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Abstract

Fields around their source determine a curved geometry. Velocity dependent phe-
nomena in these fields involve a curvature tensor, whose elements depend on the value
and the direction of the velocity of the source of the interaction gauge field, as observed
from the reference frame of the matter field. This double (space-time and velocity)
dependency of the curvature requires the field to follow a Finsler geometry.
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1 Conservation laws in the presence of a velocity dependent
gauge field

In [1] it is shown that in the presence of a velocity dependent gauge field Dµ̇ =
Dµ̇(ẋµ) with a Lagrangian density L(ϕk, Dµ̇α), where ϕk, (k = 1, . . . , n), are the matter
fields - which also include the velocity field ẋµ = ẋµ(xν) -, and Dµ̇α, (α = 1, . . . , N),
are the (kinetic) gauge fields, assumed also that L(ϕk, Dµ̇α) is invariant under the local
transformations of a compact, simple Lie group G generated by Tα, (α = 1, . . . , N),
where [Tα, Tβ] = iCγ

αβTγ , and Cγ
αβ are the so-called structure constants, corresponding to

the actually considered individual physical interaction’s symmetry group, two conserved
Noether currents appear:

J (1)ν
α = ∂µF (1)µν

α ∂νJ
(1)ν
α = 0 (1.1)

J (2)ν
α = ∂µF (2)µν

α ∂νJ
(2)ν
α = 0 (1.2)

These equations form a complete system with the additional condition

∂L

∂(∂µDν̇α)
∂ν ẋ

ρ +
∂L

∂(∂νDµ̇α)
∂µẋρ = 0
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1.1 Mathematical background

In [2] we gave a mathematical proof for the conservation of currents J
(1)µ
α and J

(2)ν
α and

we also demonstrated that - at least in this specific case - the replacement of an f(ẋµ, xν)
dependence with an f(ẋµ(xν)) dependence led to the same result. This can be seen easily,
for currents J

(1)µ
α coincide with those what we received in a simply space-time dependent

field. However, the introduction of a velocity dependent gauge field provided an additional
J

(2)ν
α current family that extends and coexists with the previous ones simultaneously. The

extension of the arguments of the fields is in full agreement with the original general for-
mulation of Noether’s second theorem [3-5]. The simultaneous existence holds although
the respective components of the two current families are not independent.

The application of Finsler geometry can be investigated by analysing currents J
(2)ν
α

where the velocity dependence presents itself. J
(2)ν
α which is a current interpreted in the

velocity dependent gauge field, can be written in the form

J (2)ν
α (x) = iג

[
∂L

∂(∂µϕk)
(Tα)klϕl(ẋ)∂µẋν − Cγ

αβDω̇β(ẋ)∂µẋω × F (2)µν
γ (x)

]
(1.3)

where ג [gimel, the third letter of the Hebrew alphabet] denotes a general coupling con-
stant, which can be replaced by a concrete coupling constant for each individual physical
interaction, for example by g for gravity.

Writing F
(2)µν
α

2 in the left side of (1.3) considering (1.2) and writing the covariant
derivative (denoted by careted ∂̂µ) of F

(2)µν
α in the form

∂̂µF (2)µν
α (x) = ∂µF (2)µν

α (x) + iגCγ
αβDω̇β∂µẋω × F (2)µν

γ (x)

one gets

∂̂µF (2)µν
α (x) = iג

∂L

∂(∂µϕk)
(Tα)klϕl(ẋ)∂µẋν (1.4)

This form has the advantage that the right side of the equation depends solely on the
matter fields, and all dependencies on the gauge fields are separated in the left side. The
velocity dependent (that means, direction dependent) curvature tensors appear also in the
left side of the equation.

2The F (2)µν fields take the general form

F (2)µν
α (x) =

∂Dρ̇α∂µẋρ

∂xν
− ∂Dσ̇α∂ν ẋσ

∂xµ
− iגCγ

αβDρ̇β∂µẋρDσ̇γ∂ν ẋσ.
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1.2 Physical considerations

The physical meaning of the couple of conserved currents is the following.
(1.1) can be written in the form:

∂µF (1)µν
α (ẋ) = iג

∂L

∂(∂νϕk)
(Tα)klϕl(ẋ). (1.5)

Relations (1.5) and (1.4) provide the equations of motion for the potential part3 of
the system’s Lagrangian density. As mentioned in [2], it is generally the case that when
(1.5) or (1.4) are satisfied, the matter-field current associated with the Lagrangian acts
as the source for the gauge fields. This is a consequence of the fact that the matter-field
dependent and the gauge field dependent currents are at separate sides in each of the
latter two equations4.

