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Abstract

In the present paper the notion of R—complex Finsler space with Kropina metric
is defined . The fundamental tensor fields g;; and g,; are determined and the deter-
minant and the inverse of these tensor fields are given. Also some properties of these
spaces are studied. A special aproach is dedicated to the non-Hermitian R—complex
Finsler space with Kropina metric. Some examples of Hermitian and non-Hermitian
R—complex Finsler space with Kropina metric are given.
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1 R - complex Finsler spaces

In a previous paper [14], we extended the known definition of a complex Finsler space
(11, 2, 13, 16]), reducing the scalars to A € R. The outcome was a new class of Finsler
space called by us the R- complex Finsler spaces [14]. Our interest in this class of Finsler
spaces issues from the fact that the Finsler geometry means, first of all, distance and this
refers to curves depending on the real parameter.

In the present paper, following the ideas from real Finsler spaces with Kropina metrics
([6, 16, 10, 11, 12]), we introduce the similar notions on R— complex Finsler spaces.

In this section we keep the general setting from [13, 14] and subsequently we recall
only some needed notions.

Let M be a complex manifold with dim¢ M = n, (zk) be local complex coordinates
in a chart (U, ) and 7'M its holomorphic tangent bundle. It has a natural structure
of complex manifold, dim¢ 7'M = 2n and the induced coordinates in a local chart on
u € T'M are denoted by u = (zk, nk). The changes of local coordinates in u are given by
the rules ok
- 8Zz 7. (1.1)
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The natural frame {88k, BF } of T) (T"M) transforms with the Jacobi matrix of (1.1)

O 029 9 4 0% h D D _ 921 0
» 9k T 9zF 82‘” 0zk9zh 'l on/iy gnk T 9zk Onli
A complex nonlinear connection, briefly (c.n.c.), is a supplementary distribution

H (T'M) to the vertical distribution V (T'M) in 7" (T'M). The vertical distribution is

3 k} and an adapted frame in H (T"M) is (szik = 87 - Nia -, where Ng

are the coefficients of the (c.n.c.) and they have a certain rule of change at (1.1) so that

changes

spanned by {

~— transform like vectors on the base manifold M(d-tensor in [14] terminology). Next we

use the abbreviations: 0, = %, O = %, O = (;;ﬁ and Oy, 87{,(5,; for their conjugates.
The dual adapted basis of {6k, 8k} are {dzk, on* = dnk + N]kdzj} and {dék, 67"} theirs
conjugates.

We recall that the homogeneity of the metric function of a complex Finsler space
(11, 2, 13, 16]) is with respect to all complex scalars and the metric tensor of the space, is
a Hermititian one. In [14] we slightly changed the definition of a complex Finsler space.

An R— complex Finsler metric on M is a continuous function F : T'"M — R,
satisfying:

i) L := F? is smooth on T'M (except the 0 sections);

ii) F(z,n) > 0, the equality holds if and only if n = 0;

iii) F(z,\n,z,\qj) = |\ F(z,n,2,7),YX € R;

It follows that L is (2,0) homogeneous with respect to the real scalars A, and in [14]
we proved that the following identities are fulfilled:

oL . 8L A 8L
g i+ 391'@ 7 = 0; 99, 99ik i 99z
onJ onJ Tond onJ

2L = giyn'n’ + g0’ + 29507 ;

ik i — 0.

where:
o’ oL L

are the metric tensors of the space.

Gij ‘=

2 R-—complex Finsler spaces with Kropina metric

As noticed in paper [14] an R— complex Finsler space produce two tensor fields g;; and
g;;- For a properly Hermitian geometry g;; be invertible is a compulsory requirement, but
from some physicist point of view, for which Hermitian condition is an impediment, it
seems more appropriate that g;; be an invertible metric tensor. These problems led us to
in [14] to speak about Hermitian R— complex Finsler spaces (i.e. det (gij) # 0) and non -
Hermitian R— complex Finsler spaces ( i.e. det (g;;) # 0). The present section applies our
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results to R— complex Finsler spaces with Kropina metric, better illustrating the interest
for this work. As in [12] we have:

Definition 2.1. An R—complex Finsler space (M, F) is called with («, ) —metric if the
fundamental function F (z,n,z,7) is R— homogeneous by means of functions o(z,n, z,7)
and B(z,n,2,7)— depend by z',n",Z" and 7°,(i = 1,...,n) by means of a(z,n,%,7) and
B(z,m,z,1),i.e.:

