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JET FINSLER-LIKE GEOMETRY FOR THE x-DEPENDENT
CONFORMAL DEFORMATION OF AN ONE-PARAMETER

FAMILY OF BERWALD-MOÓR METRICS OF ORDER FOUR

Mircea NEAGU1

Abstract

The aim of this paper is to develop on the 1-jet space J1(R,M4) the Finsler-
like geometry (in the sense of distinguished (d-) connection, d-torsions, d-curvatures
and some gravitational-like and electromagnetic-like geometrical models) for the x-
conformal deformed rheonomic Berwald-Moór metric of order four.
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1 Introduction

The geometric-physical Berwald-Moór structure ([6], [13], [12]) was intensively investi-
gated by P.K. Rashevski [18] and further fundamented and developed by D.G. Pavlov, G.I.
Garas’ko and S.S. Kokarev ([15], [16], [9], [17]). At the same time, the physical studies of
Asanov [1] or Garas’ko and Pavlov [9] emphasize the importance of the Finsler geometry
characterized by the total equality in rights of all non-isotropic directions, in the theory of
space-time structure, gravitation and electromagnetism. For such a reason, one underlines
the important role played by the Berwald-Moór metric

F : TM → R, F (y) = n
√

y1y2...yn,

whose tangent Finslerian geometry is studied by the geometers Matsumoto and Shimada
[10] or Balan [3]. In such a perspective, according to the recent geometric-physical ideas
proposed by Garas’ko in [8] and [7], we consider that a Finsler-like geometric-physical study
for x-dependent conformal deformations of the jet Berwald-Moór structure is required.
Note that, based on the works of Matsumoto and Shimada, Balan and Nicola [5] already
presented the equation of motion in the x-conformally deformed 4-dimensional Berwald-
Moór framework on tangent spaces.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
mircea.neagu@unitbv.ro
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In such a geometrical and physical context, this paper investigates on the 1-jet space
J1(R,M4) the Finsler-like geometry (together with a theoretical-geometric gravitational
field-like theory) of the x-conformal deformed rheonomic Berwald-Moór metric of order
four2

∗
F (t, x, y) = eσ(x)

√
h11(t)

[
y1
1y

2
1y

3
1y

4
1

]1/4
, (1)

where σ(x) is a smooth non-constant function on M4, h11(t) is the dual of a Riemannian
metric h11(t) on R, and

(t, x, y) = (t, x1, x2, x3, x4, y1
1, y

2
1, y

3
1, y

4
1)

are the coordinates of the 1-jet space J1(R,M4), which transform by the rules (the Einstein
convention of summation is assumed everywhere):

t̃ = t̃(t), x̃i = x̃i(xj), ỹi
1 =

∂x̃i

∂xj

dt

dt̃
· yj

1, (2)

where i, j = 1, 4, rank (∂x̃i/∂xj) = 4 and dt̃/dt 6= 0. It is important to note that,
based on the geometrical ideas promoted by Miron and Anastasiei in the classical La-
grangian geometry of tangent bundles [11], together with those used by Asanov in the
geometry of 1-jet spaces [2], the differential geometry (in the sense of d-connections, d-
torsions, d-curvatures, gravitational and electromagnetic geometrical theories) produced
by a jet rheonomic Lagrangian function L : J1(R,Mn) → R is now completely done in the
monograph [4]. In what follows, we apply the general geometrical results from [4] to the
x-conformal deformed rheonomic Berwald-Moór metric of order four (1).

2 The canonical nonlinear connection

Let us rewrite the x-conformal deformed rheonomic Berwald-Moór metric of order four
(1) in the form

∗
F (t, x, y) = eσ(x)F (t, y),

where
F (t, y) =

√
h11(t) ·

[
y1
1y

2
1y

3
1y

4
1

]1/4

can be regarded as a t-parameter family of Berwald-Moór metrics of order four. Here-
inafter, using the notation G1111 := y1

1y
2
1y

3
1y

4
1, the fundamental metrical d-tensor produced

by the metric (1) is given by the formula

∗
gij(t, x, y) =

h11(t)
2

∂2
∗

F 2

∂yi
1∂yj

1

= e2σ(x)gij(y), (3)

2We assume that y1
1y2

1y3
1y4

1 > 0. This is the domain where we can y-differentiate the function
∗
F (t, x, y).
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where3 (see [4])

gij =
h11(t)

2
∂2F 2

∂yi
1∂yj

1

=
(1− 2δij)

