ) =

{
x ∈ R :

∫ ε

−ε

dy

σ2 (x+ y)
=∞, ∀ε > 0

}
.

The result is the following.

Theorem 1 ([1]). The stochastic differential equation

Xt = X0 +

∫ t

0
σ (Xs) dBs, t ≥ 0, (2)

has a non-exploding weak solution for every initial distribution of X0 if and only if

I (σ) ⊆ Z (σ) . (3)

Moreover, for any initial distribution of X0 the solution is weakly unique if and only if

I (σ) = Z (σ) . (4)

So, in the case of weak solutions the problem is completely solved.
In the case of strong solutions, there are several sufficient conditions which guarantee

the existence and uniqueness of the strong solutions of (1) or (2), but there is no necessary
and sufficient condition for it.

Consider the following hypotheses:

(A) There exists an increasing function ρ : [0,∞)→ [0,∞) such that
∫
0+

du
ρ(u) = +∞ and

(σ (x)− σ (y))2 ≤ ρ (|x− y|) for all x, y ∈ R.
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(B) There exists and increasing function f : R→ R such that (σ (x)− σ (y))2 ≤ |f (x)− f (y)|
for all x, y ∈ R.

The following result due to LeGall ([4]) is known.

Theorem 2 ([4]). Suppose that σ,b : R→ R are bounded measurable function and they
satisfy one of the following three hypotheses:

1. σ satisfies (A) and b is Lipschitz;

2. σ satisfies (A) and there exists ε > 0 such that |σ| ≥ ε;

3. σ satisfies (B) and there exists ε > 0 such that σ ≥ ε.

Then strong uniqueness holds for (1).

It is also known that if for example b is bounded σ is Lipschitz and |σ| is bounded
away from zero, then for any initial distribution of X0 (independent of Bt) there exists a
unique strong solution of (1).

Note that the condition (A) above requires the diffusion coefficient σ to be continuous,
and the condition (B) can only be used if the coefficient σ is bounded below away from
zero. In the case when σ has discontinuities and it is not bounded below away from zero,
it is possible that the solution of (1) has no solution, or that the solution is not unique.

In an attempt to better understand the strong existence and uniqueness of solutions
of SDEs, we present an example of a degenerate (discontinuous, not bounded below away
from zero dispersion coefficient), for which strong existence and uniqueness fails, but we
can describe explicitly the set of all solutions.

The following classical example, attributed to H. Tanaka (see [3], [5]) illustrates the
case.

Example 1. Consider the SDE

Xt =

∫ t

0
sgn (Xs) dBs, t ≥ 0, (5)

where sgn(x) =

{
+1, x ≥ 0
−1, x < 0

.

Weak existence and uniqueness holds for (5), but strong existence and uniqueness fails.

The first part of the statement follows from Theorem 1, for in this case Z (sgn) =
I (sgn) = ∅. This can also be seen directly: consider a Brownian motion Xt and define
Bt by Bt =

∫ t
0 sgn (Xs) dXs. Then Bt is a continuous, square integrable with 〈B〉t =∫ t

0 sgn2 (Xs) d〈X〉s =
∫ t
0 1ds = t, so by Lévy’s characterization of Brownian motion Bt is a

Brownian motion with respect to the augmented filtration Ft generated by Xt. Note that∫ t

0
sgn (Xs) dBs =

∫ t

0
sgn (Xs) sgn (Xs) dXs =

∫ t

0
sgn2 (Xs) dXs = Xt, t ≥ 0,
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so (Xt, Bt,Ft) is a weak solution of (5). This shows that weak existence holds for (5).
Also, note that if (Xt, Bt,Ft) is a weak solution of (5), using again Lévy’s characteri-

zation of Brownian motion and the fact that 〈X〉t =
∫ t
0 sgn2 (Xs) d〈B〉s = t, it follows that

Xt is a Brownian motion, so weak uniqueness (uniqueness in distribution) holds for (5).
Since Xt and −Xt are at the same time solutions of (5) (and they cannot be the

identically zero solution by the discussion above), strong uniqueness cannot hold for (5).
Assume now the existence of a strong solution Xt, so Xt is measurable with respect to

the augmented filtration of Bt, or FXt ⊂ FBt for all t ≥ 0. Applying Tanaka’s formula, we
obtain

|Xt| =
∫ t

0
sgn (Xs) dXs + L0

t (X) =

∫ t

0
sgn (Xs) sgn (Xs) dBs + L0

t (X) = Bt + L0
t (X) ,

or
Bt = |Xt| − L0

t (X) , t ≥ 0.

Since by definition L0
t (X) = limε↘0

1
2εmeas {s ∈ [0, t] : |Xs| < ε} is F |X| measurable,

it follows that FB ⊂ F |X|, which leads to the contradiction FX ⊂ F |X| (i.e. the process
Xt is determined by the process |Xt|). The contradiction shows that there is no strong
solution of (5).

