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Abstract

In Finsler geometry a Finsler coordinate is a coordinate in the tangent space man-
ifold of a given base manifold. As such it has been given various definitions in the rel-
ativity and field theory literature and often even remains undefined physically. Phys-
ically meaningful coordinates of a point in the tangent bundle of spacetime are the
spacetime and four-velocity coordinates of the measuring device. It is here emphasized
that the four-velocity of the measuring device need not be the same as the four-velocity
of the measured object, either classically or quantum mechanically. The four-velocity
of a measured particle excitation of a Finslerian quantum field in the tangent space
manifold of spacetime is not a suitable physical Finsler coordinate. The role of the
Finsler coordinate is elaborated in a detailed example involving a Finslerian quantum
field and associated microcausality.
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1 Introduction

For the last thirty years I have been exploring possible physical implications of a pos-
sible physical upper bound on the curvature of worldlines in spacetime. Equivalently, it
can be argued that there is a physical upper bound on the proper acceleration a0 of any
physical object relative to the vacuum and that it is of the order of one Planck length
per squared Planck time [1], [2]. If, as one normally expects, the universal gravitational
constant has the same value at submicroscopic distances as at macroscopic distances, then
the maximal proper acceleration a0 is of the order of 1052 m/s2. (If this is not the case, as
in currently popular theories of a running gravitational coupling constant or extra dimen-
sions, then the maximal proper acceleration a0 would be much less because what enters
in its evaluation is the gravitational constant near the Planck scale [2].) In a long series
of papers, it was argued that the universal upper limit on attainable proper acceleration
relative to the vacuum imposes restrictions on the differential geometric structure of the
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tangent bundle of spacetime.[2]-[7] One is led naturally to a Finslerian structure for space-
time in which the spacetime metric depends not only on the spacetime coordinates, but
also on the four-velocity coordinates of the tangent space manifold. Various features of
the differential geometry of the tangent bundle of spacetime were obtained, including the
bundle metric, connection, curvature, and geodesics [2]-[7]. In a personal communication,
Anadi Das pointed out to me in 1991 that the differential geometric structure which I had
obtained had a form very similar to that appearing in the mathematical work of Kentaro
Yano and Evan Tom Davies on the tangent bundles of Finsler and Riemannian manifolds
[6], [27], [28]. Exploiting this work of Yano and Davies, I undertook a series of investi-
gations concerning possible differential geometric structures of a Finsler spacetime The
Levi-Civita bundle connection coefficients and the Riemann curvature scalar were deter-
mined [8]. An almost complex structure was constructed on the bundle, and conditions
were given that the tangent bundle be Kaehler and/or complex [9], [10]. The inclusion of
bundle torsion was addressed [11], [12]. Possible physical implications were investigated
for the differential geometric structure of spacetime and gravitation [4]-[6], [13]-[15]. Much
of this work was summarized in 1995 at the Joint Summer Research Conference on Finsler
Geometry organized by David Bao, Shing-Shen Chern, and Zhongmin Shen [13]. On that
occasion, Chern requested that all of the speakers include in their papers a list of open
problems. One of the problems posed by me (Problem 5) was to construct classical and
quantum field theories defined covariantly on a Finslerian spacetime tangent bundle, and
this problem motivated most of my subsequent work on Finslerian fields [14]-[26].

2 Physical Finsler coordinates

Throughout all of my earlier work, the question arose as to the physical interpretation
of the tangent space Finlser coordinate, namely the four-velocity. It is the four velocity
of what? The four-velocity appears implicitly in all possible Finslerian fields [5]. For
example, the metric of the tangent bundle of spacetime adapted to the affine connection
is

GMN (x, v) =
[
gµν(x, v) 0

0 gµν(x, v)

]
, (1)

in which the spacetime and four-velocity coordinates are designated by:{
xM
}
≡ {xµ, ρ0v