The covariant dependence on the velocity-space gauge field is obvious from (1.4), and
it was shown in a similar way for (1.5) in [2]. The derived conserved currents make a cor-
respondence between the matter fields and the kinetic (velocity-dependent) gauge fields.
They open the way to conclude invariance between the sources of the scalar fields on the
one side, and the gauge vector fields on the other.

It is easy to see that F
(1)µν
α and F

(2)µν
α transform in the same way, as isovectors, under

a local transformation V (ẋ) ∈ G [1]:

F (1)′µν
α (ẋ) = V −1F (1)µν

α (ẋ)V and F (2)′µν
α (x) = V −1F (2)µν

α (x)V.

Notice, that the forms of J
(1)ν
α (ẋ) conserved currents in the presence of velocity depend-

ing fields coincide with the form of those currents that we had obtained for space-time
depending fields. With respect to this identical form, as well as to the variety of the
symmetry groups that they may obey, one can replace ϕ(ẋ) → ϕ(x), D(ẋ) → B(x) and
J

(1)
α (ẋ) → j

(1)
α (x), where B(x) are familiar physical gauge fields with symmetries, e.g.,

U(1), SU(2), [and SU(2) × U(1)], SU(3) or SO(3, 1), with the substitution of ג by the
corresponding coupling constants. F

(1)µν
α (ẋ) take the same forms and transform in a veloc-

ity dependent D gauge field like the components of a jν(x) current and isovectors fµν(x)
of a general matter field ϕ(x) and gauge field B, defined by fµν = ∂νBµ−∂µBν−גBµ×Bν

in the four dimensional spacetime. (This yields the information, that in a boundary sit-
uation, i.e., in the absence of relativistic accelerations, our derivation produces the same
result as it was known without the assumption of a velocity dependent gauge field. We got
back to the results that were known in the absence of a velocity-dependent gauge field, and
that were based on calculations in an only space-time dependent gauge field. So, without

3I.e., which serves as the source for the gauge-fields, and consequently as the source for the characteristic
charges of the given fields.

4Here the only condition assumed was that the field equations be satisfied. No restriction was imposed
on the form of the Lagrangian density except that it be invariant under local gauge transformations as
defined in (1.3).
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employing accelerations, we derived the same conserved currents. This justifies our pre-
liminary assumption, that handling the spacetime coordinates as implicit parameters not
only provides additional information but it preserves the physical relevance of the theory.)

1.3 First conserved quantity: Conservation of the field charge (k)

We denoted [1] the sources of the individual physical fields (for example, gravitational,
electromagnetic, and so on) by the letter k (daleth, the fourth letter of the Hebrew alpha-
bet) and we call them field charges (for example, mass, electric charge, etc.). The field
charges form four-currents each (at least in the Standard Model). In a general case, the
Tγ (which appear in the presented conserved currents) as introduced above, are matrix-
representation operators generating the group G, with the mentioned commutation rule,
[Tα, Tβ] = iCγ

αβTγ . They can be replaced by concrete operators of the concerned fields,
according to their characteristic symmetry groups, like U(1), SU(2), SU(3) or SO(3, 1),
and their combinations, and ג can be substituted by the concrete coupling constants of
the individual physical fields. Thus, in a general case, and with group G of an arbitrarily
chosen physical field B, one can write ϕ(x) and B in the equations for currents J

(1)µ
α and

substitute the above equations with:

J (1)ν
α (x) = iג

∂L

∂(∂νϕk)
(Tα)klϕl(x), J (1)ν

α (x) = ∂µF (1)µν
α (x),

F (1)µν
α (x) =

∂L

∂(∂µBνα(x))
, and (1.6)

∂̂µF (1)µν
α (x) = ∂µF (1)µν

α (x) + iגCγ
αβBµβ(x)× F (1)µν

γ (x).

The operators of the quanta of the given physical field are determined by the generators
{Tα} of the symmetry group of the respective field. The full conserved field charge currents
J

(1)µ
α will provide the conserved quantities of the field ϕ(x), which the gauge field B

interacts with. We called these conserved quantities field charges and denoted by k. We can
get the conserved quantity by integration of the current in the usual way, applying Gauss’
theorem, where the integral of the spatial components vanishes at an infinite boundary,
and we get:

d
dt

ג
c

∫
∂L

∂(∂4ϕk(x))
(Tα)klϕl(x)dV = 0 (1.7)

where the integral provides the conserved field charge k of the source field ϕ.

