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A DIRECT APPROACH FOR TIME OPTIMAL CONTROL
PROBLEM WITH LINEAR DIFFERENTIAL SYSTEM

Ernest SCHEIBER/!

Abstract

The purpose of this paper is to present an approach to solve the time-optimal
control problem. While searching the control as a piecewise constant function the op-
timal control problem is reduced to a nonlinear programming problem. Two examples
are presented, in which cases the computation is carried out with the Mathematica
software.

2000 Mathematics Subject Classification: 49M25, 49M37.
Key words: time optimal control problem, nonlinear programming, computer al-
gebra system.

1 Introduction

The control of a time optimal control problem with linear differential system is of
bang-bang type with unknown switching times.
The time optimal control problem considered in this paper is

minimize T’ (1)
subject to the constrains:
w(t) = A(t)x(t) + B(t)u(t) (2)
z(0) = xo (3)
.ZC(T) = xT (4)
u(t) € U (5)

where z(t) € R™ and u(t) € R? The elements of the matrix A(t) € My, »n(R) and
B(t) € M, 4(R) are supposed to be continuous. U is a convex subset of RY.

Several computational techniques are derived to solve the time optimal control prob-
lems. These techniques are based on transforming into an optimization problem [1], [3]
(i.e. the control functions and/or state functions are discretized) and/or transforming into
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a two boundary value problem (the transformation is based on the necessary optimality
conditions), [2].

Here we shall discretize only the control functions as in [2]. A control function will be
searched as a piecewise constant function. In the given examples, using the Mathematica
Computer Algebra System, the ordinary differential equations are integrated symbolically.

The main component of this approach is the minimization procedure.

2 The transformation of optimal control into nonlinear pro-
gramming problem

Let X (t) be a fundamental system of the linear differential system (2) (i.e. the columns
of X (t) are m linear independent solutions of the homogeneous linear differential system
i(t) = A(t)z(t)). Denoting H(t,s) = X (t)X !(s) the solution of the initial value problem
(2)-(3) is

x(t) = H(t,0)xo + /0 H(t,s)B(s)u(s)ds.

The constraint (4) will be

T
xr = H(T,0)zo + /0 H(T,s)B(s)u(s)ds.

or

T
/O X~1()B(s)u(s)ds = X~ (T)zp — X—(0)ao. (6)

We search an approximation the optimal control as a piecewise constant function: for a
mesh
O=to<ti <...<tp, =T

let be a(t) =u;, t € (tz;l,ti}, Uu; € U, 1 E {1,2, . ,n}.
Substituting v = @ in (6) we obtain

n

3 (/tt X—l(s)B(s)ds) wi = XN — X 1(0)ao.

=1

Denoting
t;
C; = X (s)B(s)ds € My, 4(R), i€ {1,2,...,n}

ti—1

and
d=X"YT)zr — X 1(0)zg € R™,

the following nonlinear programming problem

minimize go(T, u1,...,uy) =T (7)
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subject to
n
9T uy, ... up) = ZC’iui:d; (8)
i=1
u €U ie{l,2,...,n}. 9)
Usually, the nodes t; are equidistant, t; = %z’, i € {1,2,...,n}, for some prescribed

n € N*. As a consequence matrix C; depends on T and thus the minimization problem is
nonlinear.

3 Examples

The computation was carried out with Mathematica. Mathematica allows a simple and
nice way to generate the constraints for any n € N*. The minimization is realized calling
the NMinimize Mathematica function.

