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Abstract

We shall transform the first boundary value problem of Elasticity for micropolar
bodies in a variational form. For the operator of Elasticity, built in this context, we
prove that it is positive definite. This property ensures the existence of a solution for
the first boundary value problem and the possibility to approximate it by variational
methods.
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1. Introduction

There are many studies dedicated to the boundary value problems in psysical
mathematics. In the context of classical Elasticity many such boundary value problems
are approached by variational methods. Few such studies are reviewed in the book [3].
In the paper [2] the authors give some solutions for elliptic equations defined on certain
Sobolev spaces, using a variational method. Some similar results are obtained in paper
[1] in which the authors obtain positive solutions for singular p-Laplacian problems with
sign changing nonlinearities using variational methods.

In the present study, we shall consider some similar considerations in the contex of
non-classical Elasticity. Some of the previous results on variational formulations for the
boundary value problem, including the boundary value problems of non-classical Elasticity,
are presented in the book [10].

Also, study [5] deals with some new results regarding the applications of calculus of
variations in the study of boundary value problems. The paper is concerned with the
linear theory of micromorphic elastic solids. The authors present a minimum principle
and existence results in the equilibrium theory. In the study [9] there are considered two
cases of the theory of the heat conduction model with three-phase-lag. For each one the
authors propose a suitable Lyapunov function. These functions are relevant tools which
allow the study of several qualitative properties.

1Faculty of Mathematics and Informatics, Transilvania, University of Brasov, Romania, e-mail:
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In our study [7] we generalize the previous results on minimum principles in order to
cover the dipolar elastic materials with stretch. For the boundary value problem considerd
in this context, we prove an extension of the principle of minimum potential energy and,
as a consequence, a generalized existence result for the above mentioned boundary value
problem.

2. Basic equations

We shall consider an elastic homogeneous body which occupies a properly regular
region Ω of the three-dimensional Euclidian space, bounded by the piece-wise smooth
surface Σ and we denote the closure of Ω by Ω̄.

We refer the motion of the body to a fix system of rectangular Cartesian axes Oxi, i =
1, 2, 3 and adopt the Cartesian tensor notation. Points in Ω are denoted by xj , j = 1, 2, 3.
Throughout this work the Einstein summation convention over repeated indices is used.
The subscript j after the comma indicates partial differentiation with respect to the spatial
argument xj . All Latin subscripts are understood as ranging over the integers (1, 2, 3),
while the Greek indices have the range (1, 2).

Also, the spatial argument of a function will be omitted when there is no likelihood of
confusion.

We restricte our considerations only to the case of Elastostatics. Thus we consider the
equilibrium equations in the well known form

(µ + α)ui, kk + (λ + µ− α)uk, ki + 2αεijkϕk, j + Fi = 0,

(γ + ε)ϕi, kk + (β + γ − ε)ϕk, ki + 2αεijkuk, j − 4αϕi + Gi = 0. (1)

The geometric equations have the form

eij = uj, i + εijkϕk, ηij = ϕj, i (2)

The basic equations of Elastostatics of micropolar bodies are complete if we also consider,
the constitutive equations

tij = λekk + (µ + α)eij + (µ− α)eji,

µij = βϕkkδij + (γ + ε)ηij + (γ − ε)ηji, (3)

In the above equations we have used the following notations
- ui and ϕi the components of the displacement vector and the components of the

microrotation vector, respectively;
- Fi and Gi the components of the mass forces and the components of the couple mass

forces, respectively;
- eij and ηij the components of deformation tensor and the components of the couple

strain tensor, respectively;



Variational considerations 35

- tij and µij the components of the stress tensor and the components of the couple
stress tensor, respectively;

- α, β, γ, ε and µ the characterisctic constants of the body which describe the elastic
properties of the material;

- εijk is permutation tensor of Ricci and δij is the tensor of Kronecker.
As usual, we denote by ni the components (the direction cosines) of the outward unit

normal to the surface ∂Ω and we shall use the notations

ti = tij nj , µi = µij nj , (4)

where ti and µi represent the stress and the couple stress on unit area of the surface ∂Ω
in direction of the normal.
From (3) and (4) we deduce:

tj = λuk, k nj + 2µuj, i ni + (µ− α) (uj, i + ui, j) ni + 2αεkjiϕkni,

µj = βϕk, k nj + 2γϕj, ini + (γ − ε) (ϕi, j − ϕj, i) ni (5)

