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Abstract

In two previous papers, we proposed a new unified mathematical description of
the main equations of gravity and electromagnetism, based on Finslerian connections
on the tangent bundle of the space-time manifold and on tidal tensors. In the present
paper, we present these results and point out the relations between the obtained geo-
metric objects and KCC invariants for a special 1-parameter family of sprays.
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1 Introduction

Starting from a recent gravito-electromagnetic analogy, [6], [7], based on tidal tensors,
we proposed in [14], [15], a new, common geometric model for the two physical fields.

The analogy in [6], [7] overcomes the limitations of the classical ones, i.e., the linearized
approach, which is only valid in the case of a weak gravitational field and the one based
on Weyl tensors, which compares tensors of different ranks. But, in defining the central
notion used in this analogy – the one of tidal tensor – it is imposed a restriction upon
worldline deviation equations.

In [14], [15], we showed that, passing to the tangent bundle of the space-time manifold
and using conveniently chosen connections, we have at least three advantages:

- any restriction upon worldline deviation equations becomes unnecessary;
- out of the 4 sets of equations proposed in [6], [7], only two are needed in order to

express Einstein and Maxwell equations;
- the obtained equations are valid not only in the case when one of the two physical

fields (gravitational or electromagnetic) is present, but also when both are present. In
1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
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other words, these equations can underlie more than an analogy – a common geometric
language for the two fields.

The geometric structures involved in this description are Ehresmann connections and
Berwald linear connections attached to a certain 1-parameter family of sprays. These
connections have the property that worldlines of charged particles are autoparallel and
worldline deviation equations have the simplest possible invariant expressions. Maxwell
and Einstein equations can be expressed, [14], [15], directly in terms of tidal tensors arising
from these connections.

The idea we use here – the metric tensor contains information about gravity only,
while connections contain information about both physical fields – was first proposed by
R. Miron and collaborators2 in [11], [9], [12] (and we adopted it here as it leads to simpler
computations than other approaches and to elegant equations); still, we use different
connections, meant to offer a simple expression for worldline deviation equations.

The paper is organized as follows. In Section 2, we present results regarding geodesics
and geodesic deviations for Ehresmann connections and, in particular, for spray connec-
tions. In Section 3, we apply these results for a special 1-parameter family of sprays.
Section 4 presents in brief the geometric expressions (obtained in [14], [15]) of Einstein
and Maxwell equations in terms of tidal tensors. In the last section, we point out the
arising KCC invariants and their interpretation.

2 Ehresmann connections and geodesic deviation

2.1 General connections

Consider a 4-dimensional Lorentzian manifold (M, g), regarded as space-time manifold,
with local coordinates x = (xi)i=0,3 and Levi-Civita connection ∇; on the tangent bundle
(TM, π,M), we denote the local coordinates by (x ◦ π, y) =: (xi, yi)i=0,3 and by ,i and ·i,
partial differentiation with respect to xi and yi respectively. A Finslerian tensor field on
TM, [5], is a tensor field on TM, whose local components transform by the same rule as
the components of a tensor field on M .

An Ehresmann (nonlinear) connection N on TM, [1], [9], gives rise to the adapted
basis

(δi =
∂

∂xi
−N j

i(x, y)
∂

∂yj
, δ̇i =

∂

∂yi
), (1)

and to its dual (dxi, δyi = dyi +N i
jdx

j). For a vector field X = Xiδi + X̃iδ̇i on TM, the
horizontal component hX = Xiδi and the vertical component vX = X̃iδ̇i, are Finslerian
tensor fields.

2Other attempts of unifying gravity and electromagnetism, based on tangent bundle geometry, try
to include also information regarding electromagnetism in the metric tensor – thus getting Finslerian
(Randers-type, Beil-type etc.) metrics, [3], [4]. Also, recently, Wanas, Youssef and Sid-Ahmed produced
another description, [16], based on teleparallelism on TM . Another version, using complex Lagrange
geometry, is proposed by G. Munteanu, [13].
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Consider a curve c : t 7→ (xi(t)) on the base manifold M . For any vector field X =

Xi(t)
∂

∂xi
along c, its complete lift XC = Xi ∂

∂xi
+
dXi

dt

∂

∂yi
to TM is written in the adapted

basis as:

XC = Xiδi +
δXi

dt
δ̇i,

where the adapted derivative
δXi

dt
is:

