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A REVIEW OF STOCHASTIC COMPARISON OF EXPONENTIAL
AND GEOMETRIC CONVOLUTIONS

Eugen PĂLTĂNEA1

Abstract

In this paper, we stochastically compare two sums of independent heterogeneous
exponential random variables. By grouping a series of recent results in the literature,
we obtain nice equivalent relations. We also formulate similar results for the convolu-
tions of heterogeneous geometric random variables.
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1 Introduction

The exponential distribution plays a fundamental role in many problems in applied
probability and statistics. For example, Markov models in reliability theory are connected
to the exponential distribution. A problem of great interest, that arises naturally in various
contexts, is the stochastic comparison of sums of independent heterogeneous exponential
random variables. On the other hand, there are important models, especially in reliability,
based of the convolutions of geometric random variables and their comparison. There are
many classical and recent books discussing properties and applications of the convolutions
of exponentials or geometrics; one may refer to Gnedenko et al. (1969), Barlow and
Proschan (1975), Balakrishnan and Nevzorov (2003).

In this paper, we review in an unitary vision a series of recent results regarding the com-
parisons of the exponential convolutions and of the geometric convolutions, respectively.
More precisely, we express (in terms of some weak majorization type orders) necessary and
sufficient conditions for the comparisons of these convolutions in various classical senses:
likelihood ratio order, hazard rate order, reversed hazard order, stochastic order, disper-
sive order, mean residual life order and increasing convex order. A surprising closeness
between the exponential distribution and the geometric distribution is noticed.

Let us first recall the definition of the most usual stochastic orderings. Let X and Y
be two positive, absolutely continuous, random variables with their distribution functions
F and G, survival functions F and G, and densities f and g, respectively. Then:
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epaltanea@unitbv.ro



58 Eugen Păltănea

1. X is said to be larger than Y in the likelihood ratio order (denoted by X ≥lr Y ) if
f(t)/g(t) is increasing in t ≥ 0;

2. X is said to be larger than Y in the hazard rate order (denoted by X ≥hr Y ) if
F (t)/G(t) is increasing in t ≥ 0;

3. X is said to be larger than Y in the reversed hazard rate order (denoted by X ≥rh Y )
if F (t)/G(t) is increasing in t ≥ 0;

4. X is said to be larger than Y in the dispersive order (denoted by X ≥disp Y ) if
F−1(v) − F−1(u) ≥ G−1(v) − G−1(u), for all 0 ≤ u ≤ v ≤ 1, where F−1 and G−1

are the right inverses of F and G, respectively;

5. X is said to be larger than Y in the usual stochastic order (denoted by X ≥st Y ) if
F (t) ≥ G(t) for all t ≥ 0;

6. X is said to be larger than Y in the mean residual life order (denoted by X ≥mrl Y )
if 1

F (t)

∫∞
t F (x) dx ≥ 1

G(t)

∫∞
t G(x) dx, ∀ t ≥ 0.

7. X is said to be larger than Y in the increasing convex order (denoted by X ≥icx Y )
if

∫∞
t F (x) dx ≥

∫∞
t G(x) dx, ∀ t ≥ 0.

Also, the distribution of a positive random variable is said to have an Increasing Failure
Rate (IFR) if its hazard rate f(t)/F (t) is increasing in t ≥ 0.

Let us also recall the discrete analog of above definitions. Let N0 = {0, 1, 2, · · · } be
the set of non-negative integers. For two discrete random variables X and Y , with values
in N0, denote their respective probability mass function f and g and their corresponding
survival functions F (that is F (k) = P (X ≥ k) =

∑∞
i=k f(i), for k ∈ N0) and G. Then:

1. X is said to be larger than Y in the likelihood ratio order (denoted by X ≥lr Y ) if
f(k)/g(k) is increasing in k ∈ N0;

2. X is said to be larger than Y in the hazard rate order (denoted by X ≥hr Y ) if
F (k)/G(k) is increasing in k ∈ N0;

3. X is said to be larger than Y in the reversed hazard rate order (denoted by X ≥rh Y )
if F (k)/G(k) is increasing in k ∈ N0;

4. X is said to be larger than Y in the usual stochastic order (denoted by X ≥st Y ) if
F (k) ≥ G(k) for all k ∈ N0;

5. X is said to be larger than Y in the mean residual life order (denoted by X ≥mrl Y )
if ∑∞

i=k+1 F (i)

F (k)
≥

∑∞
i=k+1 G(i)

G(k)
, ∀ k ∈ N0.
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6. X is said to be larger than Y in the increasing convex order (denoted by X ≥icx Y )
if

∞∑
i=k

F (i) ≥
∞∑

i=k

G(i), ∀ k ∈ N0.