3. Main results

For the first boundary value problem, we must add, to the above basic equations,
the following null boundary conditions on the surface ∂Ω :

ui(x) = 0, ϕi(x) = 0 for ∀ x ∈ ∂Ω. (6)

Thus, the first fundamental boundary value problem of Elasticity for micropolar bodies
consits of determination of the functions ui and ϕi which satisfy the equilibrium equations
(1) and the boundary conditions (6).
Let us introduce the vectorial notations

~u = (u1, u2, u3, ϕ1, ϕ2, ϕ3)
~F = (F1, F2, F3, G1, G2, G3)

Also, we introduce the operators

Li(u, ϕ) = (µ + α)ui, kk + (λ + µ− α)uk, ki + 2αεijkϕk, j

Mi(u, ϕ) = (γ + ε)ϕi, kk + (β + γ − ε)ϕk, ki + 2αεijkuk, j − 4αϕi (7)

We must outline that with the help of the operators (7), the equilibrium equations (1)
received the simpler form

Li(u, ϕ) + Fi = 0,

Mi(u, ϕ) + Gi = 0. (8)

If we introduce the vectorial operator A by

A~u = (−L1~u, −L2~u, −L3~u, −M1~u, −M2~u, −M3~u)
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The operator A is called the operator of elasticity for first fundamental boundary value
problem of micropolar bodies .

Taking into account the significance of the vector fields ~u and ~F , with the help of the
operator A we can write the equilibrium equations in the form

A~u = ~F .

Also, the boundary conditions become

~u = 0 on ∂Ω.

Therefore, our fundamental problem become{
A~u = ~F
~u = 0 on ∂Ω.

(9)

For this form of the problem, it is easy to prove the uniqueness of the solution. For this
aim, we consider the bilinear form

2E (~u, ~v) = λemm (~u) enn (~v) + (µ + α)eij (~u) eij (~v) +
+(µ− α)eji (~u) eji (~v) + βϕmm (~u) ϕnn (~v) + (γ + ε)ϕij (~u) ϕij (~v) + (10)

+(γ − ε)ϕji (~u) ϕji (~v)

It is easy to see that if we substitute ~v by ~u the bilinear form E (~u, ~v) from (10) becomes
the quadratic form E (~u) which is the density of the internal energy of the micropolar
elastic body.

Eringen proved in [5] that the quadratic form E (~u) is positive definite if and only if
the elastic coefficients satisfy the following inequalities

3λ + 2µ > 0, µ > 0, α > 0, µ− α > 0
3β + 2γ > 0, γ > 0, ε > 0, γ − ε > 0 (11)

Also, based on the fact that the internal energy is positive definite it is easy to obtain
the uniqueness of the solution of the boundary value problem (9).

By using the same procedure as in the classical elasticiy, from (1), (5) and (10) we can
deduce the following reciprocal relations∫

Ω
~vA~u dv = 2

∫
Ω

E (~u, ~v) dv −
∫

∂Ω
~vS (~u) dσ (12)

∫
Ω

~uA~u dv = 2
∫

Ω
E (~u, ~u) dv −

∫
∂Ω

~uS (~u) dσ (13)

∫
Ω

[~vA~u− ~uA~v] dv =
∫

∂Ω
[~uS (~v)− ~vS (~u)] dσ (14)
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In the above relations the operator S is defined by

~uS (~v) = uiti (~v) + ϕi µi (~v) (15)

With the help of the reciprocal relations (12)-(14) we can obtain different kind of displace-
ments and microrotations.