8
G

1/2
1111

yi
1y

j
1

(no sum by i or j). (4)

Moreover, the matrix
∗
g = (

∗
gij) admits the inverse

∗
g−1 = (

∗
gjk), whose entries are

∗
gjk = 2e−2σ(x)(1− 2δjk)G−1/2

1111 yj
1y

k
1 (no sum by j or k). (5)

Let us consider that the Christoffel symbol of the Riemannian metric h11(t) on R is

k1
11 =

h11

2
dh11

dt
,

where h11 = 1/h11 > 0. Then, using a general formula from [4] and taking into account
that we have

∂G1111

∂yi
1

=
G1111

yi
1

,

we find the following geometrical result:

Proposition 1. For the x-conformal deformed rheonomic Berwald-Moór metric of order
four (1), the energy action functional

∗
E(t, x(t)) =

∫ b

a

∗
F 2(t, x, y)

√
h11dt =

∫ b

a
e2σ(x)

[
y1
1y

2
1y

3
1y

4
1

]1/2 · h11
√

h11dt,

where y = dx/dt, produces on the 1-jet space J1(R,M4) the canonical nonlinear con-
nection

∗
Γ =

(
M

(i)
(1)1 = −k1

11y
i
1, N

(i)
(1)j = 4σiy

i
1δ

i
j

)
, (6)

where σi = ∂σ/∂xi.

Proof. For the energy action functional
∗
E, the associated Euler-Lagrange equations can

be written in the equivalent form (see [4])

d2xi

dt2
+ 2H

(i)
(1)1

(
t, xk, yk

1

)
+ 2G

(i)
(1)1

(
t, xk, yk

1

)
= 0, (7)

where the local components

H
(i)
(1)1

def
= −1

2
k1

11(t)y
i
1

and

G
(i)
(1)1

def
=

h11
∗
gip

4

 ∂2
∗

F 2

∂xr∂yp
1

yr
1 −

∂
∗

F 2

∂xp
+

∂2
∗

F 2

∂t∂yp
1

+

+
∂

∗
F 2

∂yp
1

k1
11(t) + 2h11k1

11
∗
gpry

r
1

 = 2σi

(
yi
1

)2
3Throughout this paper the Latin letters i, j, k, m, r, ... take values in the set {1, 2, 3, 4}.



34 Mircea Neagu

represent, from a geometrical point of view, a spray on the 1-jet space J1(R,M4). The
canonical nonlinear connection associated to this spray has the components (see [4])

M
(i)
(1)1

def
= 2H

(i)
(1)1 = −k1

11y
i
1, N

(i)
(1)j

def
=

∂G
(i)
(1)1

∂yj
1

= 4σiy
i
1δ

i
j .

3 The Cartan canonical
∗
Γ-linear connection. Its d-torsions

and d-curvatures

The nonlinear connection (6) produces the dual adapted bases of d-vector fields (no
sum by i) {

δ

δt
=

∂

∂t
+ k1

11y
p
1

∂

∂yp
1

;
δ

δxi
=

∂

∂xi
− 4σiy

i
1

∂

∂yi
1

;
∂

∂yi
1

}
⊂ X (E) (8)

and d-covector fields (no sum by i){
dt ; dxi ; δyi

1 = dyi
1 − k1

11y
i
1dt + 4σiy

i
1dxi

}
⊂ X ∗(E), (9)

where E = J1(R,M4). The naturalness of the geometrical adapted bases (8) and (9) is
coming from the fact that, via a transformation of coordinates (2), their elements transform
as the classical tensors. Therefore, the description of all subsequent geometrical objects
on the 1-jet space J1(R,M4) (e.g., the Cartan canonical linear connection, its torsion
and curvature etc.) will be done in local adapted components. Consequently, by direct
computations, we obtain the following geometrical result:

Proposition 2. The Cartan canonical
∗
Γ-linear connection, produced by the x-conformal

deformed rheonomic Berwald-Moór metric of order four (1), has the following adapted
local components (no sum by i, j or k):

C
∗
Γ =

(
k1

11, Gk
j1 = 0, Li

jk = 4δi
jδ

i
kσi, C

i(1)
j(k) = Ci

jk ·
yi
1

yj
1y

k
1

)
, (10)

where

Ci
jk =

2δi
j + 2δi

k + 2δjk − 8δi
jδjk − 1

8
=

=



−1
8
, i 6= j 6= k 6= i

1
8
, i = j 6= k or i = k 6= j or j = k 6= i

−3
8
, i = j = k.
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Proof. The adapted components of the Cartan canonical connection are given by the
formulas (see [4])