In the next section we will examine closer the above example, by finding the explicit
form of all (weak) solutions of (5), thus explaining the lack of strong existence and unique-
ness of this SDE.

2 Main results

Given a non-negative continuous process Yt we define a sign choice for Yt as a process
Ut taking the values ±1, such that UtYt is a continuous process.

For example, we can construct a sign choice as follows. On a probability space (Ω,F , P )
consider a process Vt taking values ±1 with probabilities P (Vt = 1) = 1− P (Vt = −1) =
p ∈ [0, 1] for all t ≥ 0. Define the process Ut by Ut = Vt if Yt = 0 and Ut = Vs otherwise,
where s = sup {u ≤ t : Yu = 0} is the last visit of Y to 0 before time t. The process (Ut)t≥0
is readily seen to be a sign choice for the process (Yt)t≥0. If moreover the processes Y and
V are independent, then the sign choice Ut is independent of Yt.

With this preparation we can present the main result, as follows.

Theorem 3. For any Brownian motion Bt starting at the origin,
(
UtYt, Bt, (Ft)t≥0

)
is

a weak solution of (5), where Yt is the reflecting Brownian motion on [0,∞) with driving
Brownian motion Bt, Ut is a sign choice for Yt which takes the values ±1 with equal
probability, and (Ft)t≥0 is the augmented filtration generated by Bt and Ut.

Conversely, any weak solution
(
Xt, Bt, (Ft)t≥0

)
of (5) has the representation Xt =

UtYt, where U and Y are as above.
In particular, any solution of (5) is unique up to a sign choice, i.e. if X1

t and X2
t are

solutions of (5), then
P
(∣∣X1

t

∣∣ =
∣∣X2

t

∣∣ for all t ≥ 0
)

= 1.
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Proof. If Xt satisfies (5), applying the Tanaka-Itô formula to the function f (x) = |x| and
to the process Xt we obtain

|Xt| =
∫ t

0
sgn (Xs) dXs + L0

t (X) = Bt + L0
t (X) , (6)

where L0
t (X) = limε↘0

1
2ε

∫ t
0 1(−ε,ε) (Xs) d〈X〉s denotes the (symmetric) semimartingale

local time of X at the origin.
Consider the process Yt = |Xt| and note that 1(−ε,ε) (Ys) = 1(−ε,ε) (|Xs|) = 1(−ε,ε) (Xs)

for any ε > 0 and t ≥ 0. By Lévy’s characterization of the Brownian motion it follows that
the process Xt is a time change of a Brownian motion, with quadratic variation process

〈X〉t =

∫ t

0
sgn2 (Xs) ds =

∫ t

0
1ds = t,

and in particular d〈X〉t is absolutely continuous with respect to the Lebesgue measure.
It follows that the process Xt spends zero Lebesgue time at the origin, and therefore

we obtain

L0
t (Y ) = lim

ε↘0

1

2ε

∫ t

0
1(−ε,ε) (Ys) d〈Y 〉s

= lim
ε↘0

1

2ε

∫ t

0
1(−ε,ε) (Ys) ds

= lim
ε↘0

1

2ε

∫ t

0
1(−ε,ε) (Xs) d〈X〉s

= L0
t (X)

From (6) it follows that the process Yt = |Xt| satisfies the SDE

Yt = Bt + L0
t (Y ) , t ≥ 0,

and therefore the process Yt is the reflecting Brownian motion on [0,∞) with driving
Brownian motion Bt. In particular, the process Yt = |Xt| is adapted with respect to the
filtration FB of the Brownian motion Bt and it is pathwise unique.

We now show the existence of a weak solution of (5). Consider a Brownian motion Bt
and let Yt be the reflecting Brownian motion on [0,∞) with driving Brownian motion Bt,
and let Ut be a sign choice for Yt.

Consider the process Xt = UtYt, t ≥ 0. We will show that
(
Xt, Bt, (Ft)t≥0

)
is a weak

solution to (5), where Ft is the augmented σ-algebra generated by Bs and Us, 0 ≤ s ≤ t,
i.e. the completion of the σ-algebra σ (Bs, Us : 0 ≤ s ≤ t) which contains all the null sets
in FB∞ ∪ FU∞.

Note that by construction we have sgn (Xs) = Us1R∗ (Xs) + 1{0} (Xs), and therefore
sgn (Xs) = Us1R∗ (Xs) + 1{0} (Xs) for any s ≥ 0. Since the process Y (and hence X)
spends zero Lebesgue time at the origin, we have almost surely∫ t

0
sgn (Xs) dBs =

∫ t

0
Us1R∗ (Xs) dBs
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for any t ≥ 0.

Since Yt is the reflecting Brownian motion with driving Brownian motion Bt, we obtain∫ t

0
sgn (Xs) dBs =

∫ t

0
Us1R∗ (Xs) dYs −

∫ t

0
Us1R∗ (Xs) dL

0
s (Y )

=

∫ t

0
Us1R∗ (Xs) dYs,

where the last equality follows since the local time L0
s (Y ) of Y at the origin increases only

when Ys (and hence Xs) is at the origin.

