
Bulletin of the Transilvania University of Braşov • Vol 5(54) No. 2 - 2012

Series III: Mathematics, Informatics, Physics, 137-146

SURVIVOR GAME

Andrei IVAN1 and Daniela MARINESCU2

Abstract

We present in this paper a one-player game, based on the cellular automata. This
game uses the rules of the Game of Life but this set of rules is extended, depending
on each state. This extension of the set of rules is made for a more realistic model.
The story of the Survivor Game is based on the science fiction novel of H.G.Wells The
Time Machine, 1895, and on the two movies with the same title, produced in 1960
and in 2002.

2000 Mathematics Subject Classification: 37B15, 68Q80, 97R80, 97M70.

Key words: cellular automata, computer game, recreational computing, behavioural
and social science.

1 Introduction

Searching for a self-reproducing machine J. Von Neumann, with the help of Stan Ulam
[5] defined, in the 40s and 50s, a discrete spatio-temporal simulation system named cellular
automaton (CA). The systematic studies appear in the paper of Wolfram, Langton and
others in the 80s, including classification, analysis of computation universality. In 2002
Wolfram [12] introduced Cellular Automata in many fields, mathematics, physics, biology,
social sciences.

Nowadays, the Cellular Automata are used as modelling tools in the field of computer
science [13] for VLSI design, image processing, data compression, encryption, pattern
classification, parallel processing architecture and computer game. One of the most known
games that used 2D cellular automata is the Game of Life, proposed by Conway in 1970[2,
11]. There are many other games which have been modelled through CA. For example: the
firing squad[4], the firing mob[1], the queen bee[8] and also the game of iterated prisoners
dilemma[6, 7].

We propose in the following, a new game, named Survivor-Game, based also on CA,
which used an extension of the set of rules of the Game of Life.

1SC Tehmin, Braşov, Romania, e-mail: subzero.ivan@gmail.com
2Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:

mdaniela@unitbv.ro



138 Andrei Ivan and Daniela Marinescu

2 Cellular automata and Game of Life

The cellular automaton [9, 10, 3] is a discrete model studied in physics, compatibility
theory, mathematics, biology and micro-structure modelling.

By the definition of J. Von Neumann [5], the Cellular Automaton (CA) is a finite two-
dimensional array of cells. The cells are arranged in a square-grid 3. For every cell we can
consider the five-cell neighbourhood (self and four orthogonal neighbours) or the nine-cell
neighbourhood (self and all the cells that have a common border with the initial cell).
The five and nine neighbourhood, are termed as Von Neumann and Moore neighbourhood,
respectively. Each individual cell is in a specific state which changes over time depending
on the states of its five or nine-cell neighbourhood. The change is defined by a transition
rule.

One example of this cellular automaton is an automaton where the cells have only two
states, on and off, and the transition rule from the moment t to the moment t+1 should
be that a cell is on only if exactly two cells from the neighbourhood are on, otherwise the
cell is off.

In paper [8] A. Smith has shown that a nine-cell neighbourhood CA, with two states
per cell and appropriate rules is capable of universal computation. This model of CA with
a specified set of rules has been used by Conway to create the Game of Life. Studying the
Von Neumann model of CA, which has 29 states, Conway founded a more simply model
with 2 states and 4 rules. This game is important from a theoretical point of view because
it has the power of a Turing machine. It is also important because of the surprising kind
in which life can evolve.

Cellular automata are mostly simulated on a finite square-grid. Obviously, in two di-
mensions, the universe is a rectangle. A delicate problem about these grids is how we
handle the cells that reside on the edges of the rectangle because the way we process them
may have impact on the whole grid. This problem can be treated as follows:

1. We can leave the values of edge cells constant.

2. We can define different rules for edge cells, but this is pretty complex as it requires
more rules to handle those exceptions.