µ} , {M = 0, 2, ..., 7; µ = 0, 1, 2, 3}, (2)

where vµ = dxµ/ds, ρ0 = c2/a0 is a constant of the order of the Planck length, and c is the
canonical speed of light in vacuum [5]. Evidently the metric field gµν(x, v) depends on the
spacetime point xµ at which the field is measured or else acts on some object, and xµ would
also be the spacetime coordinate of the measuring device. It follows that vµ would be the
four-velocity of the measuring device. Analogously, for example, the bundle connection
also depends, through the metric on both xµ and vµ, and the geodesic equation yields
the spacetime and four-velocity coordinates of an object such as the measuring device
acted on by the gravitational field [5]. Also, for example, the Laplace Beltrami operator
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for the bundle depends on the spacetime coordinate of the measuring device and its four-
velocity [14]. The four-velocity of the measuring device will be referred to in the following
as the physical Finlser coordinate, it being the tangent space coordinate in the Finslerian
tangent bundle of spacetime. As an explicit example of the possible role of physical Finsler
coordinates, in the remainder of this paper I review its role in an analysis of microcausality
in quantum field theory.

3 Example

In the following example, for simplicity, the role of the four-velocity Finsler coordinate
is considered in a scalar quantum field theory in the spacetime tangent bundle restricted
by the limiting proper acceleration [14]-[26]. For simplicity, a Minkowski spacetime in the
base manifold is assumed. Of course, Minkowski spacetime is a very special case of a more
general Finslerian spacetime, but understanding this simple case may facilitate future
analyses involving a more general Finslerian spacetime The quantum field is Finslerian in
the sense that it depends not only on the spacetime coordinates of the device measuring
particle excitations of the quantum field, but also on the four-velocity of the measuring
device.

Canonical quantum field theory in Minkowski spacetime suffers from the divergences
occurring at very small distances and/or very high energies. This long standing issue is
also manifested in the singular delta function appearing in the microcausality relation
involving the commutator of the quantum field at two points separated in spacetime. It
has been argued in earlier work that an implication of a physical upper bound on allowed
proper acceleration relative to the vacuum is that the canonical microcausality relation is
modified to include dependence of the field on the four-velocity of the device measuring
the field, so that the delta function is replaced by a function concentrated near the Planck
scale of spatial separation between the two devices measuring the field, or within a much
larger separation when the relative speed of the two measuring devices is near the canonical
speed of light [18], [19]. A consequence is that the causal boundary, canonically defined
by the light cone, is warped at these scales so that the timelike region extends into the
canonical spacelike region. The speed of the associated causal connectivity can exceed the
canonical measured speed of light. The condition for this warp-speed causal connectivity to
occur optimally with instantaneous transmission is when the spatial component of relative
four-velocity of the two measuring devices is orthogonal to their spatial separation, and
for spatial separations near the Planck scale. When the relative speed of the measuring
devices is very large, the range for warp-speed causal connectivity may extend well beyond
the Planck scale; however if the wavelength in the frame of the moving measuring device
is much less than the range, the field is extremely reduced, and any warp-speed causal
connectivity is exponentially suppressed.

The limiting proper acceleration a0 determines the structure of the metric on the tan-
gent bundle of spacetime [5]. Among the many differential geometric invariants determined
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by the bundle metric is the Laplace-Beltrami operator [14], [18]:

L = G−1/2 ∂

∂xM

(
G1/2GMN ∂

∂xN

)
. (3)

This is the invariant generalization of the wave operator, or d’Alembertian, of standard
field theory. A simple invariant field equation for a scalar field φ(x, v) is then given by
[14]

Lφ(x, v) = 0. (4)

Again, as for any Finslerian field, xµ denotes the location in spacetime where the field
is measured, or equivalently, the location of a particle excitation of the quantum field
or the location of the device measuring this excitation, and vµ, the Finsler coordinates,
denote the location in four-velocity space of the measuring device. It is important to
stress that vµ is not the four velocity of the particle excitation, and also that xµ and vµ

are classical commuting variables since they are the coordinates of a measuring device,
which is classical. For a flat Minkowski spacetime, the wave equation, Eq. (4), reduces to
[16]: (