For ε > 0 arbitrarily fixed, consider the stopping times τn and σn defined by τ0 = 0
and

σn = inf {s ≥ τn−1 : Ys = ε} and τn = {s ≥ σn : Ys = 0} , n ≥ 1.

Considering Dt (ε) = sup {i ≥ 0 : τi <∞} the number of downcrossing of the interval
[0, ε] by the process Yt, we obtain∫ t

0
sgn (Xs) dBs =

∫ t

0
Us1R∗ (Xs) dYs

=
∑
i≥1

∫ τi∧t

σi∧t
Us1R∗ (Xs) dYs +

∑
i≥1

∫ σi∧t

τi−1∧t
Us1R∗ (Xs) dYs

=
∑
i≥1

Uσi∧t (Yτi∧t − Yσi∧t) +
∑
i≥1

∫ σi∧t

τi−1∧t
Us1R∗ (Xs) dYs

= −ε
Dt(ε)∑
i=1

Uσi + Ut (Yt − ε)
∑
i≥1

1[σi,τi) (t) +
∑
i≥1

∫ σi∧t

τi−1∧t
Us1R∗ (Xs) dYs,

and therefore

∫ t

0
σ (Xs) dBs − UtYt = −ε

Dt(ε)∑
i=1

Uσi + UtYt
∑
i≥1

1[τi−1,σi) (t) (7)

−εUt
∑
i≥1

1[σi,τi) (t) +
∑
i≥1

∫ σi∧t

τi−1∧t
Us1R∗ (Xs) dYs.

To prove the claim, we will show that the terms on the right of the above equality
converge in L2 to zero as ε↘ 0.

By construction, (Uσi)i≥1 are independent random variables with mean EUσi = 0 and

variance EU2
σi = 1, so using the Wald’s identity we obtain

E

εDt(ε)∑
i=1

Uσi

2

= ε2EDt (ε)EU2
σ1 = ε2EDt (ε)→ 0
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as ε↘ 0, since by Lévy’s characterization of the local time we have εDt (ε)→ L0
t (Y ) a.s.

and also in L2 (see [3], pp. 416). This shows the a.s. convergence to zero as ε↘ 0 of the
first term on the right of (7).

Next, note that if t ∈ [τi−1, σi) for some i ≥ 1, by construction we have Yt ∈ [0, ε), so
we obtain

E

UtYt∑
i≥1

1[τi−1,σi) (t)

2

≤ ε2E
∑
i≥1

1[τi−1,σi) (t) ≤ ε2t→ 0

as ε ↘ 0. This proves the a.s. convergence to zero as ε ↘ 0 of the second term on the
right of (7). For the third term the proof being similar, we omit it.

To conclude the proof of the claim, using again Wald’s identity and the fact that the
random variables σi − τi−1, i = 1, 2, . . . are independent (see for example Theorem 2.6.16
in [3]) with mean E (σ1 − τ0) = Eσ1 = ε2, we obtain

E

∑
i≥1

∫ σi∧t

τi−1∧t
Us1R∗ (Xs) dYs

2

≤ E

∫ t

0

∑
i≥1

1[τi−1,σi] (s) d〈Y 〉s

≤ E

Dt(ε)+1∑
i=1

(σi − τi−1)

= E (σ1 − τ0)E (Dt (ε) + 1)

= ε2E (Dt (ε) + 1)

→ 0,

and therefore the last term on the right side of (7) also converges to zero as ε↘ 0.

We have shown that all the terms on the right side of (7) converge to zero as ε ↘ 0.
Passing to the limit with ε ↘ 0 in (7) we obtain

∫ t
0 σ (Xs) dBs = UtYt = Xt, which

concludes the proof of the first claim.

To prove the second, note that by the previous proof a (weak) solution Xt has the
representation Xt = Ut |Xt| = UtYt, where Yt is the reflecting Brownian motion on [0,∞)
with driving Brownian motion Bt and Ut represents the sign of Xt. Note that when Xt = 0
we can choose in the above equation either Ut = 1 or Ut = −1, so Ut = ±1 for all t ≥ 0.

Since Ut is altered only when |Xt| = Yt = 0, Ut is a sign choice for Yt, so it remains to
show that P (Ut = ±1) = 1

2 . By the previous proof Xt is a Brownian motion starting at
the origin, so P (Ut = 1) = P (Xt ≥ 0) = 1

2 for any t ≥ 0, concluding the proof.

We conclude with the remark that the above theorem explains the lack of strong
existence and strong uniqueness of (5): a weak solution has the form Xt = UtYt, where Yt
is determined by Bt (it is the reflecting Brownian motion on [0,∞) with driving Brownian
motion Bt), but the sign choice Ut is not necessarily determined by Bt. This causes the
solution not to be FBt adapted, hence the lack of a strong solution of (5). Different sign
choices Ut produce different solution (although they are the same in absolute value), and
this causes the lack of uniqueness for (5).
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