A comprehensive treatment of the topic can be found in Shaked and Shanthikumar (2007).

2 Weak majorization type orders

The importance of the weak majorization order in statistical problems was emphasized
by Nevius et al. (1974). The particular study of Schur-majorization properties of convo-
lutions of exponential and geometric random variables has been initiated by Boland et al.
(1994). A comprehensive treatment of the majorization and weak majorization orders and
their applications can be found, for example, in Marshall and Olkin (1979) and Bhatia
(1997). Remark that there are two versions of the weak majorization. The classical sense
of the notion will be called the weak submajorization. But, a more proper ordering for
comparing the convolutions is its complementary notion, viz., the weak supermajorization.
In this context, Bon and Păltănea (1999) introduced p-larger order and, recently, Zhao
and Balakrishnan (2009a) defined reciprocal majorization order.

The following definition presents these useful kinds of weak majorization order and
related notions.

Definition 1. Given a vector v= (v1, · · · , vn) ∈ Rn, let v(1) ≤ · · · ≤ v(n) denote the
increasing arrangement of its components. Then:

(1) x = (x1, · · · , xn) ∈ Rn is said to majorize y= (y1, · · · , yn) ∈ Rn (written as x
m
�y) if

k∑
i=1

x(i) ≤
k∑

i=1

y(i) for k = 1, · · · , n− 1, and
n∑

i=1

x(i) =
n∑

i=1

y(i);

(2) x = (x1, · · · , xn) ∈ Rn is said to weakly supermajorize y= (y1, · · · , yn) ∈ Rn (written

as x
w↑
�y) if

k∑
i=1

x(i) ≤
k∑

i=1

y(i) for k = 1, · · · , n;

(3) x = (x1, · · · , xn) ∈ Rn is said to weakly submajorize y= (y1, · · · , yn) ∈ Rn (written

as x
w↓
�y) if

k∑
i=1

x(n+1−i) ≥
k∑

i=1

y(n+1−i) for k = 1, · · · , n;
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(4) x = (x1, · · · , xn) ∈ Rn
+ is said to be p-larger than y= (y1, · · · , yn) ∈ Rn

+ (written as

x
p
�y) if

k∏
i=1

x(i) ≤
k∏

i=1

y(i) for k = 1, · · · , n;

(5) x = (x1, · · · , xn) ∈ Rn
+ is said to reciprocal majorize y= (y1, · · · , yn) ∈ Rn

+ (written

as x
rm
�y) if

k∑
i=1

1
x(i)

≥
k∑

i=1

1
y(i)

for k = 1, · · · , n;

(6) f : In → R, where I denotes a real interval, is said to be a Schur-convex function if

f(x) ≥ f(y) for all x, y∈ In such that x
m
�y.

We observe that x
m
�y if and only if x

w↑
�y and x

w↓
�y. Observe that, for two positive

vectors x and y of the same size, we have x
p
�y ⇔ log x

w↑
�log y and x

rm
�y ⇔ x−1

w↓
�y−1.

Now, let us recall some basic properties of Schur-convexity. Schur-convex functions are
symmetric and convex symmetric functions are Schur-convex. In particular, if g : R → R
is a convex function, then f : Rn → R defined by f(x1, · · · , xn) =

∑n
i=1 g(xi), for all

(x1, · · · , xn) ∈ Rn, is Schur-convex; see Hardy et al. (1934). The functions which preserve
the weak majorization are generally symmetric and monotone; see Nevius et al. (1974).

The hierarchy of above defined weak majorization type orders is established by the
next elementary theorem; see Kochar and Xu (2010).

Theorem 1. Suppose two vectors x= (x1, · · · , xn) and y= (y1, · · · , yn) are in Rn
+. Then,

the following implications hold: x
w↑
�y ⇒ x

p
�y ⇒ x

rm
�y.

