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Abstract

This paper gives an overview of some statistical tools used in cryptography from
ancient times to nowadays. Statistical tests are very useful in the cryptanalysis of pen
and paper ciphers, offering a good tool for identification of the enciphering system
used in a cryptogram and of the statistical structure of the text, leading to finding the
plaintext. NIST statistical tests were used in the evaluation of the AES candidates.
Also, linear and differential cryptanalysis for block ciphers are based on a statistical
approach.
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1 Introduction

The use of statistical testing in cryptography seems to date back to the first millennium
after Christ, due to Abu Yusuf Yaqub ibn Ishaq al-Sabah Al-Kindi (801-873) who was a
pioneer in cryptanalysis and cryptology (S. Singh [21]). He is credited with developing a
method where variations in the frequency of the occurrence of letters could be analyzed
and exploited to break ciphers (i.e. cryptanalysis by frequency analysis).

Much later, in 1863, Friedrich Kasiski published a 95-page book on cryptography
”Secret writing and the Art of Deciphering”. This was the first published account of a
procedure for attacking polyalphabetic substitution ciphers, especially the Vigenere cipher.
The method relied on the analysis of gaps between repeated fragments in the ciphertext;
such analysis can give hints as to the length of the key used (D. Khan [7]).

Later on, during World War II, we refer to code talkers who transmitted secret tactical
messages over radio communications nets using formal or informally developed codes built
upon their native languages. The name code talkers is strongly associated with bilingual
Navajo speakers specially recruited during WW II by the Marines to serve in their standard
communications units in the Pacific Theater (N. Aaseng [1]).
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The examples mentioned before show the usage of statistics in early cryptography.
The rest of the paper presents in more details some of the utilization of statistical tools in
the field. Section 2 introduces the basics of statistical testing, giving the example of the
frequency test and indicating some of the used statistical tools. Applications of statistics
to pen and pencil ciphers, as solving a substitution cipher or different specific test functions
are highlighted in Section 3. In a similar way, Section 4 deals with the statistical usage in
evaluating and cryptanalysis the block ciphers. Finally, in Section 5 we conclude.

2 Statistical testing

2.1 The basics of statistical testing

A statistical test provides a mechanism for making decisions, using data, about a
binary sequence x ∈ {0, 1} which usually represents the output of a source. The aim is to
decide whether there is enough evidence to ”reject” a conjecture or hypothesis about the
sequence. The hypothesis to be tested represents an assumption that may or may not be
true and it is called a statistical hypothesis.

A statistical test requires a pair of hypotheses regarding the sequence to be tested:

• the null hypothesis H0 - the sequence x is produced by a binary memory less source:
Pr(X = 1) = p0 and thus Pr(X = 0) = 1−p0 (in this case we say that the sequence
does not present any predictable component);

• the alternative hypothesis H1 - the sequence x is produced by a binary memory less
source: Pr(X = 1) = p1 and Pr(X = 0) = 1− p1 with p0 6= p1, (in this case we say
that the sequence presents a predictable component regarding the probability p).

Two types of errors can result from a statistical test:

• the first order error α - the risk of rejecting the null hypothesis when it is in fact
true, also called the level of significance

α = Pr(reject H0 | H0 is true) = 1 - Pr (accept H0 | H0 is true);

• the second order error β - the risk of failing to reject (accepting) the null hypothesis
when it is in fact false

β = Pr(accept H0 | H0 is false) = 1 - Pr (reject H0 | H0 is false).

These two errors can’t be minimized simultaneously since the risk β increases as the
risk α decreases and vice versa (Neymann-Pearson tests minimize the value of β for a
given α). The analysis plan of the statistical test includes decision rules for rejecting the
null hypothesis. These rules are described in two ways:

• Decision based on confidence intervals An example of decision rule is the fol-
lowing: for a fixed value of α we find the confidence region for the test statistic and
check if the test statistic value is in the confidence region. The confidence region is
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computed using the quantiles of order
α

2
and 1− α

2
(for example the quantile uα of

order α is defined by Pr(X < uα) = α;

• Decision based on P-value Let us denote ftest the value of test function. Another
equivalent method is to compare the P − value = Pr(X < ftest) with α and decide
the randomness if P − value ≥ α .