Gk
j1

def
=

∗
gkm

2
δ
∗
gmj

δt
= 0, Li

jk
def
=

∗
gim

2

(
δ
∗
gjm

δxk
+

δ
∗
gkm

δxj
−

δ
∗
gjk

δxm

)
= 4δi

jδ
i
kσi,

C
i(1)
j(k)

def
=

∗
gim

2

(
∂
∗
gjm

∂yk
1

+
∂
∗
gkm

∂yj
1

−
∂
∗
gjk

∂ym
1

)
=

∗
gim

2
∂
∗
gjk

∂ym
1

.

Using the derivative operators (8), the direct calculations lead us to the required results.
Moreover, it is important to note that the vertical d-tensor C

i(1)
j(k) also has the properties

(see also [10] and [14]):

C
i(1)
j(k) = C

i(1)
k(j), C

i(1)
j(m)y

m
1 = 0, C

m(1)
j(m) = 0, C

m(1)
i(k)|m = 0, (11)

with sum by m, where

C
l(1)
i(k)|j

def
=

δC
l(1)
i(k)

δxj
+ C

r(1)
i(k) Ll

rj − C
l(1)
r(k)L

r
ij − C

l(1)
i(r)L

r
kj .

Proposition 3. The Cartan canonical connection of the x-conformal deformed rheonomic
Berwald-Moór metric of order four (1) has two effective local torsion d-tensors:

R
(r)
(1)ij = 4

(
δr
i σrj − δr

jσri

)
yr
1, P

r(1)
i(j) =

2δr
i + 2δr

j + 2δij − 8δr
i δij − 1

8
· yr

1

yi
1y

j
1

,

where σpq :=
∂2σ

∂xp∂xq
.

Proof. Generally, an h-normal Γ-linear connection on the 1-jet space J1(R,M4) has eight
effective local d-tensors of torsion (for more details, see [4]). For the Cartan canonical
connection (10) these reduce only to two (the other six are zero):

R
(r)
(1)ij

def
=

δN
(r)
(1)i

δxj
−

δN
(r)
(1)j

δxi
, P

r(1)
i(j)

def
= C

r(1)
i(j) .

Proposition 4. The Cartan canonical connection of the x-conformal deformed rheonomic
Berwald-Moór metric of order four (1) has three effective local curvature d-tensors:

Rl
ijk =

∂Ll
ij

∂xk
−

∂Ll
ik

∂xj
+ Lr

ijL
l
rk − Lr

ikL
l
rj + C

l(1)
i(r)R

(r)
(1)jk, P

l (1)
ij(k) = −C

l(1)
i(k)|j ,

S
l(1)(1)
i(j)(k)

def
=

∂C
l(1)
i(j)

∂yk
1

−
∂C

l(1)
i(k)

∂yj
1

+ C
r(1)
i(j) C

l(1)
r(k) − C

r(1)
i(k) C

l(1)
r(j).
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Proof. Generally, an h-normal Γ-linear connection on the 1-jet space J1(R,M4) has five
effective local d-tensors of curvature (for more details, see [4]). For the Cartan canonical
connection (10) these reduce only to three (the other two are zero); these are S

l(1)(1)
i(j)(k) and

Rl
ijk

def
=

δLl
ij

δxk
−

δLl
ik

δxj
+ Lr

ijL
l
rk − Lr

ikL
l
rj + C

l(1)
i(r)R

(r)
(1)jk,

P
l (1)
ij(k)

def
=

∂Ll
ij

∂yk
1

− C
l(1)
i(k)|j + C

l(1)
i(r)P

(r) (1)
(1)j(k) = −C

l(1)
i(k)|j ,

where

P
(r) (1)
(1)j(k)

def
=

∂N
(r)
(1)j

∂yk
1

− Lr
jk = 0.

