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UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE
THREE SETS III

Abhijit BANERJEE 1 and Sujoy MAJUMDER 2

Abstract

In the paper we prove some results related to the uniqueness of meromorphic as
well as entire functions. Our results will improve and supplement several known re-
sults .
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1 Indroduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic functions
in the complex plane. Let f and g be two non-constant meromorphic functions and let
a be a finite complex number. We shall use the standard notations of value distribution
theory :

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [8]). For any constant a, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)
T (r, f)

.

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside a possible exceptional set of
finite linear measure.

We say that f and g share a CM, provided that f − a and g − a have the same zeros
with the same multiplicities. Similarly, we say that f and g share a IM, provided that
f − a and g− a have the same zeros ignoring multiplicities. In addition we say that f and
g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f
and 1/g share 0 IM.
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Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z : f(z)− a = 0},
where each zero is counted according to its multiplicity. If we do not count the multiplicity
the set Ef (S) =

⋃
a∈S{z : f(z) − a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) we say

that f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say that f
and g share the set S IM.

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by Em)(a; f) the
set of all a-points of f with multiplicities not exceeding m, where an a-point is counted
according to its multiplicity. If E∞)(a; f)=E∞)(a; g) for some a ∈ C ∪ {∞}, we say that
f , g share the value a CM. For a set S of distinct elements of C we define Em)(S, f) =⋃

a∈S Em)(a, f).
In 1976 F. Gross [7] asked the following question:

Question A Can one find two finite sets Sj (j = 1, 2) such that any two non-constant
entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical ?

For meromorphic function it is natural to ask the following question .
Question B[20] Can one find three finite sets Sj (j = 1, 2, 3) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2, 3 must
be identical ?

The above questions created a ripple among the researchers to find the smallest cardi-
nalities of the range sets under weaker hypothesis and naturally in the last couple of years
or so several investigations have been done by many authors.{cf.[1]-[6], [13], [16], [18], [20],
[22] [24]}.

A recent increment to uniqueness theory has been to considering weighted sharing
instead of sharing IM/CM which implies a gradual change from sharing IM to sharing CM.
This notion of weighted sharing has been introduced by I. Lahiri around 2001 in [10, 11]
and since then this notion played a vital role as far as the uniqueness of meromorphic or
entire functions sharing sets are concerned. Below we are giving the definition.

Definition 1. [10, 11] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k +1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share
the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an a-point
of f with multiplicity m (≤ k) if and only if it is an a-point of g with multiplicity m (≤ k)
and z0 is an a-point of f with multiplicity m (> k) if and only if it is an a-point of g with
multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f, g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 2. [10] Let S be a set of distinct elements of C∪{∞} and k be a nonnegative
integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =

⋃
a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

In 2007 improving the result of Yi-Lin [24] the present first author proved the following
result in the direction of Question B.
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Theorem A. [1] Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 = {∞}, where a, b
are nonzero constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 3) is an
integer. If for two non-constant meromorphic functions f and g, Ef (S1, 6) = Eg(S1, 6),
Ef (S2, 0) = Eg(S2, 0) and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f)+Θ(∞; g) > 1 then f ≡ g.

Recently the present first author has further improved and supplemented the above
theorem as follows.

Theorem B. [3] Let Si, i = 1, 2, 3 be defined as in Theorem A. If for two non-constant
meromorphic functions f and g, Ef (S1, 5) = Eg(S1, 5), Ef (S2, 0) = Eg(S2, 0) and Ef (S3,
∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Theorem C. [3] Let Si, i = 1, 2, 3 be defined as in Theorem A. If for two non-constant
meromorphic functions f and g, Ef (S1, 4) = Eg(S1, 4), Ef (S2,∞) = Eg(S2,∞) and
Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

The following example shows that in Theorems A-C a 6= 0 is necessary.

Example 1. Let f(z) = ez and g(z) = e−z and S1 = {z : z3 − 1 = 0}, S2 = {0},
S3 = {∞}. Since f − ωl = g − ω3−l, where ω = cos2π

3 + isin2π
3 , 0 ≤ l ≤ 2, clearly

Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2, 3 but f 6≡ g.

The following two examples establishes the sharpness of the lower bound of n in The-
orems A-C.

Example 2. Let f(z) = αez and g(z) = βe−z and S1 = {α, β}, S2 = {0}, S3 = {∞},
where α and β be two arbitrary non zero constants such that α + β = −a and αβ = b.
Clearly Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2, 3 but f 6≡ g.