2.2 An example of statistical test: Frequency test

Let us show an example of a well-known statistical test, called the frequency test. This
is used to test the randomness of a sequence of zeroes and ones. In fact, it tests the
closeness of the proportion of ones to 0.5.

Input: binary sequence sN = s1, ..., sN Denote by p0 = Pr(S = 1) the probability of
occurrences of symbol 1, and q0 = 1 − p0 = Pr(S = 0) the probability of occurrences of
symbol 0.

Output: Accept or reject the randomness of the sequence, meaning that the sequence
sN is the output of a symmetric binary source with Pr(S = 1) = p0, the alternative
hypothesis being Pr(S = 1) = p1 6= p0.

STEP 0. Read the sequence sN and the rejection rate α.
STEP 1. Compute the test function:

f(sN ) =
1

√
np0q0

(
N∑
i=1

si −Np0

)
.

STEP 2. If f(sN ) ∈ [uα
2
, u1−α

2
] then accept the hypothesis of randomness, otherwise

reject it (remember that uα
2

and u1−α
2

are the quantiles of order α
2 and 1− α

2 of the normal
distribution).

STEP 3. Compute the second error probability (probability of acceptance or a false
hypothesis):

β = 1 + Φ
((

uα
2
− N(p1 − p0)√

Np0q0

)√
p0q0
p1q1

)
− Φ

((
u1−α

2
− N(p1 − p0)√

Np0q0

)√
p0q0
p1q1

)
.

2.3 Some statistical tools

We present in the following some existing tools (in the area of cryptography) which
have the possibility to perform statistical tests:

• NIST Statistical Test Suite (STS);

• Donald Knuth describes in his book [10] several empirical tests;

• The Crypt-XS suite of statistical tests developed by researchers at the Information
Security Research Centre at Queensland University of Technology in Australia;
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• The DIEHARD suite of statistical tests developed by George Marsaglia;

• CrypTool developed by the universities of Siegen and Darmstadt.

The NIST Statistical Test Suite (STS) 800-22 is a statistical testing package developed
by the National Institute for Standards and Technology published in NIST SP 800-22
and it consists of 16 statistical tests based on confidence intervals. The tests detect a
general class of defects of (pseudo)random generators. We must remark the fact that
NIST 800-22 was one of the cryptographic tools which were involved in the evaluation of
the candidates for Advanced Encryption Standard (FIPS PUB 197) (see Section 4.2). The
NIST evaluation procedure is the following:

1. Compute the test statistic;

2. Compute its p− value;

3. Compare the p− value to const (where const is chosen in the (0.001, 0.01] interval):
success whenever p− value > const and failure whenever p− value < const.

3 Applications of statistics to pen and paper ciphers

3.1 Types of encryption systems

We start this section with the presentation of statistical tests applied to pen and paper
ciphers. We will consider the following classes of ciphers:

• monoalphabetic unilateral substitution systems using standard cipher alphabets - each
plaintext letter is replaced by one ciphertext letter using two equivalent alphabets
in cyclic or reverse order;

• monoalphabetic unilateral substitutions systems using mixed cipher alphabets - each
plaintext letter is replaced by one ciphertext letter using two equivalent alphabets
in pseudorandom or random order;

• monoalphabetic multilateral substitutions systems - each plaintext letter is replaced
by one or two cipher letters or numbers using a equivalence of the alphabets;

• polygraphic substitution systems - each plaintext digram (or trigram) is replaced, via
a table of equivalence, with a ciphertext digram (or trigram);

• polyalphabetic substitution systems - is a generalization of the monoalphabetic sys-
tems;

• transpositions systems - in these systems we permute the letters or words of the
plaintext.
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3.2 Solving a substitution cipher

William Friedman (born in Kishinev, 1981) formulated some fundamental operations
in order to obtain the solution to cryptograms belonging to the above ciphers: find the
language employed in the plaintext, find the general cryptographic system used, recon-
struct the specific key in the case of a cipher system, or the reconstruction of, partial or
complete, code book, in the case of a code system or both in the case of an enciphered
code system and finally, reconstruct the plaintext.