∂2

∂xµ∂xµ
+ ρ−2

0

∂2

∂vµ∂vµ

)
φ(x, v) = 0, (5)

for the Lorentz-invariant field φ(x, v), where ρ0 is of the order of the Planck length. For
this case, it was argued in earlier work that a scalar quantum field satisfying Eq.(4) is
given by [14], [25]

φ(x, v) = 2
∫ d3p

(2π~)3/2(2p0N)1/2

[
e−ipx/~e−ρ0pv/~θ(ρ0pv/~)a(p)

+ eipx/~eρ0pv/~θ(−ρ0pv/~)a†(p)
]
,

(6)

where ~ is Planck’s constant divided by 2π, p denotes the four-momentum pµ = {p0, p1, p2, p3}
of a particle excitation of the field, a†(p) and a(p) are particle creation and annihilation
operators satisfying the commutation relations,

[a(p), a†(p′)] = δ3(p− p′), [a(p), a(p′)] = 0, [a†(p), a†(p′)] = 0, (7)

δ3(p) is the three-dimensional Dirac delta function, and θ (z) is the Heaviside function,

θ (z) =


1, z > 0
1
2 , z = 0
0, z < 0

. (8)

Also in Eq.(6), N is a normalization factor. For vanishing ρ0, or equivalently, infinite a0,
Eq. (6) reduces to a standard relativistic free scalar quantum field.

Next, it can be shown that the Pauli-Jordan function, expressing microcausality through
the field commutator at two points (x, v) and (x′, v′) in the tangent bundle, generalized
for the upper bound on proper acceleration, is given by [18], [19], [26]
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[
φ(x, v), φ(x′, v′)

]
=

mc}
π2N

[
θ

(
ρ0mcv

0

}

)
θ

(
−ρ0mcv

0′

}

)
− θ

(
ρ0mcv

0′

}

)
θ

(
−ρ0mcv

0′

}

)]

×
K1

(
(mc/})

[
− (x− x′ − iρ0(v − v′))2

]1/2
)

[
− (x− x′ − iρ0(v − v′))2

]1/2
, (9)

where m is the mass of a particle excitation of the quantum field, θ(z) is the Heaviside
function defined by Eq. (8), and K1(z) is the modified Bessel function of the third kind
of order one. Equation (9) is divergent for[

x− x′ − iρ0(v − v′)
]2 = 0. (10)

Equation (10) determines the causal boundary separating the future from the past and
the spacelike region and describes a warping of the standard light cone near the origin in
a region of the order of the Planck length, and at much larger distances for large relative
four-velocities. The warped region is timelike, whereas without the warping, that region
would be spacelike (outside the standard light cone). For vanishing ρ0, and also for equal
four-velocities, v = v′, Eq. (10) reduces to the standard light cone. Also, it can be argued
that other bosonic and fermionic fields may also be expected to satisfy the same wave
equation, and the same causal boundary, Eq. (10), will apply. Particle excitations of
the field can be expected to propagate along the causal boundary. It is to be noted that
the relative Finsler coordinates (v − v′) warp the causal boundary corresponding to the
standard light cone.

