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Abstract

We investigate generalized Berwald spaces Bn over Rn (local theory). These are
Finsler spaces admitting metric linear connections Γ∗ over TRn. (If Γ∗ is torsion free,
then Bn is a Berwald space.)

An affine deformation is a regular linear transformation of each TpRn. This takes
the indicatrices of a Minkowski spaceMn into other indicatrices, and thus it leads to
a new Finsler space.

We prove that any Bn is the affine deformation of an Mn, and conversely. We
show that any Bn can be represented by a pair (V n,Mn) of a Riemannian and a
Minkowski space. Several properties of Bn will be expressed by properties of V n or
Mn. Also the linear automorphisms of the indicatrices will be investigated.
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1 Introduction

In metric differential geometry, like Finsler geometry, one can study arc length, angle, area,
geodesics, motion, etc. using the metric only, but a number of important questions need
relation between the tangent vectors. This is provided by a connection. But a connection
is really effective if it is linear and metric. Unfortunately such a connection does not
exist (in general) in Finsler geometry, at least not among the tangent vectors of the base
manifold Rn. This deficiency was surmounted by introducing the line-elements. However
this made the apparatus more combined and difficult. Nevertheless there are important
special Finsler spaces in which there exists metric linear connection in the tangent bundle
TRn. Such are, among others, the Riemannian and the Minkowski spaces.

In this paper we investigate affine deformations of Minkowski spaces. Affine deforma-
tion means a regular linear transformation in each tangent space TxRn. We show that
also the spaces arising from a Minkowski space by affine deformation admit linear met-
ric connections for the vectors of TRn. We detect and describe several properties of the
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affine deformation of Minkowski spaces. Several results are near to those of Y. Ichijyō [I].
We often apply direct geometric considerations rather than analytic calculations. These
sometimes lead to quick results.

2 Relations between generalized Berwald spaces and
Minkowski spaces

Our investigations will be local, nevertheless more results remain valid also over certain
global manifolds. So our base manifolds will be Rn. The indicatrices I(x) of a Finsler
space Fn = (Rn(x),F(x, y)) are defined by

I(x) := {y ∈ TxRn | F(x, y) = 1}.

The indicatrix bundle {I(x)} and the Finsler metric function F(x, y) uniquely determine
each other

{I(x)} 1:1←→ F(x, y).

Thus we can write Fn = (Rn(x), I(x)) in place of Fn = (Rn(x),F(x, y)). Indicatrices I(x)
seem to be more adequate for geometric considerations, than the Finsler function F(x, y).

Definition. An affine deformation in Rn is a family of invertible (or, equivalently, regular)
linear transformations

a(x) : TxRn → TxRn, (1)

depending smoothly on x. If the components of a(x) are denoted by ai
k(x), det(ai

k(x)) 6= 0,
then (1) means ai

k(x)ξk = ξ̄i, ξ ∈ TxRn. This family (which is, in fact, a (1, 1) tensor on
Rn) is denoted by A.

a(x)I(x) = Ī(x) (2)

is an affine deformation of the indicatrix I(x), and it is another indicatrix Ī(x). Thus the
affine deformation AFn of a Finsler space Fn is the Finsler space

AFn := (Rn(x), a(x)I(x)) = (Rn(x), Ī(x)).

The affine deformation AEn of the Euclidean space En = (Rn(x), S), where S is the
Euclidean unit sphere, is a Riemannian space V n:

AEn = (Rn(x), a(x)S) = (Rn(x), Q(x)) =: V n,

where
a(x)S = Q(x) (3)

are ellipsoids. Given a bundle {Q(x)}, (3) is solvable for a(x). So every V n is an affine
deformation of En.

Let Mn = (Rn(x), I0) be a Minkowski space in an adapted coordinate system (x),
where I0 is independent of x. Then the indicatrices I0(x) are parallel translates of each
other, and

AMn = (Rn(x), a(x)I0) = (Rn(x), Ī(x)) = Fn
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is a Finsler space, which is not a Minkowski space any longer (except if a(x) does not
depend on x).

Finally any two Riemannian spaces V n
1 and V n

2 are affine deformations of each other.
The affine deformation of a Finsler space is another Finsler space, however two Finsler
spaces are not affine deformation of each other in general.