3. Perhaps the best approach in case of edge cells is to handle the grid as a toroidal
shape: when we need the cell above an edge cell situated on the first row, we return
the corresponding cell from the last row and so forth.

The game of life is a zero-player game which means that the evolution depends on the
initial configuration without any intervention of the player. So the player must introduce
an initial configuration and after that he only observes the evolution of the game. From

3Other arrangements are also possible. For example, they can be arranged in a hex-grid.



Survivor game 139

the Game of Life point of view the universe is an orthogonal array of cells, with two
states: alive or dead. Every cell interacts with the other eight cells from the nine-cell
neighbourhood. The following rules are applied to each cell at every step:

1. Every cell which has less than two live neighbours becomes dead.

2. Every live cell with two or three live neighbours remains alive.

3. The live cell with more than three live neighbours becomes dead by overcrowding.

4. A dead cell with exact three live neighbours becomes alive.

The initial configuration is named seed of the system. A generation is computed by
obtaining a new state for every cell, simultaneously, but this generation is memorized
in a separate array, which becomes the new generation of the system. The period of
time between the calculations of two generations is named a tick. In the Game of Life
it is possible to have an initial configuration which remains unchanged, a pattern named
still lives, which reappears after some generation, named oscillators, and patterns that
translate themselves across the board, named spaceships.

3 Survivor Game

3.1 Concept

Being fans of computer strategy games, we wanted to create a game where the player
finds himself in the situation of analyzing, calculating and thinking his moves so that
the game’s objectives will be completed. Having touched the cellular automata field,
we were sure that these can be applied in modelling such a game. Unfortunately, the
cellular automata reside on static rules and there is no need for the user’s intervention to
determine a new generation. Because we wanted a nice game, entertaining and exciting
for the player, the characteristics of cellular automata didn’t help very much. We have
studied the graphical elements that can emerge from the Game of Life, but these are pretty
hard to control. For example, a ship from the Game of Life could be easily controlled by
the user with the arrow keys, but the charm of cellular automata would suffer and the
player’s experience wouldn’t be so great. On the other hand, we can see that CA are not
usually applied in games. Still we didn’t give up; we knew that there must be some way
around. After some studies and serious brainstorming, we concluded that we could create
something playable by extending the Game of Life rules.

Finally, we elaborated a concept which, of course, was modified during the study of its
practicality, a model that certainly is not perfect even in the current shape. Besides the
set of rules in the Game of Life, the concept was enriched with many other rules depending
on the states. The number of the states was increased to absorb the player in the game’s
world. Briefly, the player controls two types of entities: pawns and shelters. These must



140 Andrei Ivan and Daniela Marinescu

be controlled in such a way that the player destroys the enemy’s traps and troops on the
map. If the player runs out of pawns, the battle is lost. The player can choose to place one
of the two entities in one of the free cells. When the player is certain of the repercussions
of his move, he lets the game engine apply the rules for each cell (there is a king of system
called turn-based that can be seen in many strategy games). In the concept there is a
variable which represents the current time of the day which is incremented after each turn.
The set of rules takes into account this variable. The moments of the day are: sunrise,
midday, sunset and midnight.

For simplicity, we preferred to take into account the day-time compressing them into
two: day and night. The possible states of a cell are:

1. Pawn (Player) - the entity that helps the player accomplish the game’s objectives.
Basically, a new generation will be calculated by applying the Game of Life rules.

2. Shelter - the helper entity which offers protection to all the pawns nearby. If too
many pawns are nearby, the shelter will vanish.