Taking the real and imaginary parts of Eq. (10), one obtains the following two equa-
tions defining the causal boundary:

(x− x′)2 = (ρ0(v − v′))2 (11)

and

ρ0(v − v′) · (x− x′) = 0. (12)

Rewriting Eqs. (11) and (12) in explicit component form, they become:

(∆x0)2 =
∣∣∣−→∆x∣∣∣2 + ρ2

0(∆v0)2 − ρ2
0(
−→
∆v)2, (13)

and
ρ0∆v0∆x0 = ρ0

−→
∆v ·

−→
∆x, (14)

where ∆x0 ≡ x0′−x0,
−→
∆x ≡ −→x ′−−→x , ∆v0 ≡ v0′− v, and

−→
∆v = −→v ′−−→v . Next multiplying

Eq. (13) by (∆x0)2 and substituting Eq. (14), one obtains

(∆x0)4 −
(∣∣∣−→∆x∣∣∣2 − ρ2

0(
−→
∆v)2

)
(∆x0)2 − ρ0

∣∣∣−→∆v · −→∆x∣∣∣2 = 0. (15)
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Equation (15) has the solution:

∆x0 = ±
(∣∣∣−→∆x∣∣∣2 − ρ2

0(
−→
∆v)2

)1/2

×

1
2
± 1

2

1 +

 2ρ0
−→
∆v ·

−→
∆x∣∣∣−→∆x∣∣∣2 − ρ2

0(
−→
∆v)2


2

1/2


1/2

. (16)

Next dividing both sides of Eq. (16) by ρ0

∣∣∣−→∆v∣∣∣, and choosing the positive sign inside the

bracket in order that ∆x0 be real, one obtains

T = ±
{

1
2
(
X2 − 1

)
+

1
2
[
X4 + 2 (cos 2θ)X2 + 1

]1/2}1/2

, (17)

in which the normalized temporal separation T is defined by

T =
∆x0

ρ0

∣∣∣−→∆v∣∣∣ , (18)

and the normalized spatial separation X is

X =

∣∣∣−→∆x∣∣∣
ρ0

∣∣∣−→∆v∣∣∣ . (19)

Also in Eq. (17), the angle θ between the spatial separation
−→
∆x and the relative spatial

component
−→
∆v of four-velocity is

θ = cos−1

∣∣∣−→∆v · −→∆x∣∣∣∣∣∣−→∆v∣∣∣ ∣∣∣−→∆x∣∣∣ . (20)

Also, Eq. (14) becomes

V =
X

T
cos θ, (21)

where the normalized relative time component four-velocity is defined by

V =
ρ0∆v0

ρ0

∣∣∣−→∆v∣∣∣ . (22)

For T , X, and V , the scale is here set by the relative spatial component of four-velocity∣∣∣−→∆v∣∣∣ together with the factor ρ0 of the order of the Planck length. Substituting Eq. (17)
in Eq. (21), one obtains

V = ±X cos θ
{

1
2
(
X2 − 1

)
+

1
2
[
X4 + 2 (cos 2θ)X2 + 1

]1/2}−1/2

. (23)
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According to Eq. (17), near θ = π/2, for X2 < 1, or equivalently within the sphere∣∣∣−→∆x∣∣∣2 ≤ ρ2
0(
−→
∆v)2, the temporal interval ∆x0 is near vanishing, and near instantaneous

causal connectivity occurs between spacelike-separated points. This is consistent with the
possible existence of extended excitations such as strings. The standard light cone, X = T ,
is effectively warped in this region. The biggest effect is infinitesimally near θ = π/2 and
for
∣∣∣−→∆x∣∣∣ ≤ ρ0

−→
∆v, for which

−→
∆x/∆t is infinite. For vanishing θ, the standard light cone is

not warped. Thus the warped light cone and associated causal boundary are anisotropic.
Also, for X � 1, or equivalently for

∣∣∣−→∆x∣∣∣ � ρ0
−→
∆v, the warped light cone effectively

becomes the standard light cone and becomes asymptotically isotropic and not warped.
When the measuring device detects a field excitation, the speed of the device is at the

causal boundary, Eqs. (11) and (12), determined by the φ-field excitations. The measuring
device at the origin is here taken to be at rest, and d−→x ′/dt is defined to be the velocity
of the moving device relative to the one at rest. The velocities of the two devices can be
interchanged because only the magnitude of the relative velocity enters. We proceed to
derive the velocity of the moving measuring device. First, according to Eq. (22), one has