According to the Navy Department OP-20-G Course in Cryptanalysis, in order to find
the solution of a substitution cipher one must go through the following stages:

• analysis of the cryptogram(s): preparation of a frequency table, search for rep-
etitions, determination of the type of system used, preparation of a work sheet,
preparation of individual alphabets (if more than one), tabulation of long repeti-
tions and peculiar letter distributions;

• classification of vowels and consonants by a study of: frequencies, spacing,
letter combinations, repetitions;

• identification of letters: breaking in or wedge process, verification of assumptions,
filling in good values throughout messages, recovery of new values to complete the
solution;

• reconstruction of the system: rebuilding the enciphering table, recovery of the
key(s) used in the operation of the system, recovery of the key or keyword(s) used
to construct the alphabet sequences.

3.3 Test functions as statistical tools

In the following, we address the problem of identification of the enciphering system used
in a cryptogram. The cryptanalysis method is based on computing statistical estimators
for some test functions. The resulting estimators are then compared with the values for
each language. It is important to note that the plaintext must be homogeneous (only
one language involved). Otherwise, by a suitable procedure, the text can be split in
homogeneous parts and apply the procedure for each part. This test allows identifying the
ciphering model and the statistical structure of the plaintext, which will lead to finding
the solution.

Let us denote by T = (t1, ..., tM ) and T
′

= (t
′
1, ..., t

′
M ) two sequences of length M over

the same vocabulary ZN (of size N). Denote by mi and m
′
i the frequencies of occurrences

of the ith letter from the source alphabet in the sequence T respectively T
′
. Thus we have:

N∑
i=1

mi = M

and
N∑
i=1

m
′
i = M.
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The decision functions Kappa, Chi, Psi and Phi are described in the following.

The Kappa function
Coincidence counting (Kappa function) is the technique (invented by William F. Fried-

man) of putting two texts side-by-side and counting the number of times that identical
letters appear in the same position in both texts. Thus

Kappa(T, T
′
) =

M∑
i=1

δ(ti, t
′
i)

M
.

where δ is Kronecker’s symbol. We have two theorems regarding invariance of the Kappa
function.

Theorem 1. For all polyalphabetic ciphers, the Kappa of two texts of equal length, en-
crypted with the same key, is invariant.

Theorem 2. For all transpositions, the Kappa of two texts of equal length, encrypted with
the same key, is invariant

The Chi function
The Chi function is defined by:

Chi(T, T
′
) =

N∑
j=1

mim
′
i

M2
.

Theorem 3. For all monoalphabetic ciphers the Chi of two texts of equal length, encrypted
with the same key, is invariant.

Theorem 4. For all transpositions, the Chi of two texts of equal length, encrypted with
the same key, is invariant.

The Psi function
The Psi function is related to the Chi function and is defined by:

Psi(T ) = Chi(T, T ).

We also have similar invariance theorems:

Theorem 5. For all monoalphabetic ciphers the Psi of texts is invariant.

Theorem 6. For all transpositions, the Psi of texts is invariant.

We have the Kappa − Chi theorem:
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Theorem 7. For two texts T and T
′

over the same vocabulary and the same length the
value Chi(T, T

′
) is the arithmetic mean of all Kappa(T (i), T

′
) (T (i) is the text T shifted

cyclically by i positions to the right and the connection formula is t∗j = t(j−i−1) mod M+1

for j = 1, ...,M):

Chi(T, T
′
) =

1
M

M−1∑
i=0

Kappa(T (i), T
′
).

In the situation when T ≡ T ′
we obtain the Kappa − Psi theorem.

The Phi function
The Phi functions are defined by:

Phi(T ) =

N∑
j=1

mi(mi − 1)

M(M − 1)
.

Theorem 8. For all monoalphabetic ciphers the Phi of text is invariant.

Theorem 9. For all transpositions ciphers the Phi of text is invariant.

We have the Kappa − Phi theorem:

Theorem 10. For a text T of length M over a vocabulary ZN the value of Phi(T ) is
the average of all Kappa(T (i), T ) (T (i) is the text T shifted cyclically by i positions to the
right):

Phi(T ) =
1

M − 1

M−1∑
i=1

Kappa(T (i), T ).

The test functions presented above are invariant under a large class of cipher systems
like transpositions and substitutions and can be used in the identification of the plain
text language, cipher system used for encryption, key recovery and plain text recovery.
The Kappa function is used in cipher system identification and in language identification
(this function is a reference test for language identification). The procedure of language
identification is also based on the comparison of the values of Psi and Phi of the cipher
text with the values of Psi and Phi of each language (this functions are confirmatory
tests at this time). Phi is useful because rare letters have no contribution to the decision
procedure. The function Chi is used in isolog attacks (different texts encrypted with the
same key). Kappa, Chi, Psi and Phi tests can be also applied on digrams and trigrams
etc.