3. Enemy - comes out at night surrounding the traps. Any unprotected pawn nearby
will die.

4. Trap - the player must destroy these cells. A trap will be destroyed when a certain
number of pawns surrounds it.

5. Walkable - a cell where the player can move.

6. Unpassable - an element used mainly for decorating the map, but which can in-
crease the difficulty of the game.

Now, the rules will be presented. For the ease of reading, 4 variables will be defined: tc,
sc, ec and pc; these mean the number of enemy traps, shelters, enemies or pawns nearby
the current cell. The function survivor will be applied to a state type variable.

gl(s, on, off) =


on if s = on and (c = 2 or c = 3)
on if s = off and c = 3
off otherwise


where c = the number of the cells around which are on

1. Player

survivor(Player) =


Walkable if sc ≤ 0 and ec > 0
Player if sc ≥ 0
gl(Player, P layer,Walkable) otherwise





Survivor game 141

2. Shelter

survivor(Shelter) =

{
Shelter if pc ≥ 2 and pc ≤ 3
Walkable otherwise

}

3. Enemy

survivor(Enemy) =

{
Walkable if sc > 0 or if it is day
Enemy otherwise

}

4. Trap

survivor(Trap) =

{
Walkable if pc ≥ 3 and pc ≤ 4
Trap otherwise

}

5. Walkable

survivor(Walkable) =

{
Enemy if it is night, tc > 0 and sc ≤ 0
gl(Player, P layer,Walkable) otherwise

}

6. Unpassable

survivor(Unpassable) =
{

Unpassable always
}

Algorithm 1 Game of Life algorithm

function GameOfLife(cell, stateOn, stateOff). Calculate state according to Game
of Life

neighboursOn← StateCount(cell, stateOn)
state← cell.state
if state = stateOn AND (neighboursOn = 2 OR neighboursOn = 3) then
return stateOn

end if
if state = stateOff AND neighboursOn = 3 then
return stateOn

end if
return stateOff

end function



142 Andrei Ivan and Daniela Marinescu

Algorithm 2 Complete algorithm

function StateCount(cell, state)
return Number of states nearby cell that are equal to state

end function

function CalculateState(cell) . Calculate the new state of a cell
state← cell.state
trapCount← StateCount(cell, T rap)
shelterCount← StateCount(cell, Shelter)
playerCount← StateCount(cell, P layer)
enemyCount← StateCount(cell, Enemy)
if state = Walkable then

if IsNight AND trapCount > 0 AND shelterCount ≤ 0 then
return Enemy
end if

return GameOfLife(cell, P layer,Walkable)
end if
if state = Player then

if shelterCount ≤ 0 AND enemyCount > 0 then return Walkable
end if
if shelterCount > 0 then return Player
end if

return GameOfLife(cell, P layer,Walkable)
end if
if state = Shelter then

if playerCount ≥ 2 AND playerCount ≤ 3 then return Shelter
else return Walkable
end if

end if

if state = Enemy then
if IsDay then

return Walkable
end if
if shelterCount > 0 then return Walkable
end if

return Enemy
end if
if state = Trap then

if playerCount ≥ 3 AND playerCount ≤ 4 then return Walkable
end if

return trap
end if
return state

end function



Survivor game 143

3.2 Presentation

Due to the multiple possibilities offered by Microsoft Technologies like C# and WPF,
we decided that the application would fit very well a Windows Phone 7 profile. The game
has a nice UI which also tells the player the story behind the game and how to play it. The
game has 5 levels which must be unlocked in order to play them. The first level is always
unlocked, but the others must be unlocked by finishing the previous levels. For choosing
a certain level, we have developed a pie-level chooser control which is manipulated with
the touch screen (Fig. 1).

Figure 1: Pie level chooser control. The selected level is level 1.

In figure 2 we have a screenshot of the game play. The top bar shows some details about
the current game: day-time, number of players, enemies and traps on the map. Finally, a
progress-bar tells us the overall progress of the game. The bottom bar is reserved for the
two possible moves the player can make. The rest of the user interface is occupied by the
main grid. After choosing the type of move to make, the player is shown the free cells he
can move in, then presses the OK button, if he is sure about the move. After that, the
game engine will apply the rules to all the grid cells. At the same time, the engine will
check if the win or lose conditions are satisfied and takes the corresponding action.