The results derived in this subsection coincide with the well known conservation laws
of field theories. We treat it here in order to make it comparable with the results of
the next subsection (1.4), and to demonstrate that the two conserved quantities appear
simultaneously (Sec. 1.5).
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1.4 Second conserved quantity: Conservation of the isotopic field charge
spin (∆)

What is isotopic field charge spin (IFCS)? [1] assumed that the field charges appearing
in the potential part of a Hamiltonian as the scalar sources of a matter field, and the
field charges appearing in the kinetic part of a Hamiltonian, and in currents as sources of
gauge fields are qualitatively different physical quantities. They are called isotopic field
charges. For example, the mass of gravity and the mass of inertia are considered here,
and from now on, as two, qualitatively different physical properties (although equal in
their values in rest), and serve as the sources of gravitational and kinetic fields, respec-
tively. In a similar way, the electric charges appearing in the Coulomb potential and the
electric charges appearing in the currents that serve as sources of magnetic fields are also
qualitatively different physical quantities. The same is assumed on the sources of other
interaction fields. These twin couples of physical quantities, like isotopes of each other,
are called by the common name isotopic field charges.

This means, two different isotopes of a given field charge appear in the individual ele-
ments of a four-current. This distinction between the isotopic field charges would distort
the Lorentz invariance of these currents, that is not in accordance with our physical ex-
perience. Therefore, the assumption of the distinction between the isotopic field charges
must involve the assumption that they are members of a group whose elements can be
transformed into each other. This symmetry among the members of an individual isotopic
field charge couple counteracts the symmetry lost by the introduction of the distinction
between them. This new invariance can be represented by an SU(2) group, which rotates
the two isotopic states of the field charges in a gauge field, and can take two stable posi-
tions. [1] (a) proved (as cited below) that the introduced velocity dependent D gauge field
serves as the field where the isotopic states of the field charges are rotated, (b) introduced
that the rotated property (the two stable states of the isotopic field charges) be called
(by analogy) isotopic field charge spin (∆), and (c) proved that the conservation of the J2

currents provides the conservation of the isotopic field charge spin.

So, the above cited, derived J
(2)ν
α are the isotopic field charge spin currents, which

similar to J
(1)µ
α - are also conserved and yield a conservation law. The conserved quantity

derived from J
(2)ν
α is the isotopic field charge spin ∆.

The conserved current in the kinetic field can be read from (1.3). The right side of
(1.3) represents the full conserved isotopic field charge spin current, which includes the
contribution of the D field5.

We have introduced the D field - which is shown to be responsible for the isotopic
field charge spin transformation - to counteract the dependence of a V (ẋ) = e−ipα(ẋ)Tα

transformation on ẋµ. The field equations, which are satisfied by the twelve independent

5Similar attempts (like our in the velocity space) were made by [6] in the phase space (with a particular
mapping from the configuration space to phase space), and they anticipated the quantization of the models.
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components of the D field, and their interaction with any field that carries isotopic field
charge spin are unambiguously determined by the defined currents and covariant F (2)µν-s
constructed from the components of D. Considering a general Lorentz- and gauge in-
variant Lagrangian, we obtain from the equations of motion that J (2)1,2,3 and J (2)4 are,
respectively, the isotopic field charge spin current density and isotopic field charge spin
(∆) density of the system. The total isotopic field charge spin

∆ =
i

ג

∫
J (2)4d3x (1.8)

is independent of time and independent of Lorentz transformation. J (2)µ does not trans-
form as a vector, while ∆ transforms as a vector under rotations in the isotopic field charge
spin field.

1.5 Coupling of the two conserved quantities (k and ∆)

The dependence of the two currents J
(1)µ
α and J

(2)µ
α on each other has physical con-

sequences. Once, it justifies that the quantities, whose conservation they represent and
which are coupled, exist simultaneously. Secondly, the coupling of a conserved quantity in
a space-time dependent field - which coincides with one of our familiar physical fields - with
another in a kinetic (velocity dependent, introduced in [2] and [1]) gauge field indicates
that the derived conservation verifies just the invariance between the two isotopic states of
the field charges, namely between the potential kV and the kinetic kT (where the indices
V and T refer to the potential and the kinetic components of a Hamiltonian, respectively,
and the two kinds of k correspond to the two isotopic field charges). (Remember that
k can be field charges of different physical fields marked in common with B, while ∆
represents a single quantity belonging to the kinetic gauge field D.)

In the presence of kinetic fields we have two conserved currents that are effective si-
multaneously. The kinetic gauge field D is present simultaneously with the interacting
matter [ϕ] and gauge [B] fields. The presence of D corresponds to the property of the
field charges k of the individual fields that they split in two isotopic states, and analo-
gously to the isotopic spin, we named these two states isotopic field charge spin (IFCS)
what we denote by ∆. The source of the isotopic field charge spin (∆) is the field ϕ(ẋ) in
interaction with the kinetic gauge field D.