1. minimize T
subject to
z1(T)
z2(T)

i‘l = X9 .7}1(0) =X
i’g =Uu LUQ(O) =X
lul <1

0
0

NO—O

The solution may be easily computed using the Pontryagin’s maximum principle, [4].
Almost any introductory tutorial of optimal control presents this example, but here we
are interested in a solution obtained by a computer for arbitrary 9, x9. The plot of the
possible optimal trajectories a given in Fig.1.
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Fig. 1: The shape of the optimal state trajectories.
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A fundamental matrix of the corresponding homogeneous system is

X(t):<(1) i)

n t;

E U; sds = a¥,

ti—1

The constraints (8) are

=1
n

i=1 i—1

For equidistant nodes, the above equations become

2 . 2 )
DS - D=2 & LY =l

T . _ .0
gzz':ﬂ%* )

The optimization problem is: minimize 7" subject to the constraints:

T2 —n - 0 T,0 _
T D i Uy — 29 + 5wy =0,

2n

T~n 0 _
521:1“1"‘332—07

lug) <1, Vie{1,2,...,n}.

t;
E ul/ ds = —a9.
4 t
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The Mathematica code to solve this nonlinear programming problem is

1|OCP[n-, x10-, x20_] :=

2| NMinimize |

3 Join[{T, x10 — T x20/(2 n) —

4 T°2/n"2 Sum|

5 i ToExpression|[StringJoin[”u” , ToString[i]]], {i, 1, n}] == 0,
6 x20 + T/n Sum|

7 ToExpression [ StringJoin ["u” , ToString[i]]], {i, 1, n}] == 0,
8 T > 0}, Table|

9 ToExpression [StringJoin [”—1<=u” , ToString[i]]], {i, 1, n}],

10 Table [ ToExpression [ StringJoin [”1>=u” , ToString[i]]], {i, 1, n}]],
11 Join [{T},

12 Table [ ToExpression[StringJoin [”u” , ToString[i]]], {i, 1, n}]]]

To obtain a valid solution, there is required the additional constraint T > 0.
For n = 64, (29, 29) = (3,2) € D~ we have obtained T = 6.47259 in concordance with

the theoretical value T' = 29 + 24/ 3(29)? + 2. The obtained results are

{6.47259, {T -> 6.47259, ul -> -1., u2 -> -1., u3 -> -1., uéd -> -1.,
ub -> -1., u6 -> -1., u7 -> -1., u8 -> -1., u9 -> -1., ui0 -> -1.,

ull -> -1., ui2 -> -1., ul3 -> -1., utd -> -1., uls -> -1.,
ul6é -> -1., ul? -> -1., ul8 -> -1., ul9 -> -1., u20 -> -1.,
u2l -> -1., u22 -> -1., u23 -> -1., u24 -> -1., u25 -> -1.,
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u26 ->
u3l ->
u34 ->
u37 ->
u40 ->
u43 ->
ud?7 ->
ubl ->
ub5 ->
uél ->

-1., u27 -> -1., u28 -> -1., u29 -> -1., u30 -> -1.,
-0.999999, u32 -> -0.999999, u33 -> -0.999999,

-0.999999, u35 -> -0.999999, u36 -> -0.999999,

-0.999999, u38 -> -0.999999, u39 -> -0.999997,

-0.999997, u4l -> -0.999993, u42 -> -0.775689,

0.999989, u44 -> 0.999996, u4b -> 0.999998, ud6 -> 0.999998,
0.999999, u48 -> 0.999999, u49 -> 0.999999, ub0 -> 0.999999,
0.999999, ub2 -> 0.999999, ub3 -> 0.999999, ub4 -> 1.,

1.
1.

, ub6 -> 1., ub7 -> 1., ub8 -> 1., ub9 -> 1., u60 -> 1.,
, ué2 -> 1., u63 -> 1., u64 -> 1.}}

The plot of the corresponding control is given in Fig. 2.
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Fig. 2: Plot of the control for Example 1.