4 Application of statistics to block ciphers

4.1 Preliminary notions

A block cipher is a symmetric key cipher (with no memory and time-invariant) that
operates on fixed-length groups of bits, called blocks. In general, block ciphers are con-
structed by repeating the same function. Each iteration is called a round and the applied
function is named the round function.
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For a r-rounds cipher, consider the following notations: N the block length, K the key
length, X the plaintext, Y the ciphertext, X(i) the input in the round i, Y (i) the output
in round i, Z(i) the key in round i, 1 ≤ i ≤ r.

4.2 Application to AES standardization process

The output of an encryption system should be computationally undistinguished from
a random source. Statistical tests are used in order to evaluate the randomness of the
output.

This represented one of the criteria used for the selection of the AES (Advanced En-
cryption Standard) algorithm. Papers [19], [20] describe how the output of the candidate
algorithms were tested for randomness.

Different sets of data were used as input in order to examine the sensitivity of the
algorithms in different conditions: 128-Bit Key Avalanche and Plaintext Avalanche (to
examine the randomness of the output to changes in the key, respectively plaintext while
maintaining the plaintext, respectively the key to all-zero), Plaintext/Ciphertext Corre-
lation, (to examine the correlation of plaintext/ciphertext pairs), Cipher Block Chaining
Mode (to examine the sensitivity in CBC mode for all-zero initialization vector IV, all-
zero plaintext and random key value), Low Density Plaintext, Low Density 128-Bit Keys,
High Density Plaintext and High Density 128-Bit Keys (to test the randomness in extreme
weight difference between the appearance of 0’s and 1’s). A Random Plaintext/Random
128-Bit Keys set of data was also applied for the candidates.

Multiple NIST statistical tests were applied to each algorithm using the sets of data
previously mentioned, on different platforms and implementations. The decision rule was
based on confidence interval with the level of significance α = 0.01. 6 out of 15 candidates
did not pass all the tests, displaying deviation from randomness.

4.3 Differential cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack based on statistical approach
that was introduced by E. Biham and A. Shamir at Crypto ’90 [3]. It analyses the effect
of particular differences in plaintext pairs according to the difference of the resultant
ciphertext pairs. It can be applied to a iterated cipher with a weak round function,
assuming that the subkeys used in the r-rounds of the encryption are chosen independently
and uniformly at random (i.u.r.). An independent key is a list of subkeys which is not
necessarily derived from the key scheduling algorithm [3].

Definition 1. [12] An i-round differential is defined as a couple (α, β), where α is the
difference of a pair of distinct plaintexts X and X∗, and β is the possible difference for the
resulting i-th round outputs Y (i) and Y ∗(i). The probability of a i-round differential (α, β)
is the difference ∆Y (i) given the plaintext pair (X,X∗) with ∆X = α when the plaintext
X and the round subkeys Z(1)... Z(i) are i.u.r. and is denoted by: P (∆Y (i) = β|∆X = α).

Differentials are then used to determine the most probable key (in the last round).
The basic procedure of performing a differential cryptanalysis attack is [12]:
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Figure 1: Differential cryptanalysis (URNG = Uniformly Random Number Generator;
Ω = the appropriate notion of difference) [13].

STEP 1. Choose plaintext X uniformly at random and compute X∗ so that ∆X = α.
Then, submit them both for encryption with the key Z;

STEP 2. From the resultant ciphertext Y (r) and Y ∗(r), find all values Z(r) of the
last round subkey corresponding to the anticipated difference ∆Y (r − 1) = β. Add 1 to
the count of the number of appearances of each such value Z(r);

STEP 3. Repeat previous steps until one key Z(r) is counted significantly more often
than the others. This is considered the last round subkey.

The required number of plaintext/ciphertext pairs represents the measure of security
of the cipher against the differential attack.

In order to evaluate the vulnerability of this kind of attack, the probabilities are com-
puted for different independently random subkeys. Note that in the differential attack,
the key (and therefore the subkeys) are fixed and only the plaintext can be chosen.
As was pointed out by Lai, Massey and Murphy, the theory of differential cryptanal-
ysis rests on the Hypothesis of Stochastic Equivalence: For a (r-1) differential (α, β):
P (∆Y (r − 1) = β|∆X = α) ≈ P (∆Y (r − 1) = β|∆X = α,Z(1) = ω1, ..., Z

(r−1) = ωr−1)
for almost all subkey values (ω1, ..., ωr−1) [12].