For instance, in the case of an infinite domain Ω, we consider two points X (xi) and
Y (yi) belong to such a domain. We suppose that in the point Y (yi) act a system of
concentrated forces ~Q(k) of the form

~Q(k) = δkj~ej

where ~ej are the unit vectors of the coordinate axes.
Then in the infinite domain Ω we obtain the following displacements and microrotations

u(k)
n (X; Y ) =

3− ν

16πµ(1− ν)
δnk

r
+

+
1

16πµ(1− ν)
(xn − yn)(xk − yk)

r3
− (16)

− γ + ε

16πµ2
εnimεmjk%, ij

ϕ(k)
n (X; Y ) =

1
8πµ

εnik%, i

In the above relations we have used the notations

r =

[
3∑

i=1

(xi − yi)
2

]1/2

%(r, l) =
1
r

1
(1− e)r/l

Now, we suppose that in the point Y (yi) of the infinite domain Ω act a system of concen-
trated mass moments ~M (k) of the form

~M (k) = δkj~ej

where δij is the Kronecker symbol.
Then in the infinite domain Ω we obtain the following displacements and microrotations

u(k)
n (X; Y ) =

1
8πµ

εnik%, i

ϕ(k)
n (X; Y ) = − 1

16πα
χ, nk +

µ + α

16πµα
εnimεmjk%, ij (17)

In the last above relation we used the notation

χ(r, h) =
1
r

(
1− 1

er/h

)
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Also, in the above representations of the displacements and of the microrotations, the
coefficients ν, l and h are constants which characterize the mechanical properties of the
micropolar material and have the expressions

ν =
λ

2(λ + µ)
,

l2 =
(γ + ε)(µ + α)

4µα

h2 =
β + 2γ

4α

In the Literature on the subject, ν is the Poisson′s coefficient of transverse contraction.
Let us consider a particular micropolar elastic body, namely a material for which the

characteristic coefficients satisfy the equalities

λ = β = 0

µ = α = γ = ε =
1
2

(18)

l = 1, h =
1√
2

It is easy to see that these coefficients satisfy the restrictions (11).
We shall introduce (18) in (16) and (17) and we denote the correspondent displacements

and microrotations by U
(k)
np and Φ(k)

np , p = 1, 2.
By direct calculations we can prove that

A0
~U

(k)
1 = ~Q(k)δ(X − Y ),

A0
~U

(k)
2 = ~M (k)δ(X − Y ), (19)

where we used the notation

~U (k)
p =

(
U

(k)
1p , U

(k)
2p , U

(k)
3p , Φ(k)

1p , Φ(k)
2p , Φ(k)

3p

)
, p = 1, 2

Also, as usual, δ is the well known Dirac’s distribution. In (19) the operator A0 is
obtained from the operator A by substituting the general coefficients by the particular
case from (18). Moreover, taking into account (18) from the constitutive equations (3) we
obtain

tij = eij , µij = ηij . (20)

The relations (5), written for a sphere having the center in point Y (yi) and the radius
r = |X − Y |, lead to

t(k)
sp =

(
U (k)

sp,q + εrsqΦ(k)
rp

)
nq,

µ(k)
sp = Φ(k)

sp, qnq (21)

nq =
yq − xq

r
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For the above functions %(r, l) and χ(r, h) we introduce the notations

%0(r) = %(r, 1), χ0(r) = χ(r,
1
2
)

For sufficiently small r, the derivatives of the functions %0(r) and χ0(r) have the
following behavior

%0
, jnq = Ajq(r) = O(1)

%0
, ijnq = Bijq(r) = O(

1
r
)

χ0
, sknq = Cskq(r) = O(

1
r
)

%0
, jqnq = Aj(r) = O(1) (22)

%0
, ijqnq = − δij

2r2
+

(xs − ys)(xk − yk)
2r4

+ Bij(r), Bij(r) = O(1)

χ0
, skqnq = −δsk

r2
− (xs − ys)(xk − yk)

r4
+ Csk(r), Csk(r) = O(1)

where O is the well known Lambdau symbol.
Taking into account the relations (21) and (22), the stresses and the couple stresses,

on an element of the surface of the sphere above considered, receive the form

t
(k)
s1 =

1
8π

[
3δsk

r2
− (xs − ys)(xk − yk)

r4

]
+

+
1
8π

εsirεrjk

[
δij

r2
− (xs − ys)(xk − yk)

r4

]
+

+
1
4π

(εsirεrjkAij − εsirεrjkBij)

µ
(k)
s1 =

1
4π

εsjkAj (23)

t
(k)
s2 =

1
8π

(εsjkAj − εrsmCrkm − εrspεriqεqjkBijp)

