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A SUFFICIENT CONDITION FOR UNIVALENCE

Horiana TUDOR1

Abstract

In this paper we obtain sufficient conditions for the analyticity and the univalence
of the functions defined by an integral operator.
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1 Introduction

We denote by Ur = { z ∈ C : |z| < r} the disk of z-plane, where r ∈ (0, 1], U1 = U
and I = [0,∞).
Let A be the class of analytic functions f in the unit disk U , such that f(0) = 0, f ′(0) = 1.
Let S denote the class of functions f ∈ A, f univalent in U . The subclasses of S consisting
of starlike functions and α-convex functions will be denoted by S∗, respectively Mα.

Definition 1. ([2]). Let f ∈ A, f(z)f ′(z) 6= 0 for z ∈ U and α > 0.We denote by

M(α, f) = (1− α)
zf ′(z)
f(z)

+ α(
zf ′′(z)
f ′(z)

+ 1)

If <M(α, f) > 0 in U , then f is said to be an α-convex function (f ∈Mα).

Theorem 1. ([2]). The function f ∈ Mα if and only if there exists a function g ∈ S∗
such that

f(z) =

(
1
α

∫ z

0

g1/α(u)
u

du

)α
(1)

In order to prove our main result we need the theory of Löewner chains.

Theorem 2. ([3]). Let L(z, t) = a1(t)z + a2(t)z2 + . . . , a1(t) 6= 0 be analytic in Ur, for
all t ∈ I, locally absolutely continuous in I and locally uniformly with respect to Ur. For
almost all t ∈ I, suppose that

z
∂L(z, t)
∂z

= p(z, t)
∂L(z, t)
∂t

, ∀z ∈ Ur,
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where p(z, t) is analytic in U and satisfies the condition Re p(z, t) > 0, for all z ∈ U ,
t ∈ I. If |a1(t)| → ∞ for t → ∞ and {L(z, t)/a1(t)} forms a normal family in Ur, then
for each t ∈ I, the function L(z, t) has an analytic and univalent extension to the whole
disk U .

2 Main results

In this section, making use of Theorem 2, we obtain a sufficient condition for the
analyticity and the univalence of the functions defined by the operator introduced by P.
T. Mocanu ([2]) in the integral representation of α-convex functions.

Theorem 3. Let f ∈ A and α be a complex number, <α > 1
2 . If the inequality∣∣∣∣ 1− α

α
|z|2α + (1− |z|2α)

(
zf ′(z)
f(z)

− 1
) ∣∣∣∣ ≤ 1 (2)

is true for all z ∈ U , then the function

F (z) =
(
α

∫ z

0

fα(u)
u

du

)1/α

(3)

is analytic and univalent in U , where the principal branch is intended.

Proof. Let us prove that there exists r ∈ (0, 1] such that the function L : Ur × I −→ C
defined as

L(z, t) =

[∫ e−tz

0

fα(u)
u

du+ (e2αt − 1)fα(e−tz)

]1/α

(4)

is analytic in Ur for all t ∈ I.
From the analyticity of the function f it follows that the function h(z) = f(z)

z is analytic
in U and since h(0) = 1 there is a disk Ur1 in which h(z) 6= 0. Therefore we can choose
the uniform branch of (h(z))α equal to 1 at the origin, denoted by h1. It is easy to see
that the function

h2(z, t) =
∫ e−tz

0
uα−1h1(u)du

can be written as h2(z, t) = zαh3(z, t), where h3 is analytic in Ur1 , h3(0, t) = e−αt/α. The
function h4(z, t) = h3(z, t) + (e2αt − 1)e−αth1(e−tz) is also analytic in Ur1 and h4(0, t) =
eαt
[

1 + 1−α
α e−2αt

]
. We shall prove that h4(0, t) 6= 0 for any t ∈ I. We have h4(0, 0) = 1/α.

Assume that there exists t0 > 0 such that h4(0, t0) = 0. Then e2αt0 = (α − 1)/α. Since
<α > 1/2 is equivalent with |(α − 1)/α| < 1 it follows |e2αt0 | < 1 and we conclude that
h4(0, t) 6= 0 for all t ∈ I. Therefore, there is a disk Ur2 , 0 < r2 ≤ r1, in which h4(z, t) 6= 0
for all t ∈ I. We choose the uniform branch of [h4(z, t)]1/α analytic in Ur2 , denoted by
h5(z, t), that is equal to

a1(t) = et
[
1 +

1− α
α

e−2αt

]1/α
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at the origin. From these considerations, it results that the relation (4) may be written as
L(z, t) = zh5(z, t) = a1(t)z + a2(t)z2 + . . . .

