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MAXIMUM CUT WITH THE SMALLEST NUMBER OF
BACKWARD ARCS
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Abstract

In this paper we focus on determining a maximum cut containing the smallest
number of backward arcs from among all maximum cuts in a given network.

We will solve this problem by reducing it to a standard maximum cut problem in
a transformed network.
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1 The maximum cut problem

The literature on network flow problem is extensive. Over the past 60 years researchers
have made continuous improvements to algorithms for solving several classes of problems.
From the late 1940s through the 1950s, researchers designed many of the fundamental
algorithms for network flow, including methods for maximum flow and minimum cost flow
problems and maximum cut problems also. In the next decades, there are many research
contributions concerning the computational complexity of network flow algorithms by us-
ing enhanced data structures, techniques of scaling the problem data. Although they have
their own applications, the minimum flow problem and the maximum cut were not treated
so often as the maximum flow and the minimum cut problem. There are many problems
that occur in economy that can be reduced to minimum flow problems or maximum cut
problems.

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A of m
arcs. Each arc (x, y) ∈ A has a capacity c(x, y) and a lower bound l(x, y). In the directed
network G = (N,A, l, c, s, t), two special nodes are specified: s is the source node and t is
the sink node.

Let X and Y be two subsets of the node set N . We define the set of arcs (X, Y ) =
{(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }.

For any function g : N ×N → R+ and for any function h : N → R+ we define

g(X, Y ) =
∑

(X,Y )

g(x, y)

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
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and
h(X) =

∑
X

h(x).

If X = {x} or Y = {y} then we will use g(x, Y ) or g(X, y) instead of g(X, Y ).
A flow from the source node s to the sink node t in the directed network G =

(N,A, l, c, s, t) is a function f : A → R+ which meets the follwing conditions:

f(x,N)− f(N,x) =


v, x = s

0, x 6= s, t
−v, x = t

(1)

l(x, y) ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (2)

We refer to v as the value of the flow f . A flow whose value is minimum is called a
minimum flow.

For the minimum flow problem, a preflow is a function f : A → R+ satisfying relations
(2) and the next conditions:

f(x,N)− f(N,x) ≤ 0, ∀x ∈ N\{s, t}. (3)

Let f be a preflow. We define the deficit of a node x ∈ N in the following manner:

e(x) = f(x,N)− f(N,x)

Thus, for the minimum flow problem, for any preflow f , we have e(x) ≤ 0,∀x ∈
N\{s, t}. We say that a node x ∈ N\{s, t} is active if e(x) < 0 and balanced if e(x) = 0.
A preflow f for which e(x) = 0,∀x ∈ N\{s, t} is a flow. Consequently, a flow is a particular
case of preflow.

Let f be a flow from the source node s to the sink node t in the directed network
G = (N,A, l, c, s, t). For the minimum flow problem, the residual capacity of the arc (x, y)
corresponding to the flow f is defined as r(x, y) = f(x, y)− l(x, y) + c(y, x)− f(y, x). By
convention, if an arc (x, y) /∈ A, then we can add (x, y) to A and we will consider that
l(x, y) = 0 and c(x, y) = 0.

The residual network G(f) = (N,A(f)) corresponding to flow f contains all those arcs
with strictly positive residual capacity.

Let X ⊂ N be a nonempty subset of the node set N and let X = N\X.
A cut is the following set of arcs [X, X] = (X, X) ∪ (X,X), where (X, X) is the set of

forward arcs and (X,X) is the set of backward arcs of this cut.
A cut [X, X] where s ∈ X and t ∈ X is named an s− t cut .
For the minimum flow problem, we define the capacity c[X, X] of the s− t cut [X, X]

as the difference between the sum of the lower bounds of the forward arcs and the sum of
the capacities of the backward arcs. That is, c[X, X] = l(X, X)− c(X,X).

We refer to an s− t cut whose capacity is maximum among all s− t cuts as a maximum
cut.

The residual capacity r[X, X] of the s− t cut [X, X] is defined as r[X, X] = r(X, X),
where r(X, X) = f(X, X)− l(X, X) + c(X,X)− f(X,X).
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Let f be a flow from the source node s to the sink node t in the directed network
G = (N,A, c, s, t) and let [X, X] be an s− t cut, then f [X, X] = f(X, X)− f(X,X) is the
net flow over the cut [X, X].

Theorem 1. If f is a flow of value v from the source node s to the sink node t in the
directed network G = (N,A, l, c, s, t) and if [X, X] is an s − t cut, then v = f [X, X] ≥
c[X, X].

Proof. Adding relations (1) for x ∈ X, we obtain
f(X, N)− f(N,X) = v.
But,
f(X, N)− f(N,X) = f(X, X ∪X)− f(X ∪X,X) = f(X, X) + f(X, X)− f(X, X)−

f(X,X) = f(X, X)− f(X,X) = f [X, X].
Thus,
v = f [X, X].
But, f [X, X] = f(X, X)− f(X,X) ≥ l(X, X)− c(X,X) = c[X, X].
Consequently, we proved that
v = f [X, X] ≥ c[X, X].

An important consequence of this theorem is the following:

Theorem 2. (
¯
Min-flow max-cut theorem) If f is a flow of value v from the source node

s to the sink node t in the directed network G = (N,A, l, c, s, t) and if [X, X] is an s − t
cut such that v = c[X, X] then f is a minimum flow and [X, X] is a maximum s− t cut.

The min-flow max-cut theorem shows the relationship between minimum flows and
maximum cuts. For determining a minimum flow several algorithms were developed in
the past two decades. These algorithms can be divided into three classes:

1. decreasing path algorithms

2. preflow algorithms

3. minmax algorithm.