The introduced hypothesis states that the probabilities in the attack model and in
the analyzed model are approximately the same. Under this assumption, keeping in mind
that there are 2N possible values for ∆Y (r− 1), a r-round round cipher with independent
subkeys is vulnerable to the differential attack iff the round function is weak and there
exists a (r − 1)-round differential (α, β) such that P (∆Y (r − 1) = β|∆X = α) � 2−N .
The first condition assures that the second step from the basic attack procedure can be
done, while the second condition assures the succes of the third step.

Different methods have been developed starting from the idea of the differential attack.
For example, L.Knudsen introduced 2 variants of differential cryptanalysis: impossible
differential cryptanalysis that tracks the differences that are impossible to appear (the
possibility equals 0) [8] and Truncate differential cryptanalysis that considers differences
that are only partially determined, predicting only some bits and not the full block [9].

Examples of partial or total differential attacks (or variants) include DES (Data En-
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cryption Standard) [4], PES (Proposed Encryption Standard) [12], IDEA (International
Data Encryption Algorithm) [8], [2], FEAL (Fast Data Encipherment Algorithm) [5].

4.4 Linear cryptanalysis

Linear cryptanalysis is a known-plaintext attack based on a statistical approach that
was introduced by Matsui at Eurocrypt ’92 [16]. It finds a linear relation that holds in
probability between some bits of the plaintext X, ciphertext Y and key Z. The technique
allows the attacker to determine some bits of the key and to compute the remaining bits
by other means (for example brute force). It can be applied to an iterated cipher with
a weak round function, assuming that the plaintexts and the subkeys had been chosen
independently and uniformly at random.

C. Harpes, G. Kramer and J. Massey generalized Matsui’s linear cryptanalysis [6] by
replacing linear expression with I/O sums, defined based on the notion of imbalance:

Definition 2. Let S be a binary random variable. Then, S is balanced if P (S = 0) =
P (S = 1) = 0.5. The imbalance of S is defined as I(S) = 2|P (S = 0) − 0.5|. The
conditionally imbalanced of S given by Z = z is P (S|Z = z) = 2|P (S = 0|Z = z) − 0.5|.
The average conditioned imbalance of S given by Z is: I(S|Z) =

∑
Z I(S|Z = z)P (Z = z).

Definition 3. An i multi-round I/O sum is S1...i = f1(X(1)) ⊕ gi(Y (i)), where fi is a
balanced binary-valued function on the input, gi is a balanced binary-valued function on
the output and hi is a balanced binary-valued function on the key.

The basic procedure of performing a linear cryptanalysis attack is [6]:

STEP 1. Find a (r − 1) multi-round I/O sum S1...(r−1) = f1(X(1) ⊕ gr−1(Y (r−1)))
with large imbalance;

STEP 2. For each possible sets of bits in subkey Z(r) that affect the value of gr−1(Y ∗):

• for each plaintext X, decrypt the corresponding ciphertext Y for only one round of
encryption to obtain Y ∗;

• compute S = f1(X) ⊕ gr−1(Y ∗), which represents the value of S1..(r−1) assuming
that the key was guessed correctly;

• compute the empirical imbalance of these values;

STEP 3. Decide on the key Z(r) that has the greatest empirical imbalance.

Linear cryptanalysis is more effective than differential analysis on block ciphers such as
DES [14], [15] and FEAL [16], where the key is inserted into the round through bit-by-bit
modulo addition.
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Figure 2: Linear cryptanalysis (URNG = Uniformly Random Number Generator)[13].

5 Conclusions

The paper highlights the applicability of statistics in cryptography. Different tech-
niques of evaluation, testing and cracking cryptographic systems from ancient times until
present are possible due to statistical tests and implementing statistical tools.

We give the basics of statistical testing, exemplify through the frequency test and also
present some of the existing statistical tools.

We merely emphasize the applicability of statistics to cracking pen and pencil ciphers
by the use of statistical tests. Finally, we present the AES candidates’ evaluation by
applying randomness tests and the development of new techniques based on a statistical
approach, such as differential and linear cryptanalysis.
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