4 From x-conformal deformations of the rheonomic Berwald-
Moór metric of order four to field-like geometrical models

4.1 Gravitational-like geometrical model

The x-conformal deformed rheonomic Berwald-Moór metric (1) produces on the 1-jet
space J1(R,M4) the adapted metrical d-tensor (sum by i and j)

G = h11dt⊗ dt +
∗
gijdxi ⊗ dxj + h11∗gijδy

i
1 ⊗ δyj

1, (12)

where
∗
gij is given by (3) and we have δyi

1 = dyi
1−k1

11y
i
1dt+4σiy

i
1dxi (no sum by i). From

a physical point of view, the metrical d-tensor (12) may be regarded as a “non-isotropic
gravitational potential”. In our geometric-physical approach, one postulates that the non-
isotropic gravitational potential G is governed by the geometrical Einstein equations

Ric (C
∗
Γ)− Sc (C

∗
Γ)

2
G=KT , (13)

where

• Ric (C
∗
Γ) is the Ricci d-tensor associated to the Cartan canonical connection (10);

• Sc (C
∗
Γ) is the scalar curvature;

• K is the Einstein constant and T is the intrinsic stress-energy d-tensor of matter.

Therefore, using the adapted basis of vector fields (8), we can locally describe the
global geometrical Einstein equations (13). Consequently, by some direct computations
we find:
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Lemma 1. The Ricci d-tensor of the Cartan canonical connection C
∗
Γ of the x-conformal

deformed rheonomic Berwald-Moór metric of order four (1) has the following two effective
local Ricci d-tensors (no sum by i, j, k or l):

Rij =

 −2σij − σjk
yk
1

yi
1

− σjl
yl
1

yi
1

, i 6= j, {i, j, k, l} = {1, 2, 3, 4}

0, i = j,

S
(1)(1)
(i)(j) =

4δij − 1
8

1

yi
1y

j
1

.

(14)

Proof. Generally, the Ricci d-tensor of a Cartan canonical connection CΓ, produced by
an arbitrary jet Lagrangian function, is determined by six effective local Ricci d-tensors
(for more details, see [4]). For the Cartan canonical connection (10) these reduce only to
the following two (the other four are zero):

Rij
def
= Rm

ijm =
∂Lm

ij

∂xm
− ∂Lm

im

∂xj
+ Lr

ijL
m
rm − Lr

imLm
rj + C

m(1)
i(r) R

(r)
(1)jm,

S
(1)(1)
(i)(j)

def
= S

m(1)(1)
i(j)(m) =

∂C
m(1)
i(j)

∂ym
1

−
∂C

m(1)
i(m)

∂yj
1

+ C
r(1)
i(j) C

m(1)
r(m) − C

r(1)
i(m)C

m(1)
r(j) =

=
∂C

m(1)
i(j)

∂ym
1

− C
r(1)
i(m)C

m(1)
r(j) ,

with sum by r and m.

Lemma 2. The scalar curvature of the Cartan canonical connection C
∗
Γ of the x-conformal

deformed rheonomic Berwald-Moór metric of order four (1) has the value

Sc (C
∗
Γ) = −2e−2σG

−1/2
1111 (3h11 + 8Y11) ,

where
Y11 = σ12y

1
1y

2
1 + σ13y

1
1y

3
1 + σ14y

1
1y

4
1 + σ23y

2
1y

3
1 + σ24y

2
1y

4
1 + σ34y

3
1y

4
1.

Proof. The scalar curvature of the Cartan canonical connection (10) is given by (for more
details, see [4])

Sc (C
∗
Γ) =

∗
gpqRpq + h11

∗
gpqS

(1)(1)
(p)(q) = −16e−2σG

−1/2
1111 Y11 − 6e−2σG

−1/2
1111 h11.

The local description in the adapted basis of vector fields (8) of the global geometrical
Einstein equations (13) is given by (for more details, see [4]):
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Proposition 5. The geometrical Einstein equations produced by the x-conformal
deformed rheonomic Berwald-Moór metric of order four (1) are locally described by:

e−2σG
−1/2
1111 (3h11 + 8Y11) h11 = KT 11

Rij + e−2σG
−1/2
1111 (3h11 + 8Y11)

∗
gij = KT ij

S
(1)(1)
(i)(j) + e−2σG

−1/2
1111 (3h11 + 8Y11) h11∗gij = KT (1)(1)

(i)(j)

0 = T1i, 0 = Ti1, 0 = T (1)
(i)1

0 = T (1)
1(i) , 0 = T (1)

i(j) , 0 = T (1)
(i)j .