δXi

dt
=
dXi

dt
+N i

j(x, ẋ)Xj . (2)

The curve c is called a geodesic (an autoparallel curve) of N if:

δyi

dt
= 0, yi =

dxi

dt
; (3)

Considering variations through geodesics of a given geodesic (3), the components wi

of the deviation vector field obey the relations:

δ2wi

dt2
= Rijk(x, y)ykwj + Tij(x, y)

δwj

dt
, (4)

where
Rijk = δkN

i
j − δjN i

k (5)

are the components of the curvature of N and

Tij = ykN i
k·j −N i

j ,

those of the strong torsion of N , [10].
It follows that the simplest form of the geodesic deviation equations is obtained in the

case when Tij = 0.

2.2 Spray connections

A semispray is a vector field on TM of the form:

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
; (6)

in particular, if the coefficients Gi = Gi(x, y) are homogeneous of degree 2 in y, then S is
called a spray.

A path or a geodesic of the semispray S is, [1], [5], a curve c : t 7→ (xi(t)) on M , with
the property that its lift c′ : t 7→ (xi(t), ẋi(t)) to TM is an integral curve of S, i.e., :

dyi

dt
+ 2Gi(x, y) = 0, yi = ẋi. (7)
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Conversely, for any ODE system of the form (7) which is globally defined, the functions
Gi define a semispray on TM.

Any semispray on TM gives rise to an Ehresmann connection, called the semispray
connection and an affine connection on TM, called the Berwald connection.

The semispray connection N has the local coefficients

Gij := Gi ·j .

The adapted basis is generally nonholonomic, the nonvanishing Lie brackets of the
basis vectors are:

[δj , δk] = Rijkδ̇i, [δj , δ̇k] = Gijkδ̇i,

where Gijk = Gi ·jk.
Generally, paths of a semispray and geodesics of the attached Ehresmann connection

do not coincide.

Particular case. If S is a spray, then:
i) 2Gi = N i

jy
j , i.e., geodesics of S coincide with geodesics of the spray connection N .

ii) The spray S is expressed in the adapted basis as: S = yiδi.
iii) ([15]), The spray connection N has identically vanishing strong torsion. Conversely,

if the strong torsion of an Ehresmann connection N on TM is identically zero, then N is
a spray connection.

The Berwald connection of a semispray S is locally given by:

Dδkδj = Gijkδi, Dδk δ̇j = Gijkδ̇i, Dδ̇k
δj = Dδ̇k

δ̇j = 0. (8)

The curvature of N becomes then the only nonvanishing torsion component for D :

δyi(T(δk, δj)) = Rijk.

The curvature of D is:

R = R i
j klδi ⊗ dxj ⊗ dxk ⊗ dxl + R i

j klδ̇i ⊗ δyj ⊗ dxk ⊗ dxl +

+G i
j klδi ⊗ dxj ⊗ dxk ⊗ δyl, (9)

where
R i
j kl = Rikl·j , G i

j kl = Gijk·l.

For a Finsler vector field X = Xi(x, y)δi on TM, it makes then sense the Berwald
covariant derivative DX := DSX, which is3, [2], [5]:

DX = (DXi)δi, DXi = S(Xi) +Gijk(x, y)yjXk. (10)

3In particular, for spray connections, DXi coincides with the dynamical covariant derivative ∇Xi =
S(Xi) + Gi

j(x, y)Xk.
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In the following, we will always assume that S is a spray. In this case, geodesics of S
and N coincide.

If X is a vector field along a geodesic c : t 7→ xi(t) of S, then:

δXi

dt
= DXi.

In particular, a curve c : t 7→ xi(t) on M is a geodesic of S if and only if DS(c′) = 0,
i.e.,

Dyi = 0, yi = ẋi. (11)

Geodesic deviation equations are then written as:

D2wi = Eij(x, y)wj , y = ẋ, (12)

i.e., D2w = E(w) where w = wi(t)δi and

Eij = Rijky
k = R i

l jky
lyk (13)

define the tidal tensor E = Eijδi ⊗ dxj attached to the spray connection4 N.

3 A special family of spray connections

Consider the following 1-parameter family of Lagrangians depending on α :

α
L =

√
gij(x)ẋiẋj + αAiẋ

i; (14)

where, gij is as above, A = Ai(x)dxi is a 1-form on M and α ∈ R is a parameter.