A Berwald space is a Finsler space in which the coefficients of the Berwald connection
are independent of the point x. They admit metric linear connections in the tangent
bundle, but this property is not characteristic for them. (For details we refer to [SzLK].)
The Finsler spaces admitting metric linear connections in the tangent bundle TRn are the
generalized Berwald spaces denoted in this paper by Bn.

Our basic result is

Theorem 1. Every generalized Berwald space Bn is an affine deformation of a Minkowski
space, and conversely.

This result is closely related, and partially coincides with that of Y. Ichijyō [I] (see also
L. Tamássy [Ta]).

Proof. I/ Any AMn admits a metric linear connection Γ∗, and thus it is a Bn.
Let (x) be an adapted coordinate system for the Minkowski space Mn = (Rn(x), I0).

Its affine deformation is AMn = (Rn(x), a(x)I0) = Fn = (Rn(x), I(x)). Let x0 and x̄ be
two arbitrary points of Rn, and x(t) a curve, such that x(0) = x0 and x̄ = x(t̄). Let b(x)
be the inverse of a(x), and i : Tx0Rn → Tx̄Rn the canonical linear isomorphism. We define

p(x0, x̄) := a(x̄) ◦ i ◦ b(x0).

Displaying by a sketchy diagram:

TRn ξ(0) ξ(t̄)

AMn I(x0)
p−−−−→ I(x̄)xa(x0)

xa(x̄)

Mn I0
i−−−−→ I0

Rn x(0)
x(t)−−−−→ x̄ = x(t̄)

Obviously, p is a linear transformation. It takes Tx0Rn into Tx̄Rn, and a vector ξ0 ∈ Tx0Rn

into ξ(x(t̄)) ∈ Tx̄Rn. Then, in local coordinates,

ξi(x(t)) = ai
k(x(t))bk

s(x0)ξs
0.

From this
dξi

dt

∣∣
t=0

=
∂ai

k

∂xr
(x0)bk

s(x0)ẋrξs
0,

hence

Γ∗r
i
s(x) := −

∂ai
k

∂xr
(x)bk

s(x) (4)
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are the coefficients of a linear connection Γ∗ induced by the parallel translation p(x0, x).
However p(x0, x)I0 = I(x). This means that Γ∗ is metric. Thus AMn is a Bn.

II/ Any Bn = (Rn(x), Ī(x)) is an affine deformation of an Mn.
Bn determines a metric, linear connection Γ∗, and a parallel translation p. First we

construct a Minkowski space Mn, for which (x) is an adapted coordinate system. Let
x0 be an arbitrarily chosen fixed point of Rn, and let I0 := Ī(x). Then I0 = i1I0(x) and
I(x0) = i2I0. (Replace i by i−1

1 and a(x0) by i2 in the diagram above.) We define

a(x) := p(x0, x) ◦ i2 ◦ i1.

This a(x) takes the indicatrix I0(x) = I0 of Mn into the indicatrix Ī(x) of Bn, therefore
Bn = AMn.

Theorem 2. The curvature R∗ of Γ∗ vanishes.

This is so, for the parallel translation p arisen from the metric linear connection Γ∗ is
independent of the curve joining x0 and x̄.

3 Properties of the generalized Berwald spaces

M. Matsumoto and H. Shimada introduced and investigated Finsler spaces with 1-form
metric [MS]. These are Finsler spaces Fn = (Rn(x),F(x, y)), such that there exists a
scalar function G : Rn → R, such that

F(xi, yi) = G(ai
k(x)yk). (5)

We show

Theorem 3. Finsler spaces Fn with 1-form metric are generalized Berwald spaces Bn,
and conversely.

Proof. I/ Any Finsler space Fn = (Rn(x),F(x, y)) with 1-form metric is a generalized
Berwald space Bn.

Let Fn = (Rn(x),F(x, y)) be a Finsler space with 1-form metric. Then we have a
function G : Rn → R and a bundle A = {a(x)} with coefficients ai

k(x), which satisfy (5).
Let us deform Fn by B = {b(x)}, where b = a−1. Then

BFn = (Rn(x), G(bj
i (x)ai

k(x)yk)) = (Rn(x), G(y)).

The metric function of BFn is G(y). This does not depend of x. Therefore BFn is a
Minkowski space Mn. From this Fn = AMn, which, by Theorem 1 is a Bn.