(15)

Corollary 1. The stress-energy d-tensor of matter T satisfies the following geometrical
conservation laws (sum by m):

T 1
1/1 + T m

1|m + T (m)
(1)1 |

(1)
(m) = 0

T 1
i/1 + T m

i|m + T (m)
(1)i |

(1)
(m) = Em

i|m

T 1(1)
(i)/1 + T m(1)

(i)|m + T (m)(1)
(1)(i) |(1)(m) =

4e−2σG
−1/2
1111

K
·
[
2
∂Y11

∂yi
1

− Y11

yi
1

]
,

where (sum by r):

T 1
1

def
= h11T11 = K−1e−2σG

−1/2
1111 (3h11 + 8Y11) , T m

1
def
=

∗
gmrTr1 = 0,

T (m)
(1)1

def
= h11

∗
gmrT (1)

(r)1 = 0, T 1
i

def
= h11T1i = 0,

T m
i

def
=

∗
gmrTri = Em

i := K−1
[∗
gmrRri + e−2σG

−1/2
1111 (3h11 + 8Y11) δm

i

]
,

T (m)
(1)i

def
= h11

∗
gmrT (1)

(r)i = 0, T 1(1)
(i)

def
= h11T (1)

1(i) = 0, T m(1)
(i)

def
=

∗
gmrT (1)

r(i) = 0,

T (m)(1)
(1)(i)

def
= h11

∗
gmrT (1)(1)

(r)(i) =
e−2σG

−1/2
1111

K
·
[
h11

2
ym
1

yi
1

+ (h11 + 8Y11) δm
i

]
, and we also have

(summation by m and r, but no sum by i)

T 1
1/1 =

δT 1
1

δt
, T m

1|m
def
=

δT m
1

δxm
+ T r

1 Lm
rm,

T (m)
(1)1 |

(1)
(m)

def
=

∂T (m)
(1)1

∂ym
1

+ T (r)
(1)1C

m(1)
r(m) =

∂T (m)
(1)1

∂ym
1

,

T 1
i/1

def
=

δT 1
i

δt
+ T 1

i k1
11 − T 1

r Gr
i1 =

δT 1
i

δt
+ T 1

i k1
11,
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T m
i|m

def
=

δT m
i

δxm
+ T r

i Lm
rm − T m

r Lr
im = Em

i|m :=
δEm

i

δxm
+ 4Em

i σm − 4Ei
iσi,

T (m)
(1)i |

(1)
(m)

def
=

∂T (m)
(1)i

∂ym
1

+ T (r)
(1)iC

m(1)
r(m) − T (m)

(1)r C
r(1)
i(m) =

∂T (m)
(1)i

∂ym
1

− T (m)
(1)r C

r(1)
i(m),

T 1(1)
(i)/1

def
=

δT 1(1)
(i)

δt
+ 2T 1(1)

(i) k1
11, T m(1)

(i)|m
def
=

δT m(1)
(i)

δxm
+ T r(1)

(i) Lm
rm − T m(1)

(r) Lr
im,

T (m)(1)
(1)(i) |(1)

(m)

def
=

∂T (m)(1)
(1)(i)

∂ym
1

+ T (r)(1)
(1)(i) C

m(1)
r(m) − T (m)(1)

(1)(r) C
r(1)
i(m) =

∂T (m)(1)
(1)(i)

∂ym
1

.

Proof. The local Einstein equations (15), together with some direct computations, lead us
to what we were looking for.

4.2 Electromagnetic-like geometrical model

In book [4], a geometrical theory for electromagnetism was also created, using only
a given Lagrangian function L on the 1-jet space J1(R,M4). In the background of the
jet relativistic rheonomic Lagrange geometry from [4], one works with the electromagnetic
distinguished 2-form (sum by i and j)

F = F
(1)
(i)jδy

i
1 ∧ dxj ,

where (sum by m and r)

F
(1)
(i)j =

h11

2

[∗
gjmN

(m)
(1)i −

∗
gimN

(m)
(1)j +

(∗
girL

r
jm − ∗

gjrL
r
im

)
ym
1

]
.

This is characterized by some natural geometrical Maxwell equations (for more details, see
Miron and Anastasiei [11] and Balan and Neagu [4]).

By a direct calculation, we observe that the x-conformal deformed rheonomic Berwald-
Moór metric of order four (1) produces null electromagnetic components:

F
(1)
(i)j = 0.

Consequently, our x-conformal deformed jet Berwald-Moór geometrical electromagnetic
theory is trivial. Probably, this fact suggests that the x-conformal deformed rheonomic
Berwald-Moór structure (1) has rather strong gravitational connotations than electromag-
netic ones.

As a conclusion, it is possible for the new Voicu-Siparov approach to electromagnetism
in spaces with anisotropic metrics (this electromagnetic approach is different from the
electromagnetic theory exposed above, and it is developed by Voicu and Siparov in the
paper [19]) to give other interesting electromagnetic-geometrical results.
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