∆v0 =
∣∣∣−→∆v∣∣∣V. (24)

It is important to note that, in accord with special relativity, the moving measuring device

has time component of four-velocity v0′ = γ′ ≡
(

1−
∣∣∣d−→x ′

cdt

∣∣∣2)−1/2

and spatial component

of four-velocity −→v ′ = γ′ d
−→x ′

cdt . The device at rest has time component v0 = 1 and spatial

component −→v = 0. Therefore
∣∣∣−→∆v∣∣∣ = γ′

∣∣∣d−→x ′

cdt

∣∣∣, and Eq. (24) becomes

γ′ − 1 = γ′
∣∣∣∣d−→x ′cdt

∣∣∣∣V, (25)

or solving for γ′, then,

γ′ =
1

1−
∣∣∣d−→x ′

cdt

∣∣∣V , (26)

or equivalently, (
1−

∣∣∣∣d−→x ′cdt

∣∣∣∣2
)−1/2

=
(

1−
∣∣∣∣d−→x ′cdt

∣∣∣∣V )−1

. (27)

Solving Eq. (27), one obtains for the speed
∣∣∣d−→x ′

cdt

∣∣∣ of the measuring device in units of c :∣∣∣∣d−→x ′cdt

∣∣∣∣ =
2V

1 + V 2
. (28)

We proceed to obtain an expression for the actual range R =
∣∣∣−→∆x∣∣∣ /ρ0 between the two

measuring devices, expressed in units of ρ0 (of the order of the Planck length). According
to Eq (19), one has ∣∣∣−→∆x∣∣∣ = ρ0

∣∣∣−→∆v∣∣∣X, (29)
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and it then follows that the range is given by

R =

∣∣∣−→∆x∣∣∣
ρ0

= γ

∣∣∣∣d−→x ′cdt

∣∣∣∣X =

∣∣∣d−→x ′

cdt

∣∣∣(
1−

∣∣∣d−→x ′

cdt

∣∣∣2)1/2
X. (30)

It is to be noted that the range R approaches infinity as the speed of the moving detector∣∣∣d−→x ′

dt

∣∣∣ approaches c, the canonical speed of light. Of course, extremely high energies are
required to accelerate a detector to such high speed. For θ = .4999π and very small X,
one calculates, for example, R ∼ 104.

The speed in units of c, namely,
∣∣∣−→dx′/cdt∣∣∣, of the moving measuring device is determined

by Eqs. (28) and (23). This gives the speed at which the moving measuring device must
move for it to be at the causal boundary and detect a particle excitation. It can be shown
that near standard light speed for the device is required in the region, θ = π/2, 0 < X < 1,
in which warp-speed connectivity occurs.

The speed of the causal connectivity between the two measurements is here defined by
W =

∣∣∣−→∆x∣∣∣ /∆x0 and is called the warp speed. It then follows from Eq. (17) that

W =

∣∣∣−→∆x∣∣∣
∆x0

=
X

T
=

X{
1
2 (X2 − 1) + 1

2 [X4 + 2 (cos 2θ)X2 + 1]1/2
}1/2

. (31)

The warp speed W is the speed of causal connectivity expressed in units of the standard
speed of light. For θ infinitesimally near π/2, and X ≤ 1, the warp speed approaches
infinity. For θ = .4999π and very small X, one calculates, for example, W = 2000. Thus
warp-speed causal connectivity occurs near the Planck scale of spatial separation between
the devices measuring the field, or at much larger separations when the relative speed
of the two measuring devices is near the standard speed of light. However, it is argued
below that the field is exponentially attenuated for wave lengths of the field excitation
less than the spatial separation of the two points where the field is measured. For larger
wave lengths, such connectivity is no surprise, since the location of the particle excitation
is only definable up to a wavelength.