Example 3. Let f(z) =
√

α
√

β ez and g(z) =
√

α
√

β e−z and S1 = {α, β}, S2 = {0},
S3 = {∞}, where α and β be defined as in Exmple 2. Clearly Ef (Sj ,∞) = Eg(Sj ,∞) for
j = 1, 2, 3 but f 6≡ g.

Regarding Theorems A-C following example establishes the fact that the set S1 can
not be replaced by any arbitrary set containing three distinct elements.

Example 4. Let f(z) =
√

αβ eh(z) and g(z) =
√

αβ e−h(z) and S1 = {α, β,
√

αβ},
S2 = {0}, S3 = {∞}, where α and β are nonzero complex numbers and h(z) is a non-
constant entire function. Clearly Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3 but f and g do not
satisfy the conclusions of Theorems A-C.

Now it is quite natural to ask the following question.
i) What happens in Theorem B if Θ(∞; f) + Θ(∞; g) < 1 ?

In fact in [2] we have taken up this problem and provided a partial solution in this respect.
But to do this the lower bound of n which corresponds to the cardinality of the set S1

in the above mentioned theorems were increased. In the direction of the above question
some investigations have already been carried out by Lu and Wang [17] in the following
theorem.
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Theorem D. Let S1 = {z : z2(z − a) − b = 0}, S2 = {0} and S3 = {∞}, where
a, b are nonzero constants. If for two non-constant meromorphic functions f and g,
Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3 and δ2(a, f) + δ2(a, g) + 2Θ(∞; f) > 1 then f ≡ g

or f = eγ+1
e2γ+eγ+1

, g = eγ(eγ+1)
e2γ+eγ+1

Remark 1. In the proof of the Theorem D it has been assumed that a = b = 1.

In 1998 to deal with the question of Gross Yi [22], proved the following theorem
corresponding to entire functions.

Theorem E. Let S1 = {z : zn(z + a) − b = 0} and S2 = {0}, where a, b are nonzero
constants such that zn(z + a) − b = 0 has no repeated root and n (≥ 2) is an integer. If
for two non-constant entire functions f and g, Ef (S1,∞) = Eg(S1,∞) and Ef (S2, 0) =
Eg(S2, 0) then f ≡ g.

We now state the following theorems which are the main results of the paper.

Theorem 1. Let S1 = {z : zn(z − a) − b = 0}, S2 = {0} and S3 = {∞}, where a, b are
nonzero constants such that zn(z − a) − b = 0 has no repeated roots and n (≥ 2) is an
integer. If for two non-constant meromorphic functions f and g, Ef (S1, 5) = Eg(S1, 5),
Ef (S2, 0) = Eg(S2, 0) and Ef (S3,∞) = Eg(S3,∞) and δ2(a, f) + δ2(a, g) + Θ(∞; f) +
Θ(∞; g) > 3− n then f ≡ g or f = −aeγ(enγ−1)

e(n+1)γ−1
, g = −a(enγ−1)

e(n+1)γ−1
, where γ is a non-constant

entire function.

Theorem 2. Let S1, S2 and S3 be defined as in Theorem 1. If for two non-constant
meromorphic functions f and g, Ef (S1, 4) = Eg(S1, 4), Ef (S2,∞) = Eg(S2,∞) and
Ef (S3,∞) = Eg(S3,∞) and δ2(a, f) + δ2(a, g) + Θ(∞; f) + Θ(∞; g) > 3 − n then f ≡ g

or f = −aeγ(enγ−1)

e(n+1)γ−1
, g = −a(enγ−1)

e(n+1)γ−1
, where γ is a non-constant entire function.

Remark 2. From Theorem 1 (Theorem 2) we see that if Θ(∞; f) + Θ(∞; g) > 1 we can
obtain Theorem B (Theorem C). For if f 6≡ g then we see that Θ(∞; f) = Θ(∞; g) =

1 − lim sup
r−→∞

n∑
k=1

N(r,uk;eγ)

nT (r,eγ) = 0, where uk = exp (2kπi
n+1 ) for k = 1, 2, . . . , n which leads to a

contradiction. So f ≡ g.

We prove the following theorems also which show that Theorem E can be improved in
two ways by relaxing the nature of sharing the set S1.

Theorem 3. Let Si i = 1, 2 be defined as in Theorem E. If for two non-constant entire
functions f and g Ef (S1, 3) = Eg(S1, 3) and Ef (S2, 0) = Eg(S2, 0) then f ≡ g.