The decreasing path algorithms maintain during their executions the mass balances
constraints (1) at every node of the network other than the source or the sink node. These
algorithms identify decreasing path and decrease flows on these paths until the network
contains no such path, which means that the flow is a minimum flow. By establishing
different rules for determining the decreasing paths, one obtains different decreasing path
algorithms for minimum flow (see [7], [8]).

The preflow algorithms pull flow along individual arcs. These algorithms do not satisfy
the mass balances constraints (1) at intermediate stages. In fact, these algorithms permit
the flow leaving a node to be less than the flow entering the node. Any preflow algorithm
for the minimum flow problem proceeds by pulling flow from the neighbor nodes of the
sink node, creating deficits in these nodes. The basic step in any preflow algorithm is to
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select a node with deficit and to try to eliminate its deficit by pulling flow to its neighbors
which are closer to the source node. Any preflow algorithm ends when all the intermediate
nodes have no deficits, which means that a minimum flow was obtained. By establishing
different rules for selecting the nodes with deficit, one obtains different preflow algorithms
for minimum flow (see [4], [5], [7], [8]).

The minimax algorithm determines a minimum flow from the source node to the sink
node by establishing a maximum flow from the sink node to the source node in the residual
network (see [2], [6]).

If we have established a minimum flow in a network, it is easy to determine a maximum
cut, based on the following theorem.

Theorem 3. Let f be a flow from the source node s to the sink node t in the directed
network G = (N,A, l, c, s, t). Then f is a minimum flow if and only if the residual network
G(f) = (N,A(f)) corresponding to flow f contains no directed path from s to t.

Consequently, if a minimum flow f is determined, we can easily establish a maximum
s − t cut [X, X] in the following manner: X is the set of nodes reachable from s in the
residual network G(f) = (N,A(f)) and X = N\X.

2 An algorithm for determining a maximum cut with the
smallest number of backward arcs

In the previous section we have shown how a maximum cut can be determined. In this
section we will focus on a more complex problem, which is the problem of establishing a
maximum cut with the smallest number of backward arcs. We will transform this problem
into a standard maximum cut problem in a transformed network.

Let G = (N,A, l, c, s, t) be a directed network in which we need to establish a maximum
s− t cut with the smallest number of backward arcs. We construct the directed network
G′ = (N,A, l′, c′, s, t), where l′(x, y) = m · l(x, y), c′(x, y) = m · c(x, y) + 1, ∀(x, y) ∈ A.

Let [X, X] be an s− t cut in G′. Then the capacity of this cut in G′ is

c′[X, X] = m · l(X, X)−m · c(X,X)−
∣∣(X,X)

∣∣ ,

or, equivalently,
c′[X, X] = m · c[X, X]−

∣∣(X,X)
∣∣ ,

where c[X, X] is the capacity of this cut in G.
The algorithm for determining a maximum cut with the smallest number of backward

arcs is the following:

MaxCut smallest backward arc Algorithm;
Begin

determine the transformed network G′ = (N,A, l′, c′, s, t);
determine a maximum s− t cut [X, X] in G′;
[X, X] is a maximum s− t cut with the smallest number of backward arcs in G;

end.
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Theorem 4. (
¯
Correctness theorem) The algorithm determines correctly a maximum s− t

cut with the smallest number of backward arcs in network G = (N,A, l, c, s, t).

Proof. The algorithm determines a maximum s− t cut [X, X] in the transformed network
G′ = (N,A, l′, c′, s, t). We will prove that [X, X] is a maximum s− t cut with the smallest
number of backward arcs in the directed network G = (N,A, l, c, s, t) based on the fact
that any maximum s − t cut in G′ is a maximum s − t cut with the smallest number of
backward arcs in G.

Let [X, X] be a maximum s− t cut in G′. It follows that its capacity in G′, which is

c′[X, X] = m · l(X, X)−m · c(X,X)−
∣∣(X,X)

∣∣ ,

or, equivalently,
c′[X, X] = m · c[X, X]−

∣∣(X,X)
∣∣ ,

has to be maximum.
Ad absurdum, [X, X] is not a maximum s−t cut with the smallest number of backward

arcs in G. This means that there is another s− t cut [Y, Y ] in G which is a maximum s− t
cut with the smallest number of backward arcs in G. Two cases are possible:

1. c[Y, Y ] > c[X, X]. In this case the capacity of the s− t cut [Y, Y ] in G′ is

c′[Y, Y ] = m · c[Y, Y ]−
∣∣(Y , Y )

∣∣ > m · c[X, X]−
∣∣(X,X)

∣∣ = c′[X, X],

which is a contradiction to [X, X] being a maximum s− t cut in G′.

2. c[Y, Y ] = c[X, X] and
∣∣(Y , Y )

∣∣ <
∣∣(X,X)

∣∣. In this case the capacity of the s− t cut
[Y, Y ] in G′ is

c′[Y, Y ] = m · c[Y, Y ]−
∣∣(Y , Y )

∣∣ > m · c[X, X]−
∣∣(X,X)

∣∣ = c′[X, X],

which, again, is a contradiction to [X, X] being a maximum s− t cut in G′.

Consequenlty, if [X, X] is a maximum s− t cut in G′, then it is a maximum s− t cut
with the smallest number of backward arcs in G. Thus, the algorithm terminates with a
maximum s− t cut with the smallest number of backward arcs.

Theorem 5. (
¯
Complexity theorem) The algorithm determines a maximum s− t cut with

the smallest number of backward arcs in network G in M(n, m) time, where M(n, m) is
the time needed to determine a maximum s− t cut in a network with n nodes and m arcs.

Proof. The complexity of the algorithm for determining a maximum s − t cut with the
smallest number of backward arcs in network G is the complexity of determining a maxi-
mum s− t cut in the transformed network G′, which is M(n, m).
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