F(Z77772777) :F(a(z’nvzaﬁ)vﬂ(27nuzaﬁ)) (21)

where

o 1 . L o . o
o (2,0, 2,1) = 5 (an'n’ + aggy’ + 2a5n'n’) = Re {agn'n’ + agn'’' }

I R , (22)
ﬁ (Z777» 2777) = 5 (bﬂ?l + bi’r}l) = Re {blnl} )
with:
a;j = a;j (2) y Q5 = ag; (2),b; =b; (2), (2.3)
bi(2)dz" is a 1— form on the complex manifold M.
We denote:
L (a (Zv n, 2, 77) B (Z, n, 2, 77)) = F? (a (Za 0,2, 77) B (Z’ n,Z, ﬁ)) . (2'4)

Remark 2.1 F?is a R — (o, 3) complex Finsler metric.

Definition 2.2. An R—complex Finsler space with («, 3)-metric is called an R—complex
Kropina space or a R—complex Finsler space with Kropina metric if:

L) = (%

2
ﬂ>,ﬁ#0 (2.4)

2
It follows that F' («, 3) = %,ﬁ £ 0.
Taking into account the 2—homogeneity condition of L :

L(a(z,An,z,An),0(z,\n,2,An)) = AL (a(z,n,2,1m),0(2,n,2,1m)),\ € Ry, (2.5)

we have:

Proposition 2.1. ([5]) In an R—complex Finsler space with (o, 3)-metric the following
equalities hold:

aly + BLg = 2L, aLlag + BLag = La,

OéLag + ﬁLﬁg = Lﬂ, 042Laa + QaﬁLag -+ ,BQLgﬁ = 2L, (2'6)
where: 5 5 e e o
L L L L L )
Loi= 22 L= Log= . Laa = o=, Lgg= ——r. 2.6
T 00 T 95 YT Gadp’ T 9a2 T 92 (26)
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Particular case: For a R—complex Finsler space with Kropina metric, we have:

403 204
Lo =" Lo =Tz olat Bl = 2L )
2 3 4 (2.6)
12« 8ar 6
Laa = ?, Locﬂ = —F’ Lﬂﬁ = F

In the following, we propose to determine the metric tensors of an R— complex Finsler
space with Kropina metric, i.e. g;; := 0*L(z,n, z, A\fj)/ On'on’;
gij = 0?L(z,m,2,\j)/ On'0n’, each of these being of interest in the following.

We consider:

Jda , 4 1 op 1
- = — (a1’ + a0 ) = —l;, =— = =b;,
ot 2o (4 i) = gt on' 2" (2.7)
oa 1 ( i j) 1 ; 0 lb
- = — |\ Q57 a;= = —I7 - = —05
o 2q AT TGT) =50 G T 90
where: ‘ ' ' ‘
li = ain’ +az7, ;= azn' +a;zn'. (2.7)
We find immediately:
L' + i = 2a°. (2.8)
We denote: oL
Consequently, we obtain:
1; = poli + p1b;, (2.10)
where:
I . 1 . /
po= 5@ L, (0 —homogeneity), p; = §Lg (1 — homogeneity) , (2.10)
Differentiating (2.10)" by 7’ and 7/ respectively we obtain:
0 0
8752 = p—alj + p_1bj, % = p—al; + p_1b;,
2.11
0L _ 1+ ey OPE — s+ by 210
anz = p-1 J Ho0i, 8771 = pP-14; Ho0z,
where: I I I I
@ — /
p—2 = %, p-1= %aﬁ, Ho = % (2.11)

Proposition 2.2. The invarians of an R—complexr Finsler space with Kropina metric:
po; P1, P—2, P—1 are given by:

2
po = %; p1i= —%, B # o;

i ) (2.11)"
p—2 = %; p—1:= %2}7; Ho = %3 B # o.
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Subscripts —2,—1,0,1 give us the degree of homogeneity of these invariants.
We have immediately:

Proposition 2.3. The fundamental tensor fields of an R—complexr Finsler space with
Kropina metric are given by:

2F 2 3F? —2F
9ij = Faij + @lilj + Tﬂzbibj + W (bjli + bil]’) . (2.12)
2F 2 3F? —2F

lilj bib; + —— (bjli + bilj) . (2.13)

gijzﬁaij—i_@ +T52 it

or, in the equivalent form:

2F 2 F? 1
gij = Faij - @lil]’ + waibj + ﬁninﬁ (2-12,)
2F 2 F? 1 :
955 = 5 % — gplili T 5505 + g, (2.13")

Proof. Using the relations (2.11”) in Theorem 2.1 [5] by direct calculus we have the results
0