Theorem 4. Let Si i = 1, 2 be defined as in Theorem E. If for two non-constant entire
functions f and g E5)(S1, f) = E5)(S1, g) and Ef (S2, 0) = Eg(S2, 0) then f ≡ g.

Remark 3. Let S1 = {2,−3,−6} and S2 = {0} . It is easy to see that S1 = {z :
z2(z + 7) + 36 = 0}. From Theorems 3-4 we immediately obtain that if for two non-
constant entire functions f and g, Ef (S1, 3) = Eg(S1, 3) or E5)(S1, f) = E5)(S1, g) and
Ef (S2, 0) = Eg(S2, 0) then f ≡ g.
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Though for the standard definitions and notations of the value distribution theory we
refer to [8], we now explain some notations which are used in the paper.

Definition 3. [9] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of
simple a points of f . For a positive integer m we denote by N(r, a; f |≤ m)(N(r, a; f |≥
m)) the counting function of those a points of f whose multiplicities are not greater(less)
than m where each a point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the a-points
of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined
analogously.

Definition 4. We denote by N(r, a; f |= k) the reduced counting function of those a-points
of f whose multiplicities is exactly k, where k ≥ 2 is an integer.

Definition 5. Let f and g be two non-constant meromorphic functions such that f and
g share (a, k) where a ∈ C ∪ {∞}. Let z0 be a a-point of f with multiplicity p, a a-point
of g with multiplicity q. We denote by NL(r, a; f) the counting function of those a-points
of f and g where p > q, by N

(k+1
E (r, a; f) the counting function of those a-points of f and

g where p = q ≥ k + 1; each point in these counting functions is counted only once. In the
same way we can define NL(r, a; g) and N

(k+1
E (r, a; g).

Definition 6. [4] Let f and g be two non-constant meromorphic functions and m be a
positive integer such that Em)(a; f) = Em)(a; g) where a ∈ C ∪ {∞}. Let z0 be an a-
point of f with multiplicity p > 0, an a-point of g with multiplicity q > 0. We denote by
N

m)
L (r, a; f) (Nm)

L (r, a; g)) the counting function of those a-points of f and g where p > q
(q > p), each a-point is counted only once.

Definition 7. For a positive integer p we denote Np(r, a; f) = N(r, a; f) + N(r, a; f |≥
2) + . . . N(r, a; f |≥ p). Clearly N(r, a; f) = N1(r, a; f).

Definition 8. [4] Let m be a positive integer. Also let z0 be a zero of f(z)− a of multi-
plicity p and a zero of g(z) − a of multiplicity q. We denote by Nf≥m+1(r, a; f | g 6= a)
(Ng≥m+1(r, a; g | f 6= a)) the reduced counting functions of those a-points of f and g for
which p ≥ m + 1 and q = 0 (q ≥ m + 1 and p = 0).

Definition 9. [10, 11] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplicities
of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Remark 4. If Em)(a; f) = Em)(a; g), then N∗(r, a, f ; g) = N
m)
L (r, a; f) + N

m)
L (r, a; g) +

Nf≥m+1(r, a; f | g 6= a) + Ng≥m+1(r, a; g | f 6= a).

Definition 10. [14] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the counting
function of those a-points of f , counted according to multiplicity, which are b-points of g.
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Definition 11. [14] Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f | g 6=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according to multiplicity,
which are not the bi-points of g for i = 1, 2, . . . , q.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and
G be two non-constant meromorphic functions defined as follows.

F =
fn(f − a)

b
, G =

gn(g − a)
b

. (2.1)

Henceforth we shall denote by H and Φ the following two functions

H =

(
F

′′

F ′ −
2F

′

F − 1

)
−

(
G

′′

G′ −
2G

′

G− 1

)
and

Φ =
F

′

F − 1
− G

′

G− 1
.

Lemma 1. Let F , G share (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Proof. The lemma can be proved in the line of proof of Lemma 1 [11].

Lemma 2. Let S1, S2 and S3 be defined as in Theorem 1 and F , G be given by (2.1). If
for two non-constant meromorphic functions f and g Ef (S1, 0) = Eg(S1, 0), Ef (S2, 0) =
Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and H 6≡ 0 then

N(r, H) ≤ N∗(r, 0, f, g) + N(r, a; f |≥ 2) + N(r, a; g |≥ 2) + N∗(r, 1;F,G)
+N∗(r,∞; f, g) + N0(r, 0;F

′
) + N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are not the

zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. The lemma can be proved in the line of proof of Lemma 2.2 [2].