Extremal curves x = x(t) (with t = const · s) for the action
∫ α
Ldt are given by:

dyi

dt
+ γijky

jyk − α ‖y‖F ijyj = 0, yi = ẋi, (15)

where
F ij := gih(Aj,h −Ah,j), ‖y‖ =

√
gijyiyj ; (16)

we get a 1-parameter family of sprays on TM, with coefficients Gi =
α
Gi:

2
α
Gi(x, y) = γijky

jyk + 2
α
Bi, (17)

where5

2
α
Bi = −α ‖y‖F ijyj . (18)

4The idea of tidal tensor (accordingly, of Jacobi endomorphism, see [2], [5]) and Section 5) makes sense
in the more general case of semispray connections, in this case, in (13), there appears an extra term.

5Indices are raised here by means of the pseudo-Riemannian metric gij(x) and not by the Finslerian

metric tensor induced by the Randers fundamental function
α

L . This makes our approach different from
classical Randers geometry and similar to Ingarden geometry, [12].
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We denote: F i = F ijy
j , i.e., 2

α
Bi := −α ‖y‖F i. If there is no risk of confusion, we will

use the simpler notations Gi, Bi, Gij , B
i
j , ... instead of

α
Gi,

α
Bi

α
Gij ,

α
Bi

j etc.
The 2-homogeneous functions Bi, (18), are the components of a (horizontal) Finslerian

vector field B = Biδi on TM. With li :=
yi
‖y‖

=
gijy

j

‖y‖
, we have:

Bi
j = Bi

·j = −α
2

(F ilj + ‖y‖F ij),

Bi
jk := Bi

·jk = −α
2

(l·jkF i + ljF
i
k + lkF

i
j). (19)

The spray connection coefficients of N =
α
N and D =

α
D are expressed in terms of γijk

and B as:
Gij = γijky

k +Bi
j , G

i
jk = γijk +Bi

jk. (20)

From the homogeneity of degree 2 of B in the fiber coordinates, it follows: Bi
jy
j =

2Bi, Bi
jky

k = Bi
j , Bi

jkly
l = 0.

Extremal curves for
α
L obey the geodesic equations (11)), while deviations of these

extremal curves are given by (12).

4 Basic equations of gravitational and electromagnetic fields

In the following, we will apply the above construction to the case when gij describes the
gravitational field and A = Aidx

i in (14), is the 4-potential of the electromagnetic field.

The differential forms A and F := dA =
1
2
Fijdx

i ∧ dxj can be lifted to horizontal forms

on TM, which we will denote in the same way (the notations in (16) remain unchanged).
Unless elsewhere specified, the parameter α 6= 0 is arbitrary.

The electromagnetic 2-form F can be expressed in terms of l = lidx
i. More precisely,

we have, [14],
Dδj li =

α

2
Fij ; (21)

the above can be also written in the form (which reminds [12], [9], [11])

αFij = Dδj li −Dδi lj , (22)

or, in coordinate-free notation: αF = h(dl).
Einstein and Maxwell equations can be expressed in terms of tidal tensors attached to

D =
α
D, α 6= 0. Consider the angular metric, [1]: h = hij(x, y)dxi ⊗ dxj , given by:

hij = gij − lilj .

Then:
- homogeneous Maxwell equations ∇∂iFjk +∇∂kFij +∇∂jFki = 0 are written, [14], as:

Ẽ[ij] = 0, (23)
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where Ẽij = hikE
k
j and square brackets denote antisymmetrization;

- inhomogeneous Maxwell equations ∇∂iF ij = 4πJ i, [8], are expressed in terms of tidal
tensors as:

Eii = eii − 4παρc ‖y‖2 +Bl
iB

i
l, (24)

where ρc = −J ili and eii =
0
Eii;

- Einstein field equations can also be expressed in terms of tidal tensors. The Ricci

tensor of D =
α
D is Rij = −1

2
(Ell)·ij . We have proved, [15], that for

3α2

2
= 1, the Ricci

scalar R =
α
R is dynamically equivalent to the Lagrangian

R̃ = r + FijF
ij

on M – i.e., to the Lagrangian which leads to the usual Einstein-Maxwell equations, [8].

