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Abstract

In this paper, the notion of intrinsic geometry of an almost contact metric manifold
D is introduced and studied. Using this and the extended connection on D as on the
total space of a vector bundle, an almost contact metric structure is defined and
investigated.
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1 Indroduction

Finslerian vector bundles, which are natural analogs of the tangent bundles of manifolds
with Finslerian metrics, were introduced and studied in [9]. A Finslerian vector bundle
may be characterized by giving on the total space of a vector bundle a class of linear
connections that are associated in a special way with an infinitesimal connection, see e.g.
[10]. In [4], the notion of a smooth distribution D with an admissible Finslerian metric,
which allows a new viewpoint on the problems of Finslerian vector bundle, is introduced.
In the present paper, we define in a natural way an almost contact metric structure on
the total space of the vector bundle (D,π,X), where D is a smooth distribution with an
admissible Finslerian structure. The properties of this structure are studied by means of
the interior geometry of a nonholonomic manifold.

The research of the geometry of manifolds with almost contact metric structures began
in the fundamental papers by Chern [3], J. Gray [6] and Sasaki [11]. Almost contact
metric structures constitute the odd-dimensional analog of almost Hermitian structures.
There are a lot of important interplays between these structures. At the same time, the
geometry of almost contact metric structures is appreciably different from the geometry
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of almost Hermitian structures and its study requires in principle new tools. One can get
the impression of the last achievements in this area and about applications to theoretical
physics from the works [7, 1, 12].

In the present paper, the notion of intrinsic geometry of a manifold with an almost
contact metric structure is introduced. In the terminology developed by V.V.Wagner
[15], the manifold with an almost contact metric structure is a nonholonomic manifold of
codimension 1 with additional structures. These structures are called intrinsic by Wagner.
The notion of intrinsic geometry of a nonholonomic manifold was defined by Schouten as
the properties that depend only on the parallel transport in the nonholonomic manifold
and on the closing of the nonholonomic manifold in the ambient manifold. We propose to
use the methods of nonholonomic geometry developed by Wagner for the investigation of
the geometry of manifolds with almost contact metric structure. The new approach allows
us to pick out new types of spaces. For example, we give the definition of a Hermitian
almost contact metric space. The already known results obtain new descriptions of the
language of intrinsic geometry.

The paper consists of three sections. In Section 2 we provide the basic concepts of
the theory of manifolds with almost contact metric structure. We introduce the notion
of adapted coordinate system. The adapted coordinates play in the geometry of the non-
holonomic manifolds the same role as the holonomic coordinates on a holonomic manifold,
see e.g. [15]. Next we introduce the notion of admissible (to a nonholonomic distribution
D) tensor structure. An admissible tensor structure is an object of the intrinsic geometry
of a nonholonomic manifold [15]. We give some information about the intrinsic connec-
tions compatible with admissible tensor structures. Among the connections compatible
with the admissible Riemannian metric, we study the connections compatible with an
admissible almost complex structure. We discuss the connection over a distribution that
was introduced in [13, 8] and applied in [2, 4] to manifolds with an admissible Finslerian
metric.

In Section 3 we expound some of the main theses of the geometry of almost contact
metric spaces in terms of intrinsic geometry. It is shown that the almost contact met-
ric structure defined in the intrinsic way corresponds to a certain almost contact metric
structure defined in the usual way. The intrinsic connection is used for description and
characterization of the normal and Sasakian structures.

In Section 4 we prove that the connection over a distribution with a Finslerian metric
defines on the total space of the vector bundle D over the manifold X, an almost contact
metric structure.

The proofs of some statements are omitted and will be published in more detailed
papers elsewhere [4, 5].

2 Admissible tensor structures and intrinsic connection com-
patible with them

Let X be a smooth manifold of an odd dimension n. Denote by Ξ(X) the C∞(X)-
module of smooth vector fields on X and by d the exterior derivative. All manifolds,
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tensors and other geometric objects will be assumed to be smooth of the class C∞. For
simplification, in what follows we refer to tensor fields simply as tensors. An almost contact
metric structure on X is an aggregate (ϕ, ~ξ, η, g) of tensor fields on X, where ϕ is a tensor
field of type (1, 1), which is called the structure endomorphism, ~ξ and η are vector and
covector, which are called the structure vector and the contact form, respectively, and g
is a (pseudo-)Riemannian metric. Moreover,