Lemma 3. [15] Let f be a nonconstant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n, m}.
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Lemma 4. Let F and G be given by (2.1), n ≥ 2 an integer and F 6≡ G. If F , G share
(1,m), f , g share (0, p), (∞, k), where 0 ≤ p < ∞ then

[np + n− 1] N(r, 0; f |≥ p + 1) ≤ N∗(r, 1;F,G) + N∗(r,∞;F,G) + S(r, f) + S(r, g).

Proof. Suppose 0 is an e.v.P. (Picard exceptional value) of f and g then the lemma follows
immediately.

Next suppose 0 is not an e.v.P. of f and g. If Φ ≡ 0, then by integration we obtain

F − 1 ≡ C(G− 1).

It is clear that if z0 is a zero of f then it is a zero of g. So it follows that F (z0) = G(z0) = 0.
So C = 1 which contradicts F 6≡ G. So Φ 6≡ 0. Since f , g share (0, p) it follows that a
common zero of f and g of order r ≤ p is a zero of Φ of order exactly nr − 1 where as a
common zero of f and g of order r > p is a zero of Φ of order at least np + n− 1. Let z0

is a zero of f with multiplicity q and a zero of g with multiplicity t. From (2.1) we know
that z0 is a zero of F with multiplicity nq and a zero of G with multiplicity nt. So from
the definition of Φ it is clear that

[np + n− 1]N(r, 0; f |≥ p + 1)
= [np + n− 1]N(r, 0; g |≥ p + 1)
= [np + n− 1]N (r, 0;F |≥ n(p + 1))
≤ N(r, 0;Φ)
≤ N(r,∞; Φ) + S(r, f) + S(r, g)
≤ N∗(r,∞;F,G) + N∗(r, 1;F,G) + S(r, f) + S(r, g).

The lemma follows from above.

Lemma 5. Let F and G be given by (2.1), n ≥ 2 an integer and F 6≡ G. If Em)(1;F ) =
Em)(1;G), f , g share (0, p), (∞, k), where 0 ≤ p < ∞ then

[np + n− 1] N(r, 0; f |≥ p + 1)

≤ NF≥m+1(r, 1;F | G 6= 1) + N
m)
L (r, 1;F ) + NG≥m+1(r, 1;G | F 6= 1)

+N
m)
L (r, 1;G) + N∗(r,∞;F,G) + S(r, f) + S(r, g).

Proof. In view of Remark 4 the proof is obvious.

Lemma 6. [2] Let F , G be given by (2.1) and they share (1,m). If f , g share (0, p),
(∞, k) where 2 ≤ m < ∞ and H 6≡ 0. Then

T (r, F ) ≤ N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N2(r, a; f) + N2(r, a; g)
+N(r,∞; f) + N(r,∞; g) + N∗(r,∞; f, g)−m(r, 1;G)−N(r, 1;F |= 3)
− . . .− (m− 2)N(r, 1;F |= m)− (m− 2) NL(r, 1;F )− (m− 1)NL(r, 1;G)

−(m− 1)N (m+1
E (r, 1;F ) + S(r, F ) + S(r, G)
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Lemma 7. [4] Let F and G be two meromorphic functions such that Em)(1;F ) = Em)(1;G),
where 1 ≤ m < ∞. Then

N(r, 1;F ) + N(r, 1;G)−N(r, 1;F |= 1) +
(

m

2
− 1

2

){
NF≥m+1(r, 1;F | G 6= 1)

+NG≥m+1(r, 1;G | F 6= 1)
}

+
(

m− 1
2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
≤ 1

2
[N(r, 1;F ) + N(r, 1;G)] .

Lemma 8. Let F , G be given by (2.1) and H 6≡ 0. If Em)(1;F ) = Em)(1;G), f , g share
(∞, k), (0, p), where 1 ≤ m < ∞. Then(

n + 1
2

− 1
)
{T (r, f) + T (r, g)}

≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g) + N∗(r, 0; f, g) + N∗(r,∞; f, g)

−
(

m

2
− 3

2

){
NF≥m+1(r, 1;F | G 6= 1) + NG≥m+1(r, 1;G | F 6= 1)

}
−
(

m− 3
2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+ S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

T (r, F ) + T (r, G) (2.2)
≤ N(r, 1;F ) + N(r, 0;F ) + N(r,∞;F ) + N(r, 1;G) + N(r, 0;G)

+N(r,∞;G)−N0(r, 0;F
′
)−N0(r, 0;G

′
) + S(r, F ) + S(r, G).