The next objective is to obtain the determinant and the inverse of the tensor field g;;.
The solution is obtained by adapting Proposition 11.2.1, p. 287 from [6] and Proposition
2.2 from [4] for an arbitrary non-singular non-Hermitian matrix (Q;;). The result is:

Proposition 2.4. Suppose:
e (Qij) is a non-singular n X n complex matriz with inverse (Q7%);
e C; and C;:=Cj, i =1,..,n, are complex numbers;
o (= jSC'j and its conjugates; C? := C'C; = C'Cy; H;j .= Q;; £ C;C;
Then
i) det(Hyj) = (1 £ C?) det(Qij)
i) Whenever 14+ C? # 0, the matriz (H;;) is invertible and in this case its inverse is

HI' = Q' F s OO,

Theorem 2.1. For a non-Hermitian R—complex Finsler space with Kropina metric,
2
(L(a,B) = (%) , B# 0, with a;; = 0), we have:

i) the contravariant tensor g of the fundamental tensor field Gij 15:

F2p(4Fy — 3%
oM

‘l_ﬁ

g7 i 2ﬁ(F3W - 53)

a]

A 7,0
- 2F M o

i’ +
(2.14)

9 2(133 F2 ) 2F 3_F2
S0 2P~ F)

Jpt
M M 77 )
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where:
M = 4F*(e§ — yw) + 4a2B(By — a®c — a26) + 3alw + %,

. 2F . F
li = ain’, ni = ?az’jnj - @bz} (2.15)

v = ajpn’n® =", e =bjn?, w=b;bl, bF = al*b;, by = bFay,,
0= ajknjbk = 1pbF, 19 = adil; =nd.

i) det(gi;) = (2¢*)"B 1 —i—4q2A aza; 7 det(a;j), where:
A = wa? —2 wy + g2
a” =79
B - 9_ 20e —w N a? B a?q?e? B ?(2Pe — w)?
20207 2(a? =)  2(a?=7)*(4+¢?A)  2025%(4+ ¢*A)
e¢*(26e — w)

Bla? —7)(4+ ¢*A)

Proof. To prove the claims we apply the above Proposition in a recursive algorithm in
three steps. We write g;; from 2.12 in the form:

) 1 g 1
9ij = 2q (az‘j - glilj + sz‘bj + Wmm)

1
I. In the first step, we set Q;; = a;; and ¢; = -[;. By applying the Proposition

2
g g 2 2 _ i
2.4 we obtain Q7' = ' ¢? = 7 L1 -2 = a 3 7 # 0 and ¢ = n So, the matrix
! ! a
1 . . o 1
Hij = a;j — ?lilj is invertible with H7* = a’* + 3 _777177] and det(a;; — @lilj) =
a? — vy . 1 q .
=3 det(a;j). 1I. Now, we consider Q;; = a;; — ?lilj and ¢; = ibi' By applying the
. . 1 o 2 1
Proposition 2.4 we obtain this time: Q¢ = a/* + ———nin?, & = q—(w + €2),
a2 —~ 4 a2 —~
202 2 A+ a2A 2 2 A
lpe =14 <a4°;27w)+5> = AT o, where 4 = SIS g o =
a? — a? —
2 a? — v
1 2 y g
It results that the inverse of H;; = a;; — —Qlilj + quibj exists and it is H’* = a’* +
«
1 q252 o q2 . ng . o
1-— tnl — by — '+ b'n? d
20T aren@ =" Tt T ar gae T ) e
1 7> 4+ q?A a® —~
det(aij — ?lilj + Zbibj) = 1 o2 det(aij).

1 2 1
ITI. Finally, we put Qij = aj; — ?lll] + qzbzb] and ¢; = ﬁTqu.

From here, we obtain:
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2.2 2
Lo i i ——2
a? =y (4+¢*A) (e —9) 4+q°A
2
q°e . o
_ iyl + bind),
araa =

bib) —

Qi — aii +

.. 1 q252 . q2
2 7t 1— [
‘ g T T @r e )" T Tr A

by —

g’e

1+ = 2—

o 1
R [ KA el
20 —w a? a’q?e?
= 1- + _
2023 12 =7)  3aZ-)[A+ £A)
¢ W9 eq? w
Tarenz T T G- )
20 —w a? a?q?e? *(2Pe — w)?
2237 " 2a?—7)  Aa? -+ PA) 2252+ ¢ A)
g (20e —w) 40
Bla? —7)(4+ ¢*A)

and 1
¢ = ———(Mn' + Nb),
\/i()éq2( g )