η(~ξ) = 1, ϕ(~ξ) = 0, η ◦ ϕ = 0,

ϕ2 ~X = − ~X + η( ~X)~ξ, g(ϕ ~X,ϕ~Y ) = g( ~X, ~Y )− η( ~X)η(~Y )

for all ~X, ~Y ∈ Ξ(X). It is easy to check that the tensor Ω( ~X, ~Y ) = g( ~X,ϕ~Y ) is skew-
symmetric. It is called the fundamental tensor of the structure. A manifold with a fixed
almost contact metric structure is called an almost contact metric manifold. If Ω = dη
holds, then the almost contact metric structure is called a contact metric structure. An
almost contact metric structure is called normal if

Nϕ + 2dη ⊗ ~ξ = 0,

where Nϕ is the Nijenhuis torsion defined for the tensor ϕ. A normal contact metric
structure is called a Sasakian structure. A manifold with a given Sasakian structure is
called a Sasakian manifold. Let D be the smooth distribution of codimension 1 defined
by the form η, and D⊥ = span(~ξ) be the closing of D. In what follows we assume that
the restriction of the 2-form ω = dη to the distribution D is non-degenerate. In this case
the vector ~ξ is uniquely defined by the condition

η(~ξ) = 1, kerω = span(~ξ),

and it is called the Reeb vector field. The smooth distribution D we call sometimes a
nonholonomic manifold.

For investigation of the intrinsic geometry of a nonholonomic manifold, and generally
for the study of almost contact metric structures, it is suitable to use coordinate systems
satisfying certain additional conditions. We say that a coordinate map K(xα) (α, β, γ =
1, ..., n) (a, b, c, e = 1, ..., n− 1) on a manifold X is adapted to the nonholonomic manifold
D if

D⊥ = span
(

∂

∂xn

)
holds. It is easy to show that any two adapted coordinate map are related by a transfor-
mation of the form

xa = xa(xã), xn = xn(xã, xñ).

Such coordinate systems are called by Wagner in [15] gradient coordinate systems.
Let P : TX → D be the projection map defined by the decomposition TX = D ⊕D⊥

and let K(xα) be an adapted coordinate map. Vector fields

P (∂a) = ~ea = ∂a − Γna∂n
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are linearly independent, and linearly generate the system D over the domain of the
definition of the coordinate map:

D = span(~ea).

Thus we have on X the nonholonomic field of bases (~ea, ∂n) and the corresponding field
of cobases

(dxa, θn = dxn + Γnadx
a).

It can be checked directly that
[~ea, ~eb] = Mn

ab∂n,

where the components Mn
ab form the so-called tensor of nonholonomicity [15]. Under the

assumption that for all adapted coordinate systems it holds ~ξ = ∂n, the following equality
takes place

[~ea, ~eb] = 2ωba∂n,

where ω = dη. In what follows we consider exceptionally adapted coordinate systems that
satisfy the condition ~ξ = ∂n. We say also that the basis

~ea = ∂a − Γna∂n

is adapted, as the basis defined by an adapted coordinate map. Under the transformation
of the adapted coordinate systems, the vectors of the adapted bases transform in the
following way: ~ea = ∂xã

∂xa~eã.
We call a tensor field defined on an almost contact metric manifold admissible (to the

distribution D) if it vanishes whenever its vectorial argument belongs to the closing D⊥

and its covectorian argument is proportional to the form η. The coordinate form of an
admissible tensor field of type (p, q) in an adapted coordinate map looks like

t = t
a1,...,ap

b1,...,bq
~ea1 ⊗ ...⊗ ~eap ⊗ dxb1 ⊗ ...⊗ dxbq .

In particular, an admissible vector field is a vector field tangent to the distribution D,
and an admissible 1-form is a 1-form zero on the closing D⊥. It is clear that any tensor
structure defined on the manifold X defines on it a unique admissible tensor structure of
the same type. From the definition of an almost contact structure it follows that the field
of endomorphisms ϕ is an admissible tensor field of type (1, 1). The field of endomorphisms
ϕ we call an admissible almost complex structure. The 2-form ω = dη is also an admissible
tensor field. In the geometry of the fibered spaces an admissible tensor field is called semi
basic.

Theorem 1. The derivatives ∂nt of the components of an admissible tensor field t in an
adapted coordinate system are components of an admissible tensor field of the same type.