Using Lemmas 1, 2, 3 and 7 we see that

N(r, 1;F ) + N(r, 1;G) (2.3)

≤ 1
2

[N(r, 1;F ) + N(r, 1;G)] + N(r, 1;F |= 1)

−
(

m

2
− 1

2

){
NF≥m+1(r, 1;F | G 6= 1) + NG≥m+1(r, 1;G | F 6= 1)

}
−
(

m− 1
2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
≤ n + 1

2
{T (r, f) + T (r, g)}+ N∗(r, 0; f, g) + N∗(r,∞; f, g) + N(r, a; f |≥ 2)

+N(r, a; g |≥ 2) + N∗(r, 1;F,G)−
(

m

2
− 1

2

){
NF≥m+1(r, 1;F | g 6= 1)

+ NG≥m+1(r, 1;G | F 6= 1)
}
−
(

m− 1
2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+N0(r, 0;F

′
) + N0(r, 0;G

′
) + S(r, f) + S(r, g)
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≤ n + 1
2

{T (r, f) + T (r, g)}+ N∗(r, 0; f, g) + N∗(r,∞; f, g)

+N(r, a; f |≥ 2) + N(r, a; g |≥ 2)−
(

m

2
− 3

2

){
NF≥m+1(r, 1;F | G 6= 1)

+ NG≥m+1(r, 1;G | F 6= 1)
}
−
(

m− 3
2

){
N

m)
L (r, 1;F ) + N

m)
L (r, 1;G)

}
+N0(r, 0;F

′
) + N0(r, 0;G

′
) + S(r, f) + S(r, g).

Using (2.3) in (2.2) the lemma follows.

Lemma 9. ([21], Lemma 6) If H ≡ 0, then F , G share (1,∞). If further F , G share
(∞, 0) then F , G share (∞,∞).

Lemma 10. If two nonconstant meromorphic functions f , g share (∞, 0) then for n ≥ 1

fn(f − a)gn(g − a) 6≡ b2,

where a, b are finite nonzero constants.

Proof. We omit the proof since it can be carried in the line of proof of Lemma 5 [12].

Lemma 11. [21] Let F , G be two nonconstant meromorphic functions sharing (1,∞) and
(∞,∞). If

N2(r, 0;F ) + N2(r, 0;F ) + 2N(r,∞;F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r, G)} and S1(r) = o(T1(r)), r −→∞, outside a
possible exceptional set of finite linear measure, then F ≡ G or FG ≡ 1.

Lemma 12. Let F , G be given by (2.1), F , G share (1,m), 0 ≤ m < ∞ and ω1, ω2 . . . ωn+1

are the distinct roots of the equation zn(z − a)− b = 0 and n ≥ 2. Then

NL(r, 1;F ) ≤ 1
m + 1

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]

+ S(r, f),

where N⊗(r, 0; f
′
) = N(r, 0; f

′ | f 6= 0, ω1, ω2 . . . ωn+1)

Proof. We omit the proof since the proof can be carried out in the line of proof of Lemma
2.14 [2].

Lemma 13. Let F , G be given by (2.1). If Em)(1;F ) = Em)(1;G), 1 ≤ m < ∞, ωi’s are
defined as in Lemma 12 and n ≥ 2. Then

NF≥m+1(r, 1;F | G 6= 1) + N
m)
L (r, 1;F ) ≤ 1

m

[
N(r, 0; f) + N(r,∞; f)−N⊗(r, 0; f

′
)
]

+ S(r, f),

Proof. Since

NF≥m+1(r, 1;F | G 6= 1)+N
m)
L (r, 1;F ) ≤ N(r, 1;F |≥ m+1) ≤ 1

m
(N(r, 1;F )−N(r, 1;F )),

the rest of the proof can be carried out in the line of proof of Lemma 12.
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3 Proofs of the theorems

Proof of Theorem 1. Let F , G be given by (2.1). Then F and G share (1, 5), (∞;∞). We
consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Noting that f and g share (0, 0) and (∞;∞) implies
N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g) and N∗(r,∞; f, g) ≡ 0 from Lemma 3 and Lemma
6 we get for ε > 0

(n + 1)T (r, f) (3.1)
≤ 3N(r, 0; f) + N2(r, a; f) + N2(r, a; g) + N(r,∞; f) + N(r,∞; g)− 3NL(r, 1;F )

−4NL(r, 1;G) + S(r, f) + S(r, g)

≤ 3
n− 1

[NL(r, 1;F ) + NL(r, 1;G)] + [4− δ2(a; f)− δ2(a; g)−Θ(∞; f)

−Θ(∞; g) + ε] T (r)− 3NL(r, 1;F )− 4NL(r, 1;G) + S(r).
≤ [4− δ2(a; f)− δ2(a; g)−Θ(∞; f)−Θ(∞; g) + ε] T (r) + S(r).