Under the assumption of the theorem, we have a1(t) 6= 0 and lim t→∞|a1(t)| = ∞.
Since L(z, t) is an analytic function in Ur2 , it results that there exist a number 0 < r3 < r2
and a constant k = k(r3) such that | L(z, t)/a1(t) | < k, z ∈ Ur3 , and hence {L(z, t)/a1(t)}
forms a normal family in Ur3 .

It can be easy see that ∂L(z,t)
∂t is an analytic function in Ur3 and therefore L(z, t) is

locally absolutely continuous in I, locally uniform with respect to Ur3 . We define

p(z, t) = z
∂L(z, t)
∂z

/ ∂L(z, t)
∂t

and we will prove that the function p(z, t) has an analytic extension with positive real
part in U , for all t ∈ I. Let w(z, t) be the function defined by

w(z, t) =
p(z, t)− 1
p(z, t) + 1

.

After computation, we obtain

w(z, t) =
1− α
α

e−2αt + (1− e−2αt)
(

e−tzf ′(e−tz)
f(e−tz)

− 1
)

(5)

We have
w(z, 0) =

1− α
α

and w(0, t) =
1− α
α

e−2αt

Since <α > 1
2 we obtain that

| w(z, 0) | < 1 and also | w(0, t) | < 1 (6)

Let t be a fixed positive number, z ∈ U, z 6= 0. Since |e−tz| ≤ e−t < 1 for all z ∈ U = {z ∈
C : |z| ≤ 1} we conclude that the function w(z, t) is analytic in U . Using the maximum
modulus principle it follows that for each t > 0, arbitrary fixed, there exists θ = θ(t) ∈ R
such that

|w(z, t)| < max
|ξ|=1
|w(ξ, t)| = |w(eiθ, t)|, (7)

We denote u = e−t · eiθ . Then |u| = e−t < 1 and from (5) we get

w(eiθ, t) =
1− α
α
|u|2α + (1− |u|2α)

(
uf ′(u)
f(u)

− 1
)

Since u ∈ U , the inequality (2) implies |w(eiθ, t)| ≤ 1 and from (6) and (7) we conclude
that |w(z, t)| < 1 for all z ∈ U and t ≥ 0.

From Theorem 2 it results that the function L(z, t) has an analytic and univalent
extension to the whole disk U , for each t ∈ I. For t = 0 it follows that the function

L(z, 0) =
(∫ z

0

fα(u)
u

du

)1/α

is analytic and univalent in U and then the function F defined by (3) is also analytic and
univalent in U .
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Corollary 1. Let f ∈ A and α be a complex number, <α > 1
2 . If for all z ∈ U∣∣∣∣ zf ′(z)f(z)

− 1
∣∣∣∣ ≤ <α|α| , (8)

then the function F defined by (3) is analytic and univalent in U .

Proof. It is known that for all z ∈ U , z 6= 0 and <α > 0 we have∣∣∣∣ 1− |z|2α

α

∣∣∣∣ ≤ 1− |z|2<α

<α
(9)

In view of (8) and (9) and since |α− 1| < |α| we obtain∣∣∣∣ 1− α
α
|z|2α + (1− |z|2α)

(
zf ′(z)
f(z)

− 1
) ∣∣∣∣ ≤∣∣∣∣1− αα |z|2α

∣∣∣∣+
∣∣∣∣1− |z|2αα

∣∣∣∣ ∣∣∣∣α(zf ′(z)f(z)
− 1
)∣∣∣∣ ≤ |z|2<α +

1− |z|2<α

<α
|α|
∣∣∣∣zf ′(z)f(z)

− 1
∣∣∣∣ ≤ 1

From Theorem 3 it follows that the function F is analytic and univalent in U .

Remark 1. The condition (8) implies f ∈ S∗. For α real number, α > 0, from Theorem
1 we get that F is an α-convex function.

Example 1. Let α, b be complex numbers, <α > 1
2 , |b| ≥ 1 + |α|

<α . The function

F (z) =
(
α

∫ z

0

uα−1

(u+ b)α
du

)1/α

is analytic and univalent in U .

Proof. We consider the function f(z) = bz
z+b = z+ . . . which satisfies the condition (8) of

Corollary 1.
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