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A NOTE ON THE STICKY BROWNIAN MOTION ON R
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Abstract

We consider a degenerate stochastic differential equation which describes an arbi-
trary sticky Brownian motion on R with sticky point 0. We obtain a representation
formula different from the one in [3], which describes the solutions in terms of time
delays.
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1 Introduction

Consider the (degenerate) stochastic differential equation

Xt = x +
∫ t

0
σ (Xs) dBs, (1)

where

σ (y) =
{

1, y 6= 0
0, y = 0

(2)

and (Bt)t≥0 is a 1-dimensional Brownian motion starting at 0 on a probability space
(Ω,F , P ).

If x = 0, it is easy to see that Xt ≡ 0 and Xt = Bt are two solutions to (1), thus pathwise
uniqueness fails for this equation. Moreover, by a result of Engelbert and Schmidt ([3]),
since the null set of σ is N = {0} and σ−2 is locally integrable on R, the solution of (1)
is not even weakly unique. In [3], the authors also showed that the general solution can
be obtained from Bt by delaying it when it is at 0, and thus it can be viewed as a sticky
Brownian motion on R with sticky point 0 (a process which behaves like the ordinary
Brownian motion away from 0, and it spends a positive amount of Lebesgue time at 0).

Sticky (reflecting) Brownian motion on [0,∞) has been considered by other authors,
see for example [6], [7] and the references cited therein. For a connection between the
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sticky Brownian motion on R and on [0,∞), one can consider |Xt|, where Xt is a solution
of (1).

The main result of the paper is Theorem 1, in which we obtain a new representation
of the solutions of (1) different from the one of Engelbert and Schmidt, which uses the
notion of time delays (see Definition 4.1 and Theorem 5.5 in [3]). As a corollary, we obtain
the pathwise uniqueness of solutions of (1) which spend zero Lebesgue time at 0.

We were led to considering the equation (1) by the recent extension of the mirror
coupling of reflecting Brownian motions introduced by K. Burdzy and the co-authors (see
[1] and the references cited therein). Trying to extend the construction to the case when
the two reflecting Brownian motion live in different domains, we were led to the problem
of constructing two 1-dimensional Brownian motions which have the same increments
when they coincide and opposite increments when they are different, that is, given a 1-
dimensional Brownian motion Bt to construct another 1-dimensional Brownian motion Wt

adapted to the filtration generated by Bt which solves

Wt = w +
∫ t

0
G (Wt −Bt) dBt, t ≥ 0,

where G(y) = 1− 2σ(y), y ∈ R.
With the substitution Xt = −1

2 (Wt −Bt) the above equation reduces to the stochastic
differential equation (1) for x = −w

2 . Theorem 1 gives an explicit form of the solutions
of this latter problem, and Corollary 1 shows that the solution is pathwise unique when
restricting the class of solutions to those that spend zero time at 0. For more details on
the extension of the mirror coupling of reflecting Brownian motions, see [4].

2 Main results

We will use the terminology of [2] referring to the weak/strong solutions and the
corresponding weak and strong (pathwise) uniqueness of stochastic differential equation.
We recall the following:

Definition 1. Given a one-dimensional Brownian motion B = (Bt)t≥0 starting at B0 = 0
on a probability space (Ω,F , P ), a strong solution to

Xt = x +
∫ t

0
σ (Xs) dBs (3)

which spends zero time at 0 is a continuous process X = (Xt)t≥0 adapted to the filtration
generated by B, solves (3), and satisfies

∫∞
0 1{0} (Xs) ds = 0 a.s.

We say that pathwise uniqueness holds for (3) among functions which spend zero time
at 0 if whenever X and X̃ are two solutions on the same probability space corresponding
to the same Brownian motion B (relative to possibly different filtrations), we have

P (Xt = X̃t, t ≥ 0) = 1.
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Before giving the main result, we will give a description of the solutions of (1) in terms
of time changes. This result is in the spirit of time delays (see [3]), and we present it here
in order to show the differences from the representation obtained in Theorem 1 below.