II./ Conversely, any Bn = AMn is a Finsler space Fn = (Rn(x),F(x, y)) with 1-form
metric.

Let Mn = (Rn(x), G(y)) = (Rn(x), I0). Then

Bn = AMn = (Rn(x), G(a y)) = (Rn(x), G(ai
k(x)yk)).

But Bn is a Finsler space Fn = (Rn(x),F(x, y)). Then the metric function of Fn = Bn

has the form F(xi, yi) = G(ai
k(x)yk), that is Bn is a Finsler space with 1-form metric.
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Let us consider a Riemannian space V n, whose indicatrices are the ellipsoids Q(x).
Any ellipsoid Q(x) is the affine deformation of the Euclidean sphere: Q(x) = a(x)S, as
we have seen it in (3). Given a Q(x) and an S, a(x) is unique in (3) up to a rotation of
S, which can be fixed by requiring that the coordinate axes of En are mapped by a(x)
into the axes of the ellipsoids. Conversely, given an a(x), the image Q(x) is unique. In
this sense the relation between a(x) and Q(x), and between A and V n = (Rn(x), Q(x)) is
1 : 1. Then (V n,Mn) determines Bn = AMn, and conversely. This is a representation of
Bn. These yield

Theorem 4. Any generalized Berwald space Bn is determined by a pair (V n,Mn), and
conversely.

Proposition 1. The generalized Berwald spaces (V n
0 ,Mn) with fix V n

0 and arbitraryMn

have the same metric linear connection Γ∗.

This is so, for by (4) Γ∗ is determined by a(x), that is by V n
0 , and it is independent of

Mn.

We present several further properties of generalized Berwald spaces. Proofs sometimes
will only be sketchy.

Theorem 5. A/ Bn = (V n,Mn) = AMn is the Mn appearing in the representation if
and only if for every i0 ∈ {1, . . . , n} the 1-form (ai0

k (x)) is closed. In this case V n = En.
B/ Bn = (V n,Mn) is the Riemannian space V n appearing in the representation if and

only if Mn = En.
C/ Bn = En if and only if Mn = En, and, if the (ai0

k (x))’s are closed 1-forms.

Proof. A/ If the (ai0
k (x))’s are closed, then a(x) is a coordinate transformation: (a)

(xi) → (x̄i). Then I0 → a(x)I0 = Ī(x) is the result of (a), that is Mn = (Rn(x), I0)
and (Rn(x), Ī(x)) = Bn have the same structures, but in different coordinate systems.
Furthermore if the (ai0

k (x))’s are closed 1-forms, then, because of Q(x) = a(x)S, V n has
vanishing curvature, that is V n = En.

The converse can easily be seen.
B/ We know that

Bn = (V n,Mn) = AMn = (Rn(x), Ī(x)), V n = (Rn(x), Q(x)),

Q(x)
(b)
= a(x)S and a(x)I0

(c)
= Ī(x).

In our case Q(x) = Ī(x), and thus we have I0 = S by (b) and (c). This means that
Mn = Bn. The converse follows similarly.

One can see that (V n,Mn) = V n
1 with a V n

1 6= V n is not possible. These mean that
if a Bn is a Riemannian space, then it must be the Riemannian space appearing in the
representation (V n,Mn), and in this case Mn = En.

C/ We have seen that Mn = En if and only if Bn = V n with Q(x) = a(x)S. Then
V n = (Rn(x), Q(x)) = AEn. If ai0

k (x) are closed 1-forms, then AEn = En, and V n =
En.
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Theorem 6. A/ Between Minkowski spaces there exists no proper conformal relation.
B/ Bn

1 is conformal to Bn
2 if and only if Mn

1 =Mn
2 and V n

1 is conformal to V n
2 .

C/ Bn is conformally flat if and only if Mn = En and V n is conformally flat.
D/ Any conformally flat Finsler space Fn is a Riemannian space V n.

Proof. A/ Let (x) be an adapted coordinate system for Mn
1 = (Rn(x), I1) and Mn

2 =
(Rn(x), I2), where I1 and I2 are independent of x. If they are in conformal relation, then
I2 = σ(x)I1. However I1 and I2 are independent of x. Consequently σ must also be a
constant c. If we denote x̄i = cxi, then I1(x) = I2(x̄), andMn

1 =Mn
2 .