For particle excitations of negligible rest mass, according to Eq. (6) and [17], the field
strength φ as a function wavelength λ of the excited particle is proportional to

φ ∼ e−ρ0|pv|/~ = exp
{
−ρ0

λ
γ′(1−

∣∣∣∣d−→x ′cdt

∣∣∣∣ cos θ′)
}
, (32)

in which θ′ is the angle between the wave vector of the excited field and the velocity of
the device measuring the field. (It is significant to note in passing that the field has an
automatic spectral cutoff beyond the Planck mass [20], [21].) Proceeding to evaluate Eq.
(32), according to Eq. (19), one first has∣∣∣−→∆x∣∣∣ = ρ0

∣∣∣−→∆v∣∣∣X, (33)
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or equivalently, ∣∣∣−→∆x∣∣∣
ρ0 X

= γ′
∣∣∣∣d−→x ′cdt

∣∣∣∣ , (34)

and therefore solving for γ′, one obtains

γ′ =

1 +


∣∣∣−→∆x∣∣∣
ρ0 X

2


1/2

. (35)

Thus for θ′ = π/2, Eq. (32) becomes

φ ∼ exp
(
−ρ0

λ
γ
)

= exp

−ρ0

λ

1 +


∣∣∣−→∆x∣∣∣
ρ0 X

2


1/2
 . (36)

For
∣∣∣−→∆x∣∣∣� ρ0 and X < 1, Eq. (36) reduces to

φ ∼ exp

−

∣∣∣−→∆x∣∣∣
λ

 1
X

 . (37)

One notes that for particle wavelength λ�
∣∣∣−→∆x∣∣∣, the field strength is greatly attenuated.

As an example of the field attenuation, for X = 0.001 and θ = 0.4999π, one obtains∣∣∣−→∆x∣∣∣
ρ0

= 7.1 × 107 ≈ γ. Also, the corresponding speed of the measuring device is near the

canonical speed of light,
∣∣∣d−→x ′

dt

∣∣∣ ∼ c, and the field is

φ ∼ exp

−

∣∣∣−→∆x∣∣∣
λ

 1
X

 = exp
[
−7.1× 107ρ0

λ

]
. (38)

The corresponding warp speed W = 3, 183.

4 Conclusion

It has been argued that the appropriate Finsler coordinates for Finslerian fields such as
the spacetime metric and any field defined over the spacetime tangent bundle are given by
the four-velocity tangent space coordinates in the tangent space manifold of the tangent
bundle of spacetime. The four-velocity here is that of a device measuring the field or
any object acted on by the field. An example has been given of the role of physical
Finsler coordinates in the analysis of microcausality in quantum field theory. The Finlser
coordinate is the four-velocity of the measuring device measuring particle excitations of the
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quantum field. An implication of a physical upper bound on allowed proper acceleration
relative to the vacuum is that near the Planck scale of spatial separation between the two
devices measuring the field, or at much larger separations when the relative speed of the
two measuring devices is near the canonical speed of light, the standard causal boundary,
canonically defined by the light cone, is warped, so that the timelike region extends into
the canonical spacelike region. The speed of the associated causal connectivity can exceed
the canonical measured speed of light by many orders of magnitude. The condition for
this warp-speed causal connectivity to occur optimally with instantaneous transmission is
when the spatial component of the relative four-velocity of the two measuring devices is
orthogonal to their spatial separation, and for spatial separations near the Planck scale.
The range for warp-speed causal connectivity may extend well beyond the Planck scale
when the relative speed of the measuring devices is very large, however for practical cases
in which the wavelength is much less than the range, the field is extremely attenuated.
Analogous behavior may also be expected not only for a scalar field but also for other
bosonic and fermionic fields. It is also significant to note that the modified quantum
field is Lorentz invariant, and causal connectivity backward in time remains impossible.
A proper understanding of the appropriate physical Finsler coordinates is an essential
ingredient in all of this analysis.
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