The proof of the theorem follows from the fact that the components of an admissible
tensor field under the change of an admissible coordinate system transform in the following
way:

t
a1,...,ap

b1,...,bq
= t

ã1,...,ãp

b̃1,...,b̃q
Aa1
ã1
· · ·Ab̃qbq ,
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where Aai
ãi

= ∂xai

∂xãi . �
The invariant character of the above statement is enclosed in the equality

L~ξt
a1,...,ap

b1,...,bq
= ∂nt

a1,...,ap

b1,...,bq
,

where L~ξ is the Lie derivative along a vector field ~ξ.
We say that an admissible tensor field is integrable if there exists an atlas of adapted

coordinate maps such that the components of this tensor in any of these coordinate maps
are constant. From Theorem 1 immediately follows that the necessary condition of the
integrability of an admissible tensor field t is vanishing of the derivatives ∂nt. We call an
admissible tensor structure t quasi-integrable if in adapted coordinates it holds ∂nt = 0.
The form ω = dη is an important example of an integrable admissible structure. The
following two theorems show the importance of the above given definitions.

Theorem 2. The field of endomorphism ϕ is integrable if and only if P (Nϕ) = 0 holds.

Theorem 3. An almost contact metric structure is normal if and only if the following
conditions hold:

P (Nϕ) = 0, ω(ϕ~u, ϕ~v) = ω(~u,~v).

The next statements show the advisability of notions like adapted coordinate system
and integrable tensor field.

Theorem 4. A contact metric structure is normal if and only if the field of endomorphisms
ϕ is integrable.

Theorem 4 confirms the importance of introducing of the new type of almost contact
metric spaces. Namely, we call an almost contact metric space a Hermitian almost contact
metric space if the condition P (Nϕ) = 0 holds.

An intrinsic linear connection on a nonholonomic manifold D is defined in [15] as a
map

∇ : ΓD × ΓD → ΓD

that satisfies the following conditions:

1) ∇f1~u1+f2~u2
= f1∇~u1

+ f2∇~u2
;

2) ∇~uf~v = f∇~u~v + (~uf)~v,

where ΓD is the module of admissible vector fields. The Christoffel symbols are defined
by the relation

∇~ea~eb = Γcab~ec.

The torsion S of the intrinsic linear connection is defined by the formula

S( ~X, ~Y ) = ∇ ~X
~Y −∇~Y

~X − P [ ~X, ~Y ].

Thus with respect to an adapted coordinate system it holds

Scab = Γcab − Γcba.
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In the same way as a linear connection on a smooth manifold, an intrinsic connection can
be defined by giving a horizontal distribution over a total space of some vector bundle.
The role of such bundle plays the distribution D.

In order to define a connection over the distribution D, it is necessary first to introduce
a structure of a smooth manifold on D. This structure is defined in the following way.
To each adapted coordinate map K(xα) on the manifold X we put in correspondence the
coordinate map K̃(xα, xn+α) on the manifold D, where xn+α are the coordinates of an
admissible vector with respect to the basis ~ea = ∂a − Γna∂n.

The notion of a connection over a distribution introduced in [13, 8], was applied later
to nonholonomic manifolds with admissible Finsler metrics in [2, 4]. One says that over a
distribution D a connection is given if the distribution D̃ = π−1

∗ (D), where π : D → X is
the natural projection, can be decomposed into a direct sum of the form

D̃ = HD ⊕ V D,

where V D is the vertical distribution on the total space D. Thus the assignment of a
connection over a distribution is equivalent to the assignment of the object Gab (x

a, xn+a)
such that

HD = span(~εa),

where ~εa = ∂a − Γna∂n −Gba∂n+b.
It can be checked in the usual way that the connection over the distribution D coincides

with the linear connection in the nonholonomic manifold D if it holds

Gab (x
a, xn+a) = Γabc(x

a)xn+c.

In [4], the notion of prolonged connection was introduced. The prolonged connection can
be obtained from an intrinsic connection by the equality

TD = H̃D ⊕ V D,

where HD ⊂ H̃D. Essentially, the prolonged connection is a connection in a vector
bundle.

An important example of a manifold with an admissible tensor structure and com-
patible with it intrinsic connection considered V.V. Wagner in [15]. In this paper, in a
nonholonomic manifold an intrinsic metric is introduced using an admissible tensor field
g that satisfies the usual properties of the metric tensor in a Riemannian space.

Similarly to the holonomic case, a metric on a nonholonomic manifold defines an in-
trinsic linear symmetric connection. The corresponding Christoffel symbols can be derived
from the system of equations

∇cgab = ~ecgab − Γdcagdb − Γdcbgad.