There is a large number of classical results and recent refinements and extensions on the
subject of stochastic comparison of sums of exponential and geometric random variables.
The actual standard of the knowledge in the area permits us to formulate a series of best
characterizations of classical stochastic orderings among these convolutions. In fact, we
prove the equivalence between a system of functional inequalities (representing a set of
stochastic inequalities) and a correspondent system of real inequalities involving positive
numbers (i.e. the parameters of the associated random variables).

3 Comparison of exponential convolutions

Recall that an exponential random variable X with parameter (hazard rate) a > 0 has
the distribution function FX(t) = 1− e−at, t ≥ 0.

Theorem 2. Let X1, · · · , Xn and Y1, · · · , Yn be two sets of independent heterogeneous
exponential random variables with the vectors of the associated parameters a= (a1, · · · , an)
and b= (b1, · · · , bn). Let a(1) ≤ · · · ≤ a(n) and b(1) ≤ · · · ≤ b(n) denote the increasing
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arrangement of the components of vectors a and b, respectively. For i ∈ {1, · · · , n}, let us
denote X(i) and Y(i) the random variables of the two sequences having the parameters a(i)

and b(i), respectively.

I The following statements are equivalent:

(a) a
w↑
�b;

(b)
∑k

i=1 X(i) ≥lr
∑k

i=1 Y(i), for k = 1, · · · , n;

(c)
∑k

i=1 X(i) ≥rh
∑k

i=1 Y(i), for k = 1, · · · , n.

II The following statements are equivalent:

(a) a
p
�b;

(b)
∑k

i=1 X(i) ≥hr
∑k

i=1 Y(i), for k = 1, · · · , n;

(c)
∑k

i=1 X(i) ≥disp
∑k

i=1 Y(i), for k = 1, · · · , n;

(d)
∑k

i=1 X(i) ≥st
∑k

i=1 Y(i), for k = 1, · · · , n.

III The following statements are equivalent:

(a) a
rm
�b;

(b)
∑k

i=1 X(i) ≥mrl
∑k

i=1 Y(i), for k = 1, · · · , n;

(c)
∑k

i=1 X(i) ≥icx
∑k

i=1 Y(i), for k = 1, · · · , n.

Proof.

Proof of I. Assume a
w↑
�b implies (a(1), · · · , a(k))

w↑
� (b(1), · · · , b(k)), for k = 1, · · · , n. Then,

using Theorem 3.3 in Zhao and Balakrishnan (2009b), we find
∑k

i=1 X(i) ≥lr
∑k

i=1 Y(i),
for k ∈ {1, 2, · · · , n}. Therefore (a) ⇒ (b). Since the likelihood ratio order implies the
reversed hazard rate order, we also obtain

∑k
i=1 X(i) ≥rh

∑k
i=1 Y(i), for k = 1, 2, · · · , n, i.e.

(a) ⇒ (c). Conversely, suppose
∑k

i=1 X(i) ≥lr
∑k

i=1 Y(i), for k ∈ {1, 2, · · · , n}. From The-
orem 3.3 in Zhao and Balakrishnan (2009b) we have a(1) ≤ b(1) and

∑k
i=1 a(i) ≤

∑k
i=1 b(i),

for 2 ≤ k ≤ n. Therefore a
w↑
�b. Similarly, Theorem 3.7 in Mao et al. (2010) assures that,

if
∑k

i=1 X(i) ≥rh
∑k

i=1 Y(i), for k = 1, 2, · · · , n, then
∑k

i=1 a(i) ≤
∑k

i=1 b(i), for 1 ≤ k ≤ n.
Thus, the implications (b) ⇒ (a) and (c) ⇒ (a) are proved.
Proof of II. Following the same reasoning as above, the equivalences∑k

i=1 X(i) ≥hr
∑k

i=1 Y(i), 1 ≤ k ≤ n, ⇔
∑k

i=1 X(i) ≥st
∑k

i=1 Y(i), 1 ≤ k ≤ n, ⇔ a
p
�b

can be obtained from Theorem 1 in Bon and Păltănea (1999). Notice that an expo-
nential convolution has the number 0 as the left-endpoint of its support. Then ap-
plying Theorem 3.B.13 in Shaked and Shanthikumar (2007), we have