µ
(k)
s2 =

1
8π

[
δsk

r2
− (xs − ys)(xk − yk)

r4

]
−

− 1
8π

εsirεrjk

[
δij

r2
− (xi − yi)(xj − yj)

r4

]
−

− 1
8π

Csk −
1
4π

εsirεrjkBij

Now, we want to prove that the above definite operator A is positive definite, as in the
classical elasticity.
As usual, we denote by L2(Ω) the Hilbert space of vector functions f such that∫

Ω
‖f‖2dv < ∞
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the norm has been obtained from the scalar product

(~u, ~v) =
∫

Ω
~u.~v dv =

∫
Ω

3∑
i=1

uivi dv

Let us denote by C0 a subset of the Hilbert space L2(Ω), which consists of all vectorial
functions f with the properties:

i) f is continuous on Ω̄ = Ω ∪ ∂Ω;
ii) f is twice derivable in Ω;
iii) f = 0 on the boundary ∂Ω.

Taking into account the relation (14) we deduce that A is a linear symmetrical opera-
tor for each ~u ∈ C0. Also, it is easy to observe, taking into account the relation (13) that
A is a positive operator on the set C0.
Now, we can complete the properties of the operator A.

Theorem 1. The operator of the elasticity of micropolar bodies is positive definite on
the set C0.

Proof. Taking into account that A is a symmetrical operator and, also, A is positive, we
must prove that

(A~u, ~u) ≥ C2
1‖~u‖, ∀ ~u ∈ C0, (24)

where
‖~u‖ = (~u, ~u) , C2

1 = const., C2
1 > 0

As it is suggested in [8], we consider a ball S(Y, R) having the center in the point
Y (yi) and the radius R. We denote by ΣR the boundary of the ball and by ΩR the domain
obtained by subtracting the ball from the domain Ω, that is

ΩR = Ω \ S(Y, R)

We write the reciprocal relation (12) for the domain ΩR, where ~u ∈ C0. Next, we shall
write the reciprocal relation (12) for some particular solutions, for instance, as in (16) or
(17), ~v = ~U

(k)
p .

By taking into account the fact that on the domain ΩR we have

A0
~U (k)

p = 0

where A0 is the operator A in the particular case that we consider. This way, (12) becomes

2
∫

ΩR

E
(
~u, ~U (k)

p

)
dv −

∫
ΣR

~uS
(

~U (k)
p

)
dσ = 0, p = 1, 2. (25)

where, in view of (15), we have∫
ΣR

~uS
(

~U (k)
p

)
dσ =

∫
ΣR

[
uiti

(
~U (k)

p

)
+ ϕiµi

(
~U (k)

p

)]
dσ (26)
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In (25) and (26) the functions ts and µs are calculated by using the relations (23) where
r is replaced by R.
Now, we pass to the limit in (26), as R → 0, and taking into account the order of magnitude
of the expressions in (23), we deduce

lim
R→0

∫
ΣR

~uS
(

~U
(k)
1

)
dσ = uk(Y )

lim
R→0

∫
ΣR

~uS
(

~U
(k)
2

)
dσ = ϕk(Y )

lim
R→0

∫
ΩR

E
(
~u, ~U (k)

p

)
dv =

∫
Ω

E
(
~u, ~U (k)

p

)
dv

If we substitute the particular coefficients (18) in the bilinear form E from (10) and taking
into account the previous equalities, the relation (25) leads to

uk(Y ) =
3∑

i,j=1

∫
Ω

[
tij (~u) tij

(
~U

(k)
1

)
+ ηij (~u) ηij

(
~U

(k)
1

)]
dv

ϕk(Y ) =
3∑

i,j=1

∫
Ω

[
tij (~u) tij

(
~U

(k)
2

)
+ ηij (~u) ηij

(
~U

(k)
2

)]
dv (27)

Hence, with the help of the relations (26) we can compute the displacements and the
microrotations in the point Y by using some operators applied to the functions tij and
µij . From the above considerations we deduce that

tij , ηij ∈ C1(Ω),{∣∣∣tij (
~U

(k)
1

)∣∣∣ ,
∣∣∣ηij

(
~U

(k)
1

)∣∣∣} ≤ const.

r2

that is, the kerns of the integrals from (27) have, in point Y (yi) a weak (eliminable)
singularity. According to a known result, the above mentioned operators are continuous.
By using a result from book [8], the functions of the form

χ
(k)
ij (Y ) =

∫
Ω

Ψij (~u) Ψij

(
~U (k)