We observe that any solution of (1) is a continuous local martingale with quadratic
variation process given by

At =
∫ t

0
σ (Xs) ds = t−

∫ t

0
1{0} (Xs) ds = t− Λt,

where

Λt =
∫ t

0
1{0} (Xs) ds

represents the Lebesgue measure of the time spent by X at 0.
If Λt 6≡ 0, then the right-continuous inverse αt = inf {s ≥ 0 : As > t} of At might have

jumps. However, noticing that

t ∧A∞ − s ∧A∞ = Aαt −Aαs =
∫ αt

αs

σ (Xu) du, 0 ≤ s ≤ t, (4)

we obtain
lim
s↗t

∫ αt

αs

σ (Xu) du = 0, t > 0, (5)

and using the continuity of Xt it follows that the time-changed process (Xαt)t≥0 is con-
tinuous in t ≥ 0.

By Lévy’s characterization of Brownian motion, it follows that the time-changed so-
lution Xαt is a one-dimensional (possibly stopped) F̃αt-Brownian motion (B̃t)t≥0 starting
at x, and therefore

Xt = B̃At , t ≥ 0. (6)

An arbitrary solution of (1) is therefore a one-dimensional Brownian motion run with
the clock At. In the particular case x = 0, the solutions Xt ≡ 0 and Xt ≡ Bt correspond
to the choices At ≡ 0, respectively At ≡ t.

In general, the Brownian motion B̃t is defined on a standard extension (Ω̃, F̃ , P̃ ) of
the underlying probability space (Ω,F , P ). It is remarkable that in the present case we
can give an explicit description of the solution Xt = B̃At in terms of Bt, as follows:

Theorem 1. If Bt is a one dimensional Brownian motion starting at B0 = 0 and Xt is
a continuous process which solves

Xt = x +
∫ t

0
σ (Xs) dBs, t ≥ 0, (7)

then Xt has the representation

Xt = Bt −BtΛ , t ≥ 0, (8)

where tΛ is the first point of increase of Λs =
∫ s
0 1{0} (Xu) du after the time t, that is

tΛ = inf {s ≥ t : Λs > Λt} ∈ [0,∞] , (9)
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and in the case tΛ = ∞ we set

B∞ =
{
−x, t∞ = 0
Bt∞ , t∞ > 0

, (10)

with t∞ = inf {s ≥ 0 : Λs = Λ∞} denoting the last point of increase of Λ.

Proof. Let X be a solution to (7) and let (Fs)s≥0 denote the common filtration with
respect to which X and B are adapted.

First note that for t ≥ 0 arbitrarily fixed, tΛ = inf {s ≥ t : Λs > Λt} ∈ [t,∞] is a
stopping time with respect to the filtration Fs, since

{tΛ < u} =
{

∅, u ≤ t
{Λt < Λu}, t < u

∈ Fu, u ≥ 0.

For any s ≥ t, tΛ ∧ s is a bounded stopping time, and from (7) we obtain

XtΛ∧s −Xt =
∫ tΛ∧s

t
σ (Xu) dBu = BtΛ∧s −Bt +

∫ tΛ∧s

t
1{0} (Xu) dBu. (11)

The stochastic integral term on the right is zero. To see this, note that∫ tΛ∧s

t
1{0} (Xu) dBu =

∫ ∞

0
1[t,tΛ∧s](u)1{0} (Xu) dBu, (12)

and that the integrand on the right is a measurable, Fs-adapted process, with

E

∫ ∞

0

(
1[t,tΛ∧s](u)1{0} (Xu)

)2
du = E

∫ tΛ∧s

t
1{0}(Xu)du ≤ s− t < ∞.

Considering the sequence f (n) ≡ 0 (n ≥ 1) of identically zero processes, since ΛtΛ = Λt

by the definition of the stopping time tΛ, we obtain

0 ≤ lim
n→∞

E

∫ ∞

0

(
f (n)

u − 1[t,tΛ∧s](u)1{0} (Xu)
)2

du = E (ΛtΛ∧s − Λt) ≤ 0,

and therefore f (n) is an approximating sequence which can be used to define the stochastic
integral in (12). Since