B/ If Bn
1 = (Rn(x), Ī1(x)) = A1Mn

1 = A1(Rn(x), I1) is conformal to Bn
2 = (Rn(x), Ī2(x)) =

A2Mn
2 = A2(Rn(x), I2), then Ī1(x)

(d)
= σ(x)Ī2(x), and I1(x)

(e)
= ã(x)I2, where I1 and

I2 are the indicatrices of Mn
1 and Mn

2 . From (d) we obtain Mn
1 = Mn

2 (= Mn
0 ), and

a1 = a2(= a0). These, with (e) yield a conformal relation between V n
1 and V n

2 .
C/ This is a special case of B/, where Bn

2 = En.
D/ If Fn = (Rn, I(x)) is conformally flat, then I(x) = σ(x)S. But σ(x)S is an ellipsoid

Q(x). Thus Fn = (Rn(x), Q(x)) = V n.

A characterization of the generalized Berwald spaces is given by

Theorem 7. A Finsler space Fn = (Rn(x), I(x)) is a Bn if and only if there exists an
indicatrix I(x0), which is in affine relation with any other I(x) (i.e. if any I(x) is the
affine deformation of I(x0)).

Namely in this case we have a linear transformation p(x1, x2), which takes I(x1) into
I(x2), and this induces a metric linear connection Γ∗.

From these it is easy to see that a Bn is a V n if and only if one of its indicatrices is an
ellipsoid.

Theorem 8. A Bn = (V n,Mn) is projectively flat if and only if V n is projectively flat.

The proof relies on the observation that a curve is a geodesic iff the osculation points
of the geodesic spheres centered at the curve lie on the curve.

4 Decomposition of M and motions

Definition. Given a Finsler space Fn = (Rn, I), a regular linear transformation k(x) of
the tangent space TxRn is an affine automorphism of I(x) if it takes the indicatrix I(x)
as a whole into itself:

k(x)I(x) = I(x).

The set {k(x)} of all k(x) at a point x form an Abelian group K(x). In case of a Bn K is
independent of x. I(x) is called rigid, if K(x) consists of the identity only: |K(x)| = 1, and
it is called mobile if |K(x)| > 1.

P. Gruber [G] proved (see also A. C. Thompson [Th] p. 83) that in case of an F 2,
I(x0) is an ellipse iff |K(x0)| =∞. If |K(x)| =∞ for every x, then F 2 = V 2.
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In case of a B2 = (Rn, I) from |K(x0)| = ∞ it follows that B2 = V 2. Also if Rn is
simply connected, and the holonomy group of B2 is not the identity, then B2 = V 2.

In a Finsler space Fn = (Rn, I) two points x1 and x2 are in affine relation if the
indicatrices I(x1) and I(x2) are affine deformations of each other:

x1 ∼ x2 ⇔ I(x2) = a(x1, x2)I(x1),

where a(x1, x2) is a regular linear map taking Tx1Rn into Tx2Rn. This equivalence relation
decomposes Rn into equivalence classes Mα, α ∈ A. One can prove that each Mα is a
closed set with respect to the metric arising from the Finsler function. Fn restricted to an
Mα is a Bn �Mα. Conformal or isometric mappings Fn = (Rn, I) → F̄n = (Rn, Ī) keep
the equivalence structure.

In case of a motion the orbits are within an Mα.

Theorem 9. If Fn = (Rn, I) admits a transitive continuous group of motions, then Fn

is a Bn.

Proof. In this case Rn constitutes a single equivalence class, therefore Fn = (Rn, I) is the
same as Bn = (Rn, I). Our theorem follows also from the fact that the tangent linear map
of a transitive motion takes I(x0) into any other I(x). Then the indicatrices of Fn are in
affine relation with each other, and then, by Theorem 7, Fn = Bn.

We state that any equivalence class consisting of a single point must be a fixed point
of any motion of Fn. Finally, we can prove rather easily that if a 2-dimensional Finsler
space F 2 with reversible metric (i.e., with symmetric indicatrices) admits a continuous
group of motions, and in the decomposition of Rn there are two equivalence classes M1

and M2 consisting of a single point x1 and x2, resp., and the injectivity radii ι satisfy
ι(x1) + ι(x2) > %(x1, x2) (% denotes the Finslerian distance), then F 2 is diffeomorphic to
S2.
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