)
dv

where
Ψij (~u) = tij (~u) , ...,

which appear in (27), possess a finite norm on the Hilbert space L2(Ω) and verify an
inequality of the form ∥∥∥χ

(k)
ij

∥∥∥ ≤ Ck ‖Ψij‖ , (28)

where the constants Ck depend only on the domain Ω and

‖Ψij‖2 =
∫

Ω
Ψ2

ijdv
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By using the visible inequality ∥∥∥∥∥∑
k

ak

∥∥∥∥∥
2

≤ 2
∑

k

‖ak‖2

and the relations (27) one obtains

‖~u‖ =
∫

Ω

3∑
i=1

(
u2

i + ϕ2
i

)
dv ≤ C1

3∑
i,j,k=1

∥∥∥χ
(k)
ij

∥∥∥2

Then, by taking into account (28), we deduce

‖~u‖ ≤ C2

3∑
i,j=1

(
‖tij‖2 + ‖ϕij‖2

)
(29)

where C2 is a positive constant.
On the other hand, the quadratic form E (~u) is positive definite. Thus, we deduce that
there exists a positive constant µ0 such that

2E (~u) ≥ µ0

3∑
i,j=1

(
t2ij + ϕ2

ij

)
Now, we integrate the last inequality on the domain Ω and take into account that, accord-
ing to (13), for ~u ∈ C0 we have

2
∫

Ω
E (~u) dv = (A~u, ~u)

Thus, we obtain

(A~u, ~u) ≥ µ0

3∑
i,j=1

(
‖tij‖2 + ‖ϕij‖2

)
(30)

By comparing (30) and (29), we deduce

(A~u, ~u) ≥ γ2
1 ‖~u‖

2

where
γ2

1 =
µ0

C2

and the demonstration of the theorem is concluded.

Corollary. The representations of the displacements and of the microrotations from The-
orem 1 satisfy a Korn-type inequality.
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Proof. Taking into account relations (27) we deduce that the functions uk, i and ϕk, i are
expressed by means of certain singular operators, which are applied to the functions tij
and ηij . But in point Y (yi) these operators have only singularities of order O

(
1
r3

)
. Ac-

cording to [8], the functions uk, i and ϕk, i satisfy some inequalities of the form∫
Ω

(
u2

k, i + ϕ2
k, i

)
dv ≤ B

∫
Ω

3∑
r,s=1

(
t2rs + η2

rs

)
dv, k, i = 1, 2, 3

where B is a positive constants.
Now, by summimg up the inequalities above by all the values of the indices k and i, we
are lead to

3∑
k,i=1

∫
Ω

(
u2

k, i + ϕ2
k, i

)
dv ≤ B1

∫
Ω

3∑
r,s=1

(
t2rs + η2

rs

)
dv,

where
B1 = 9B

Finally, by taking into account (30), the last inequality above it leads to∫
Ω

3∑
k,i=1

(
u2

k, i + ϕ2
k, i

)
dv ≤ D

∫
Ω

E (~u) dv,

where
D =

2B1

µ0

This is a inequality of Korn-type inequality for the first boundary value problem in
the elasticity of micropolar bodies.

Observation. From the property (24) of the operator A we deduce the existence of the
solution of the boundary value problem (9). Also, there is the possibility of approximating
this solution by mean of variational methods. We denote by H the space obtained by the
closing of the set C0 with regard to the norm defined by the metric

[~u, ~v] = (A~u, ~v)

By using the same procedure as in [8] we can prove the results included in the following
theorem.

Theorem 2.
i) There is a single vector ~u0 ∈ H which achieves the minimum of the functional

F (~u) = E (~u)−
3∑

i=1

(Fiui + Giϕi)
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ii) The string of the Ritz approximation of the solutions of the boundary value problem
(9) converges, on the average, to ~u0 ∈ H.

The function ~u0 defined in this theorem is the solution of the first boundary value
problem of the elasticity of micropolar bodies and generalizes the solution defined in [8]
for the first boundary value problem of the classical elasticity.

Conclusion. The operator A built in the context of elasticity of micropolar bodies is
positive definite and, as a consequence, based on this property, we have proved the exis-
tence of the solution of the first boundary value problem of the elasticity of micropolar
bodies.
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