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K-NEAREST NEIGHBOR ALGORITHM FOR UNIVARIATE TIME

SERIES PREDICTION

Adela SASU1

Abstract

The paper contains a description of a k-nearest neighbor based method used for
the univariate time series prediction problem. The method presented is inspired by
machine learning techniques used for classification, here extended to perform regres-
sion. Experimental results and comparisons with the predicted values obtained by
ARIMA show a good behavior of this approach.
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1 Introduction

The paper presents time series prediction using the k-nearest neighbor method (k-NN)
and compares the results obtained by this approach to those given by ARIMA, a classical
time series forecasting method. Despite its conceptual simplicity, it was proved to be
effective for classification problems. Although initially designed as a classification model,
it was further extended to predict time series – see [4], [5], [11].

2 K-Nearest Neighbor

k-NN is a nonparametric classification method, based on the measurement of a point’s
similarity to a training set containing patterns for which class labels are supplied. k-NN is
a memory-based method and does not build a model through learning. The classification
is made by aggregating the values provided by the training patterns in the vicinity of the
current point.

k-NN can be also used for regression, when yi ∈ R. In this case, one computes the x
associated value as an average of the ones associated to the k nearest neighbors of x:

y =
k

∑

i=1

yo(i)

k
. (1)
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A better accuracy of the prediction is reported to be obtained when one weights the
neighbors, according to their closeness to x:

y =

k
∑

i=1
wo(i)yo(i)

k
∑

i=1
wo(i)

(2)

where wo(i) is a non-decreasing function of the distance between x and xo(i). This approach
gives more importance to the closest neighbors. For example, one can use weights that
are (approximately) inverse proportional to the distance:

wo(i) =
1

ε+ d
(

x,xo(i)

) , i ∈ {1, 2, . . . , k}. (3)

For constant wo(i), (2) becomes (1).
In order to use the k-NN method in a time series-prediction problem, one has to:

1. choose the concrete similarity functions used to find the closest neighbors

2. decide how to effectively produce the prediction.

For the former step, let {x1, x2, . . . , xn} be the series to be analyzed. We search for
k subsequences of length ws inside the given series, that are closest to the suffix vector
{xn−ws+1, . . . , xn}, with ws > 1. These k-subsequences are of the form:

{xq1 , xq1+1, . . . , xq1+ws−1}, . . . , {xqk , xqk+1, . . . , xqk+ws−1}

where 1 ≤ qi ≤ n − ws, i = {1, 2, . . . , k}. The Lp metric can be used to compute the
distances between series’ suffix and a neighbor. The values k and ws are parameters of
the prediction model.

There are two approaches for the latter step above. One of them is based on Giles,
Lawrence, and Tsoi work in [1] and consists of predicting the direction of variation for the
next value. There are three cases: increasing trend, decreasing trend and constant value.
One considers that the trend is constant when the variation does not exceed a predefined
percent. The second approach is based on effectively computing the predicted values ([5],
[11]). For this case, suppose that we have to predict the next p values, i.e. to produce
the values {xn+1, . . . , xn+p}. The process is an iterative one, each step i predicts the next
value xn+i (1 ≤ i ≤ p). This latter approach is the one we are further considering. The
algorithm is given in Figure 1. A visual representation of this method is given in Figure
2.

Remark 1. 1. The initial series is successively extended with the predicted values;

2. At every iteration the suffix has the same length ws, but is successively shifted right,

i.e. the suffix at the i + 1th step is obtained from the one at the previous step by

removing its first element and appending the value predicted at step i;
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Figure 1: The pseudocode for the k-nearest neighbor algorithm, which predicts p successive
values for a univariate time series.

Figure 2: Computing the ith predicted output based on the current k nearest neighbors
for the suffix.

3. As the successive suffixes differ during the iterations, one might not obtain the same

k closest neighbors for step i as for step i+ 1.

Let
vi

t = (xqi
t

, . . . , xqi
t
+ws−1) (4)

be a sequence defining a neighbor and

si = (xn−ws+i, . . . , xn+i−1) (5)

be the suffix of the time series, where 1 ≤ t ≤ k. The predicted value is computed as:

xn+i = f
(

si,v
i

1, g
(

xqi
1
+ws,v

i

1, si

)

,vi

2, g
(

xqi
2
+ws,v

i

2, si

)

, . . . ,vi

k, g
(

xqi
k
+ws,v

i

k, si

))

(6)
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where g(x,v, s) performs an adjustment of the predicted output x taking into account the
relative position between the suffix s and the neighbor v, and f is a function that performs
the weighting of the values predicted by each considered neighbor. Various forms for the
function g are given in [10], sections 4.2.3 and 4.2.4.

The necessity of the function g can be explained by the difference between the level of
the suffix and the level of the neighbors. We considered two variants for function g: one
that translates the first term of a considered neighbor onto the first term of the suffix; the
later translates the average of the neighbor series onto the average of the suffix. After such
a translation occurs, the translated value following the neighbor sequence can be used in
estimation of the next value following the suffix. These translations are taken into account
when computing the distance between the neighbor and the suffix.

More clearly, when we perform a translation that brings the first term of a neighbor
(xa, . . . , xa+ws−1), on the first term of the suffix (xn−ws+i, . . . , xn+i−1), we compute:

∆a = xn−ws+i − xa (7)

and the distance between the two sequences is computed as:

d ((xa, . . . , xa+ws−1), (xn−ws+i, . . . , xn+i−1)) =

ws−1
∑

j=0

|xn−ws+i+j − xa+j −∆a| (8)

After selecting the k nearest neighbors of the suffix, the predicted value corresponding to
the neighbor (xqi

t

, . . . , xqi
t
+ws−1), i.e. xqi

t
+ws will be xqi

t
+ws + ∆qi

t

, 1 ≤ i ≤ p, 1 ≤ t ≤ k

and thus

g
(

xqi
t
+ws,v

i

t, si

)

= xqi
t
+ws +∆qi

t

= xqi
t
+ws + xn−ws+i − xqi

t

.

3 Experimental results and conclusions

Here we present some experimental results for 7 case studies, for monovariate time
series. All of these are real data sets and they describe various economic processes, as
found in [12]–[18]. The results were assessed by the accuracy function MAPE:

MAPE =
1

l

l
∑

t=1

|Yt − Ŷt|

|Yt|
· 100, (Yt 6= 0), (9)

where Yt is the actual value, Ŷt is the estimated value, and l is the number of predictions
made. Lower values for MAPE means a better fit of the predicted data.

Similar experiments were performed by the author in papers [6], [7], [8], [10]. The
current results are performed for actual data, up to 2012. The MAPE scores for ARIMA
and k-NN for 7 data sets are given in Table 1.

The MAPE values for k-NN are 4−50% lower than the corresponding values obtained
by ARIMA, which is a classical method used for time series prediction [2]. From these
results, we can conclude that k-NN is a good candidate method for time series prediction.
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Series ARIMA k-NN
MAPE MAPE

Unemployment [12] 8.39 6.07

Retail NSA [13] 1.75 1.68

Retail SA [14] 1.28 0.56

Construction [15] 4.97 4.05

Education [16] 0.72 0.56

Exports [17] 8.58 7.40

Gas [18] 18.45 10.13

Table 1: Experimental results obtained by ARIMA and the k-NN algorithm.
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