Let ϕ be an admissible almost complex structure. We will use the following statement.
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Theorem 5. Each nonholonomic manifold with an almost complex structure ϕ and an in-
trinsic torsion-free linear connection ∇ admits an intrinsic linear connection ∇̃ compatible
with the structure ϕ and having the torsion S such that

S(~u,~v) =
1
4
PNϕ(~u,~v),

where ~u,~v ∈ Γ(D).

3 Interior characteristics of almost contact metric spaces

Now we introduce the notion of an almost contact metric structure in a new sense.
Namely, we will say that a manifold of almost contact metric structure in the new sense
is given if on a manifold X with a given contact form η in addition to a pair of admissible
tensor structures (ϕ, g) such that

ϕ2~u = −~u, g(ϕ~u, ϕ~v) = g(~u,~v)

is given.

Theorem 6. The notion of a manifold of almost contact metric structure in the new
sense is equivalent to the notion of a manifold of almost contact metric structure in the
old sense.

We say that a Sasakian manifold in the new sense is given if on the manifold X with a
given contact metric structure, in addition the equality P (N) = 0 holds. Theorems 3 and
6 imply the following statement.

Theorem 7. The notion of a Sasakian manifold in the new sense is equivalent to the
notion of a Sasakian manifold in the old sense.

In this section we use the following notation. As above, admissible almost complex
structure and Riemannian metric will be denoted by ϕ and g, respectively; the symbol
∇ will denote the intrinsic metric connection, and the symbols g̃ and ∇̃ will denote the
metric tensor in the ambient space and its Levi-Civita connection, respectively.

Theorem 8. A contact metric structure is normal if and only if the structure ϕ is quasi-
integrable and it holds ∇ϕ = 0, where ∇ is an intrinsic metric connection.

Note that the equality ∇ϕ = 0 is not true if the connection ∇ and the field of en-
domorphisms ϕ are considered as the structures defined on the whole manifold, see e.g.
[1].

Next suppose that ∇1 is the extended connection constructed from the intrinsic con-
nection in the following way:

H̃D = HD ⊕ span(∂n),

here ∂n is a vector field on the manifold D. The extended connection allows to formulate
the next characteristic feature of the integrability of an almost complex structure ϕ.
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Theorem 9. An almost complex structure ϕ is integrable if and only if the equality ∇1ϕ =
0 holds.

Finally we formulate a statement concerning K-contact manifolds.

Theorem 10. An almost contact metric structure is a K-contact structure if and only if
the metric g is quasi integrable.

The theorem follows from the following equivalences:

L~ξ g̃ = 0⇔ L~ξg = 0⇔ ∂ng = 0.

4 Almost contact metric structure on the total space of the
vector bundle (D, π,X).

A coordinate map K(xα) defines on the total space of the vector bundle (D,π,X)
the coordinate map χ̃(~ξ) = (xa, xn+a), where ~ξ = xn+a~ea. If on the manifold X an
admissible Finslerian structure is given, then on the distribution D appears an infinitesimal
connection defined by the distribution HD = span(~εα), where

~εa = ∂a − Γna∂n −Gbacxn+c∂n+b, Gabc = Ga·b·c = ∂n+b∂n+cG
a,

Ga = gab(∂cL2
·bx

n+c − ~ebL2), gab =
1
2
L2
·a·b,

see [4]. We define on the manifold D an admissible field of endomorphisms J to the dis-
tribution HD = span(~εα), by putting J(~εa) = ∂n+a, J(∂n+a) = −~εa. Using the equalities

g̃(~uh, ~vh) = g̃(~uv, ~vv) = g(~u,~v), g̃(~uh, ~vv) = 0,

where g is an admissible Finslerian structure on the manifold D, an admissible Riemannian
structure is defined. The equality

g̃(J(~u), J(~v)) = g̃(~u,~v)

implies the following theorem.

Theorem 11. The pair (J, g̃) of admissible structures defines an almost contact metric
structure on the manifold D.

Let us find the conditions that imply the integrability of an admissible almost complex
structure J . The coordinate map χ̃(~ξ) defines the nonholonomic basis field (~εa, ∂n, ∂n+a)
on the manifold D. The direct computations imply

[~εa,~εb] = 2ωab∂n +Rcba∂n+c,

[~εa, ∂n] = ∂nΓna∂n + ∂nG
b
a∂n+b,

[~εa, ∂n+b] = Gcab∂n+c,

where Rcba = 2(~e[bGca] −G
d
[aG

c
b]·d). The last equality and Theorem 3 imply the following.

Theorem 12. An almost complex structure J is integrable if and only if it holds

Rcab = 0, ∂nG
b
a = 0.
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