∑k
i=1 X(i) ≥disp∑k

i=1 Y(i), 1 ≤ k ≤ n, ⇒
∑k

i=1 X(i) ≥st
∑k

i=1 Y(i), 1 ≤ k ≤ n. Finally, the implication

a
p
�b ⇒

∑k
i=1 X(i) ≥disp

∑k
i=1 Y(i), 1 ≤ k ≤ n follows from a more general result (in-

volving gamma distribution) due to Khaledi and Kochar (2004).
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Proof of III. Suppose
∑k

i=1 X(i) ≥mrl
∑k

i=1 Y(i) for k = 1, · · · , n. Theorem 4.1 in Zhao
and Balakrishnan (2009a) ensures

∑k
i=1(a(i))−1 ≥

∑k
i=1(b(i))−1, k = 1, · · · , n. It follows

that a
rm
�b. Since a

rm
�b implies (a(1), · · · , a(k))

rm
� (b(1), · · · , b(k)), for k = 1, · · · , n, we note

that the converse implication is given by Theorem 4.1, item (1), in Zhao and Balakrishnan
(2009a). Hence, (a) ⇔ (b). Similarly, the equivalence (a) ⇔ (c) follows from Theorem 3.3
in Mao et al. (2010) (see also Păltănea (2009)).

Mention that Kochar and Xu (2010) obtained several similar properties of the com-
parison of exponential convolutions in the following stochastic orders: Lorenz order, right
spread order and NBUE order. But, for these orderings, we have not yet established
equivalent characterizations, as in the above theorem.

4 Comparison of geometric convolutions

Now, we formulate some correspondent results for the geometric distribution. A geo-
metric random variable X with parameter p ∈ (0, 1) has the probability mass function

fX(k) = P (X = k) = p(1− p)k, k ∈ N0,

the survival function

FX(k) = P (X ≥ k) = (1− p)k, k ∈ N0,

and the constant mean residual life

mX(k) = E[X − k|X ≥ k] =

∑∞
j=k+1 FX(j)

FX(k)
=

1− p

p
, k ∈ N0.

Remark the memoryless property of the geometric distribution. Also recall that a geo-
metric random variable X with parameter p has a constant hazard rate function hX = p
(so X is IFR). Then, we can say that the geometric distribution is the discrete analog of
the exponential distribution. This fact can be taken as an explanation for the similarity
between the ordering properties of the convolutions of the two discussed distributions.

The following theorem is the ”geometric” correspondent of Theorem 2.

Theorem 3. Let X1, · · · , Xn and Y1, · · · , Yn be two sets of independent heterogeneous
geometric random variables with the vectors of the associated parameters p= (p1, · · · , pn)
and q= (q1, · · · , qn), respectively. Let p(1) ≤ · · · ≤ p(n) and q(1) ≤ · · · ≤ q(n) denote
the increasing arrangement of the components of the vectors p and q, respectively. Let us
consider X(i) having the parameter p(i) and Y(i) having the parameter q(i), for i = 1, · · · , n.

I The following statements are equivalent:

(a) p
w↑
�q;

(b)
∑k

i=1 X(i) ≥lr
∑k

i=1 Y(i), for k = 1, · · · , n;
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(c)
∑k

i=1 X(i) ≥rh
∑k

i=1 Y(i), for k = 1, · · · , n.

II The following statements are equivalent:

(a) p
p
�q;

(b)
∑k

i=1 X(i) ≥hr
∑k

i=1 Y(i), for k = 1, · · · , n;

(c)
∑k

i=1 X(i) ≥st
∑k

i=1 Y(i), for k = 1, · · · , n.

III The following statements are equivalent:

(a) p
rm
�q;

(b)
∑k

i=1 X(i) ≥mrl
∑k

i=1 Y(i), for k = 1, · · · , n;

(c)
∑k

i=1 X(i) ≥icx
∑k

i=1 Y(i), for k = 1, · · · , n.

Proof.
We use the same idea as in the proof of Theorem 4. Thus, the equivalent statements of
item I are direct consequences of Theorem 4.3 in Zhao and Balakrishnan (2009b) and of
Theorem 4.4 in Mao et al. (2010). Then, the equivalences of item II arise from Theorem 4.1
in Zhao and Hu (2010) and from the well-known relation ≥hr ⇒≥st. The last equivalences
(item III) result from Theorem 4.1 and Theorem 4.2 in Mao et al. (2010) (see also Păltănea
(2010)).
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