In the same way we can obtain

(n + 1)T (r, g) ≤ [4− δ2(a; f)− δ2(a; g)−Θ(∞; f)−Θ(∞; g) + ε] T (r) + S(r) (3.2)

From (3.1) and (3.2) we see that

[n− 3 + δ2(a; f) + δ2(a; g) + Θ(∞; f) + Θ(∞; g)− ε] T (r) ≤ S(r),

which leads to a contradiction for 0 < ε < n− 3 + δ2(a; f) + δ2(a; g) + Θ(∞; f) + Θ(∞; g).
Case 2. Since H ≡ 0 we get from Lemma 9 F and G share (1,∞) and (∞,∞). If possible
let us suppose F 6≡ G. Then from Lemma 4 we have

N(r, 0; f) = N(r, 0; g) = S(r).

Therefore we see that

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F ) (3.3)
≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, a; f) + N2(r, a; g) + 2N(r,∞; f)
≤ N2(r, a; f) + N2(r, a; g) + N(r,∞; f) + N(r,∞; g) + S(r)
≤ [4− δ2(a; f)− δ2(a; g)−Θ(∞; f)−Θ(∞; g) + ε] T (r) + S(r)

Using Lemma 3 we obtain

T1(r) = (n + 1) max{T (r, f), T (r, g)}+ O(1) = (n + 1) T (r) + O(1). (3.4)

So again using Lemma 3 we get from (3.3) and (3.4)

N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F )

≤ [4− δ2(a; f)− δ2(a; g)−Θ(∞; f)−Θ(∞; g) + ε]
n + 1

T1(r) + S1(r).
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Noting that 4 − δ2(a; f) − δ2(a; g) − Θ(∞; f) − Θ(∞; g) < n + 1 and ε > 0 be arbitrary
by Lemma 11 we have FG ≡ 1, which is impossible by Lemma 10. Hence F ≡ G i.e.
f

n+1−g
n+1 ≡ af

n−ag
n
. That is fn(f−a) ≡ gn(g−a). This together with the assumption

that f and g share (0, 0) implies that f and g share (0,∞). Also f and g share (∞,∞).
Suppose f 6≡ g. Let us put h = f

g , then h 6= 1. Also clearly 0, ∞ are Picard exceptional
values of h and hence we may put h = eγ , where γ is an entire function. If γ is constant,
then f and g are also constants which contradicts the hypothesis of the theorem. So γ is
non-constant entire function. So from F ≡ G we have g

(
e(n+1)γ − 1

)
= a (enγ − 1) and

f = eγg. So the theorem follows.

Proof of Theorem 2. We omit the proof since it can be carried out in the line of proof of
Theorem 1

Proof of Theorem 3. Let F , G be given by (2.1). Then F and G share (1, 3). We consider
the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Noting that f and g are entire functions and they
share (0, 0) from Lemmas 3, 4, 6 and 12 we get

(n− 1){T (r, f) + T (r, g)} (3.5)
≤ 6N(r, 0; f)− 3N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 9− 3n

(n− 1)
[NL(r, 1;F ) + NL(r, 1;G)] + S(r, f) + S(r, g)

≤ 9− 3n

4(n− 1)
[N(r, 0; f) + N(r, 0; g)] + S(r, f) + S(r, g)

≤ 9− 3n

4(n− 1)
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which gives a contradiction for n ≥ 2.
Case 2. Since H ≡ 0 we get from Lemma 9 F and G share (1,∞). That is Ef (S1,∞) =
Eg(S1,∞). So the theorem follows from Theorem E.

Proof of Theorem 4. Let F , G be given by (2.1). Then E5)(1;F ) = E5)(1;G). We consider
the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Lemmas 3, 5, 8 and 13 and Remark 4 we get(

n + 1
2

− 1
)
{T (r, f) + T (r, g)} (3.6)

≤ 3N(r, 0; f)−N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 4− n

5(n− 1)
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which gives a contradiction for n ≥ 2.
Case 2. Since H ≡ 0 we get from Lemma 9 F and G share (1,∞). That is Ef (S1,∞) =
Eg(S1,∞). So the theorem follows from Theorem E.
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