144 Andrei Ivan and Daniela Marinescu

Figure 2: Gameplay screenshot. We can see two Players sitting near their shelter and an
enemy outpost which must be destroyed.

3.3 Implementation

The game is developed in Silverlight for WP7 using Visual Studio 2010. The code
respects the MVVM 4 pattern, model that consists in the separation of business logic
from the user interface. Mostly based on MVC 5, its scope is developing modern rich-UI
applications in an event-driven way (for example HTML5, WPF and Silverlight). It was
also designed to make use of data-binding in WPF, letting the developers create bindings
from the markup language to view-model. The separation of concepts lets designers and
programmers focus on their tasks and easily collaborate with each other.

Very often seen in the game’s implementation is the provider pattern. Its role is
to supply objects of a certain kind to the calling layer. Usually, these objects have an
associated key (usually String). The pairs (name : String, object : Object) are stored
in a dictionary. This functionality is similar with the multiton pattern and can be

4Model View View-Model.
5Model View Controller.



Survivor game 145

completed with lazy initialization 6. Because the dictionary can have only unique keys,
their associated key must be therefore unique.

4 Conclusions

Starting from a well known Game of Life, we designed a single-player game, where the
player interacts with the computer for survival in some bad conditions. The player controls
two types of entities: pawns and shelters. These must be controlled in such way that the
player destroys the enemy’s traps and troops on the map. If the player runs out of pawns,
the battle is lost. The player can choose to place one of the two entities in one of the free
cells. When the player is certain of the repercussions of his move, he lets the game engine
apply the rules for each cell.

Due to the fact that the game is based on cellular automaton, it is also useful in students’
education for understanding and use of the rules of CA.

References

[1] Culik, K. and Dube, S., An efficient solution of the firing Mob problem, Theoretical
Computer Science, 91, 57-69, December 1991.

[2] Ganguly, N., Sikdar, B.K, Deutsch, A., Canright, G. and Chaud-
huri, P.P., A survey on cellular automata, Tech. rep. (2003).
http://www.cs.unibo.it/bison/publications/CAsurvey.pdf

[3] Garzon, M., Models of massive parallelism. Analyse of Cellular Automata and Neural
Networks, Springer,1995.

[4] Moore, E., editor, Sequential machines. Selected papers, Addison-Wesley Publishing
Company., Inc., Redwood City, CA., 1964.

[5] Nemann, J. von The theory of self-reproducing automata, A.W. Burks(ed), Univ. of
Illinois Press, Urbana and London, 1966.

[6] Nowak, M.A. and May, R.M., The spatial dilemmas of evolution, International Journal
of Bifurcation and Chaos, 3, 35-787, 1993.

[7] Schweitzer, F., Behera, L. and Muehlenbein, H., Evolution of cooperation in a spatial
prisoner’s dilemma, Advances in complex systems, 5(2&3) (2003), 269-301.

[8] Smith, A., Introduction to and swurvey of polyautomata theory, Automata, Languages,
Development, North Holland, Publishing Co, 1976.

[9] http://en.wikipedia.org/wiki/Cellular_automaton.

6A pair is not added into a dictionary unless explicitly needed.

http://en.wikipedia.org/wiki/Cellular_automaton


146 Andrei Ivan and Daniela Marinescu

[10] http://en.wikipedia.org/wiki/Elementary_cellular_automaton.

[11] http://en.wikipedia.org/wiki/Conway’s_Game_of_Life.

[12] Wolfram, S., New Kind of Science, A. Wolfram Media, Inc, 2002.,
http://www.wolframscience.com/

[13] Wolfram, S., High speed computing: scientific application and algorithm design, ed.
Robert B. Wilhelmson, University of Illinois Press, 1988.

http://en.wikipedia.org/wiki/Elementary_cellular_automaton
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

	Introduction
	Cellular automata and Game of Life
	Survivor Game
	Concept
	Presentation 
	Implementation

	Conclusions