∫∞
0 f

(n)
u dBu = 0 for any n ≥ 1, it follows that

∫ tΛ∧s
t 1{0} (Xu) dBu =

0, concluding the proof of the claim.
From (11) it follows that

XtΛ∧s −Xt = BtΛ∧s −Bt, a.s. for any s ≥ t, (13)

and we distinguish the following cases.
i) On the set {tΛ < ∞}, passing to the limit with s → ∞ in the above equality

and using the continuity of the processes X and B, we obtain XtΛ − Xt = BtΛ − Bt.
Since by definition tΛ is a point of increase of Λ, it follows that XtΛ = 0, and we obtain
Xt = Bt −BtΛ , which concludes the proof in this case.
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ii) On the set {tΛ = ∞}, the equality (13) becomes Xs −Xt = Bs −Bt for any s ≥ t,
which shows that X· −Xt − (B· −Bt) is identically zero on the interval [t,∞).

Since {sΛ = ∞} ⊂ {tΛ = ∞} for any s ≤ t, a similar argument (with s instead
of t) shows that X· − Xt − (B· −Bt) is also identically zero on any interval [s,∞) with
sΛ = ∞. It is not difficult to see that inf{s ∈ Q+ : sΛ = ∞} = t∞, and using the
continuity of the processes X and B it follows that Xt∞ −Xt− (Bt∞ −Bt) = 0 on the set
{t∞ < ∞} ⊂ {tΛ = ∞}.

If t∞ = 0, then Xt∞ = X0 = x and Bt∞ = B0 = 0, and the above becomes Xt = Bt+x,
which is the same as (8) with the convention BtΛ = B∞ := −x.

If t∞ > 0, from the definition of t∞ it follows that Xt∞ = 0, so the above becomes in
this case Xt = Bt−Bt∞ , which is the same as (8) with the convention BtΛ = B∞ := Bt∞ ,
concluding the proof.

As an example describing a generic sticky Brownian motion on R with sticky point 0
we have the following:

Example 1. Given a Brownian motion Bt starting at 0, the process Xt defined by

Xt =


x + Bt, t ≤ τ
0, τ < t ≤ τ + t0
Bt −Bτ+t0 , t > τ + t0

, (14)

where τ = inf {s > 0 : Bs = −x} and t0 > 0, behaves like an ordinary Brownian motion
except for the time interval [τ, τ + t0] when it “sticks” to 0.

It is not difficult to see that Xt is a solution of (7), and in the notation of the theorem
above we have t∞ = τ + t0, B∞ = Bt∞ = Bτ+t0,

Λt =


0, t ≤ τ
t− τ, τ < t < τ + t0
t0 − τ, t ≥ τ + t0

and tΛ =


τ, t ≤ τ
t, τ < t < τ + t0
∞, t ≥ τ + t0

.

From Theorem 1 it follows that Xt has the representation Xt = Bt−BtΛ, t ≥ 0, which
can be verified immediately.

Remark 1. Note that if in particular the solution Xt of (7) spends zero Lebesgue time at
the origin, then Λt ≡ 0 and tΛ ≡ ∞, and therefore (8) becomes in this case

Xt = Bt −B∞ = x + Bt, t ≥ 0,

which shows that pathwise uniqueness holds for the solutions of (7) which spend zero time
at the origin.

We obtained therefore the following:

Corollary 1. Pathwise uniqueness holds for the solutions of the stochastic differential
equation

Xt = x +
∫ t

0
σ (Xs) dBs (15)

which spend zero time at 0. Moreover, a strong solution is explicitly given by Xt = x+Bt,
t ≥ 0.
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Proof. We only need to prove that Xt = x + Bt is a strong solution to (15). This follows
easily by the same arguments as in the proof of the previous theorem.

Remark 2. Consider the (degenerate) stochastic differential equation

Xt =
∫ t

0
|Xs|α dBs, t ≥ 0, (16)

where Bt is a 1-dimensional Brownian motion.
By a classical result of Yamada and Watanabe ([5]), pathwise uniqueness holds for

(16) if α ∈ [1/2,∞), and this result is sharp. Extending this result, in [2] the authors
showed that for α ∈ (0, 1/2) pathwise uniqueness still holds for (16) when restricting the
class of solutions to those that spend zero time at 0, and they proved the existence of a
strong solution of (16).

Observing that for α ↘ 0 we have σα (x) = |x|α → 1R−{0} (x) = σ (x), Corollary 1
above shows that the same conclusion holds for the limiting case α = 0.
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