An approximation of the switching time is & = t40 = 4.24764.
2. The second problem is chosen from [2] (with several included references):

minimize T

subject to

1 =3 z1(0) =0 z(T) =1
5?2 = T4 N .%'2(0) =0 wz(T) =1
333:%—7?71(1‘1—312) .7}3(0) =0 $3(T) =0
.%"4 == E($1 — xg) 334(0) =0 $4(T) =0
u <1

For my = mo = k = 1, using Mathematica we have found the fundamental matrix

X(t) =
Cos [£]" sin[]" 1 (24 vasin [VaI]) (2t~ v2Sin [Va))
sin [ 2]° Cos [ ]° 4 (20— v2Sin [va1]) 1} (2t + v2Sin [V21])
Sin[\/it] Sin[ﬂt] C ¢ 2 Si ¢ 2
IS V2 o8 [ﬁ] m [ﬁ}

Sin[v2t]  Sin[v2(] Sin [ % ]2 Cos [ % }2

157
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with the inverse

XYt =
Cos [ ] sin[L]" 1(-2t—vESin[va1)) L (-2t + vaSin [V2H])
Sin MQ Cos [%]2 L(“2t 4+ v3Sin [V2H]) L (-2t — v2Sin [V2H])
Sin[v/2t Sin[v/2t] ;12 T2
S'\/[ix/?t] _S‘ [gt] o [ﬁL o [ﬁ} 2
v v Sin | ) Cos | 3]

Because [ X (t)B(s)ds =

s Sinfs s Sin[v2s
{i( s +Cos[\fs]) 4( s —Cos[\[sD 3 2[\/;]72_ 2[\/;]}

and d = {1,1,0,0}, after some simple algebraic processing, the constraints (8) become

2 . . T(i—3)V2
% Yo duy = —1, > u;sin # =0,
T(i—3)V2
o u; cos # =0, S u; =0.
The Mathematica code for the minimization function is

1|OCP[n-] :=
2| NMinimize [
3| Join[{T, T"2/(2 n"2) Sum]|
4 i ToExpression[StringJoin[”’u” , ToString[i]]], {1 , 1, n}] == -1,
5 Sum| ToExpression [StringJoin[”u” , ToString[i]]], {i, 1, n}] == 0,
6 Sum| ToExpression|[StringJoin[”u” , ToString[i]]] Cos[
. T (i - 0.5) Sart[2]/n], {i, 1, n}] == 0,
8 Sum [ToExpressmn[StrlngJoul[” 7, ToString[i]]] Sin]
0 T (i - 0.5) Sart[2]/n], {i, 1, n}] == 0, T > 3},
10 Table[ToExpression[StringJoin[”—1<:u” , ToString[i]]], {i, 1, n}],
11 Table [ ToExpression [StringJoin [”1>=u” , ToString[i]]], {i, 1, n}]],
12 Join [{T},
13 Table [ ToExpression[StringJoin[”u” , ToString[i]]], {i, 1, n}]]]

Here the additional constraint is 1" > 3.
For n = 32 we obtained

{4.22218, {T -> 4.22218, ul -> 1., u2 -> 1., u3 -> 1., ud -> 1.,
ub -> 1., u6 -> 1., u7 -> 1., u8 -> 0.228417, u9 -> -1., ul0 -> -1.,
ull -> -1., ui2 -> -1., ul3 -> -1., ul4 -> -1., uilb -> -1.,
ulé -> -1., ul7 -> 1., ui8 -> 1., ul9 -> 1., u20 -> 1., u21 -> 1.,
u22 -> 1., u23 -> 1., u24 -> 1., u25 -> -0.228417, u26 -> -1.,
u27 -> -1., u28 -> -1., u29 -> -1., u30 -> -1., u31 -> -1.,
u32 -> -1.}}

Thus T = 4.22218. The plot of the corresponding control is given in Fig. 3.

The approximation of the switching times is £; & tg = 1.05555, &, ~ t16+% = 2.17706, &3 ~
tos = 3.29858. These results agree with the results reported in [2].

The drawback of this approach is that an additional constraint is required and that the
time to evaluate the minimization function is frustrating. On a two cores computer, the
duration to solve the two examples, for n = 64 and respectively n = 32, is a few minutes.
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Fig. 3: Plot of the control for Example 2.

4 Conclusions

If the transformation of the optimal control problem into a mathematical programming
problem is straightforward, the contribution of this paper is the Mathematica coding to
generate that mathematical programming problem. It results a simple method to solve
a class of time optimal control problems. The method requires only the general-purpose
Mathematica software.
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