_ Q o B q?e?
where M = - + +\/§(a2—'y) (1 (4+q2A)(a2—’y))

1 PReB-w) agq?
V2o V2(4+ @A)Ba V2(4+ 2A) (e — )
By applying the Proposition 2.4 we obtain that the inverse of

B q*e(2Be — w)
V2B(4+ ¢*A)(a® — )

and

1 ¢ 1
Hij = a;; — 2 lilj + T bib; + 72052(]4 115
is
2
'l — b’
i 4+ q2A

q2€2

it — Gy 1—
e area

2
qe Qg i g 11 i i j j
_(4+q2A)(a2_7)(nbj+bn])_EW(M77 + Nb") (M’ + NV)

2 2
q 1 4+q°A
and det(a;; — glilj + sz’bj + anj) =B 1

B =1+ c% But, g;j = 2¢°H;j, with H;; from III. Thus, g% = FHU and det(g;j) =
q

4+ q?Aa? -
4 o?

2 _
uoﬂdet(aij), where

(2¢*)"B fydet(aij). From here, immediately results i) and ii). O
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Proposition 2.5. In a non-Hermitian R— complex Finsler space with Kropina metric we
have the following properties:

y+7 =10+ ljnj = aijnjni + a;,;nl_“ni = 207 (2.16)

etz=b +byf =28,6 =¢, (2.17)
where:
li = aigid i = 2 agm’ — gbi, v = agn’n® =l e = b ,w = b7,
bk = a?*b;, by = bFag, § = ajnbF = bR, U = o'l = 1.
Example 1. We set o as
(1+elz)>r_ Re(n*)? — eRe < z,n >2
(1+¢lz]?)?

where |22 = Y7_2FZF, < z,n >i= 30 2F7F, defined over the disk AP =
{z eC, |zl <, 1=, /ﬁ} ife < 0, on C" if ¢ = 0 and on the complex projective space

o(z,n) = , (2.18)

P™(C) if € > 0. By computation, we obtain a;; = ﬁ (62-]- — 5%) and a;; = 0 and
so, a?(z,m) = (awn 0+ azn 7]3) Now, taking ((z,n) := Re= 1+a\z|2’ where b; : zZ

= THel22?
we obtain some examples of non - Hermitian R - complex Kropina metrics:
(1+¢|2|2)>7_ Re(n®)? —eRe<z,n>2
o (1+elz[?)?
F, = oo <2 . (2.19)
1+¢|2|?

Theorem 2.2. For a Hermitian R—complex Finsler space with Kropina metric (F =
a2
R B#0, aj =0) we have:

gjk _ ﬁ ajk+ B(= 4ﬁ+Fw)17]n 4+ B& 3Fﬁ+a ) ik 4
(2.20)
48-%) ;7 4B—¢) 3
where:
= le]? — a®w + 3FBw + 83? — 8BRe(¢)
a? = aijninj = lgr]g, V= agjl; = (2.21)

b = al*bs, e = ;b E = by, w = bib'.
Proof. Assuming a;; = 0, from (2.7)’, (2.10) and Proposition 2.2 it follows:

3 2F 5 F?
li = agn’,mi = F%‘jn] - sz‘
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Considering:
g = %cﬁ’“ + Cr ik + DY+ BV 4 Pt
and on the condition: )
gljgjk = 67{67
by direct calculus we obtain:
oo B(AB+FW) . B(-3FS+a%) . BUB-2) .. BAF-e)
2F2N 7 2FN ’ 2FN 7 2FN
where N is given in (2.21) O
Example 2. We consider « given by
) nf2 + ¢ (|22Inf? - < 2,0 >I) -

«Q (2777) T (1 +E|Z|2)2 ’ ( . )

defined over the disk A} = {z eC |zl <r, 7= é} if e <0,on C"if e =0 and

on the complex projective space P"(C) if € > 0, where |< z,7 >]2 =< z,n><z,n>.
aij(z)niﬁj . Thus it determines purely Hermitian metrics which have special properties.
They are Kéahler with constant holomorphic curvature K = 4¢. Particularly, for e = —1
we obtain the Bergman metric on the unit disk A" := A"; for € = 0 the Euclidean metric
on C", and for € = 1 the Fubini-Study metric on P™"(C). Setting 3(z,7) as in Examplel,
we obtain some examples of Hermitian R - complex Kropina metrics:

By computation, we obtain a;; = 0 and a;; = ﬁ (673 —¢ ) and so, o?(z,n) =

I +e (|21 n* = <zm>|*)
(1+¢lz?)?

<z 0>
R61+E|z|2

F.:= (2.23)
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