Here, R̃ = Rij −
0
Dδk(Bk

ij) and R̃ = gijR̃ij . Then, Einstein field equations

rij −
1
2
rgij = 8π(

em
T ij +

m
T ij)

(where
em
T ij is the stress-energy tensor of the electromagnetic field and

m
T ij , the stress-

energy tensor of matter and/or other fields) are equivalent to:

R̃ij −
1
2
R̃gij + B·ij = 8π

m
T ij , (25)

where B :=
3
2
BlBl

‖y‖2
+

1
2
Bi

hB
h
i; thus, the electromagnetic stress-energy tensor

em
T ij is

included in the Einstein tensor Gij = R̃ij −
1
2
R̃gij + B·ij .

- Equations of motion of a charged particle, [8], are (15):

α
Dyi = 0, y = ẋ, (26)

in which, this time, we set α =
q

m
.

For particles having the same ratio
q

m
, worldline deviation equations are:

α
D2wi = Eijw

j , α =
q

m
. (27)

In the particular cases when only one of the two physical fields is present, we find
similar equations to those underlying the gravito-electromagnetic analogy in [6], [7] – just,
without resorting to any restriction upon w in defining tidal tensors.
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a) Gravity only : In this case, we have Bi = 0, Gijk = γijk and R i
j kl = r i

j kl and, from

(25), r = −8π
m
T l l. The tidal tensor is eij := r i

l jky
lyk; thus, contracting (25) by yiyj , we

can write:

rij = 8π(
m
T ij −

1
2
gij

m
T l l)

rjk = rkj

⇔
⇔

1
‖y‖2

eii = −4π(2ρm − T ii)

ẽ[ij] = 0,
(28)

where ρm = Tijl
ilj .

b) Electromagnetism in flat Minkowski space: In this case, γijk = 0, Gijk = Bi
jk and

Maxwell equations are written as:

∇∂iF ij = 4πJ i

∇∂iFjk +∇∂kFij +∇∂jFki = 0
⇔
⇔

1
‖y‖2

Eii = −4παρc +
1
‖y‖2

Bi
hB

h
i

Ẽ[ij] = 0.
(29)

5 KCC invariants and their meaning

The solutions of a system of ordinary differential equations on a manifold is determined,
up to a change of coordinates, by five invariants, [2], called the Kosambi–Cartan-Chern
invariants (or the KCC-invariants) of the system.

Consider a globally defined ODE system on M , and Gi – the coefficients of the corre-
sponding semispray:

ẍi + 2Gi(x, ẋ) = 0.

The KCC invariants of the system are:
1) The deviation tensor E i = 2Gi −N i

jy
j ;

2) The Jacobi endomorphism Φ = Φi
jdx

j ⊗ δ̇i, where

Φi
j = 2Gi,j − S(Gij)−GirGrj .

3) The curvature Rijk of the semispray connection N.

4) The horizontal curvature component R i
j kl of the Berwald connection.

5) The mixed curvature component of the Berwald connection (the Douglas tensor):
G i
j kl = Gi·jkl.

In our case, N =
α
N are spray connections, which entails E i = 0.

A direct computation shows that Φi
j = −Eij , i.e., the Jacobi endomorphism and the

tidal tensor E are related by the the tangent structure J = dxi ⊗ δ̇i :

Φ = −J ◦ E,

The third and the fourth invariants are related to the second one (i.e., to Eij) by:

Eij = Rijky
k = R i

l jky
lyk,

Rijk =
1
3

(Eij·k − Eik·j), R i
j kl = Rikl·j ;
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any of these invariants characterizes worldline deviation. The vanishing of eij =
0
Eij

(equivalently, of
0
Rijk or of r i

j kl =
0
Rijkl) indicates the absence of the gravitational field

(flat space-time).
The fifth invariant is:

G i
j kl = Bi

·jkl

and it contains information regarding electromagnetism. If Bi
·jkl = 0, then the electro-

magnetic 2-form F vanishes.
The justification of the latter statement is the following. If Bi

·jkl = 0, then in (19),
we have Bi

jk = Bi
jk(x), i.e., Bi = −α ‖y‖F ij(x)yj is bilinear in y. Supposing F ij 6= 0, it

follows that ‖y‖ should be linear, ‖y‖ = ai(x)yi and thus, gij = aiaj (which is a degenerate
metric tensor); since this is impossible, it follows that F ij = 0.

Consequently, a nonzero Douglas tensor G i
j kl (equivalently: a nonzero contortion Bi

jk)
indicates the presence of the electromagnetic field.
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