In summary, the physical meaning of ∆ can be understood, when we specify the
transformation group associated with the D field, which describes the transformations
of k (i.e., the isotopic field charges). k can take two (potential and kinetic) isotopic
states kV and kT in a simple unitary abstract space. Their symmetry group is SU(2),
that can be represented by 2 × 2 Tα matrices. There are three independent Tα that
may transform into each other, following the rule [Tα, Tβ] = iCγ

αβTγ , where the structure
constants can take the values 0, ±1. Let T1 and T2 be those which do not commute with
T3, they generate transformations that mix the different values of T3, while this ”third”
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component’s eigenvalues represent the members of a ∆ doublet. For the isotopic field
charges compose a k doublet of kV and kT , the field’s wave function can be written as

Ψ =
(

ΨT

ΨV

)
(1.9)

(1.9) is the wave function for a single particle which may be in the ”potential state”, with
amplitude ΨV , or in the ”kinetic state”, with amplitude ΨT . Ψ in (1.9) represents a mix-
ture of the potential and kinetic states of the k, and there are Tα that govern the mixing
of the components ΨV and ΨT in the transformation. Tα(α = 1, 2, 3) are representations
of operators which can be taken as the three components of the isotopic field charge spin,
∆1, ∆2, ∆3 that follow the same (non-Abelian) commutation rules as do the Tα matrices,
[∆1,∆2] = i∆3, etc. These operators represent the charges of the isotopic field charge spin
space, and Ψ are the fields on which the operators of the gauge fields act.

The quanta of the D field should carry isotopic field charge spin ∆. The ∆ doublet,
as a conserved quantity, is related to the two isotopic states of field charges (k), and the
associated operators (∆i) induce transitions from one member of the doublet to the other.

1.6 Interpretation of the isotopic field charge spin conservation

Invariance between kV and kT means that they can substitute for each other arbitrarily
in the interaction between field charges of any given fundamental physical interaction.
They appear at a probability between [0, 1] in a mixture of states in the wave function

Ψ =
(

ΨT

ΨV

)
so that the Hamiltonian of a single particle oscillates between V and T, while the Hamil-
tonian of a composite system is a mixture of the oscillating components of the particles
that constitute the system. The individual particles in a two-particle system are either in
the V or in the T state respectively, and switch between the two roles permanently; while
the observable value of H is the expected value of the mixture of the actual states of the
two, always opposite state particles. In the case of mechanics, this means that the mass
of any physical object is a mixture of unit masses of gravity and unit masses of inertia
that oscillate between the two states each. In gravitational interaction between two unit
masses, one of them is in gravitational state, and the other in kinetic state. They swap
their roles permanently by the exchange of the quantum of the ∆ field.

The invariance between kV and kT (that is ensured by the conservation of ∆), and
their abilitiy to swap means also that they can restore the symmetry in the physical
equations, which was lost when we replaced the general k (namely mass m, electric charge
q, . . . , etc.,) by their isotopes kV and kT .6

6Consequences of the application of effective field theories were analysed e.g., in philosophy by [7] and
in physics by [8].
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2 Finsler geometry in the presence of isotopic field charges

Let us specify (1.5) for the gravitational field [9]. The right side of the equation
contains the scalar field that serves for the source of the gravitational field. The ג can be
replaced by the gravitational coupling constant g. As we noticed, the dependence on the
gauge fields is on the left side of the equation (1.5). F

(1)µν
α (ẋ) must satisfy the

Tµν = FµλFλν +
1
4
δµνFλσFλσ

identity for the energy-momentum tensor Tµν . This energy-momentum tensor Tµν can be
expressed by the way of the Einstein equation

Tµν = − 1
8πGN

(
Rµν −

1
2
Rgµν + Λgµν

)
(2.10)

where Rµν is the Ricci tensor defined by the help of the derivatives of the metric tensor
gµν , R is the Ricci scalar formed from the Ricci tensor (Riemann curvature) and the metric
tensor, and Λ is a constant of Nature, as well as GN the constant of Newton.

The metric tensor gµν and its derivatives depend on the localisation of the given point
in the space-time in the General Theory of Relativity (GTR), and are subject of Riemann
geometry. In the presence of a kinetic field, that means, isotopic mass field D (mass being
the field charge of the gravitational field), however, the curvature depends also on veloc-
ity. (Whose velocity? On the actual inertial velocity of a test unit-mass placed in a given
space-time point in the reference frame fixed to the source of a scalar gravitational field
ϕ which appears on the right side of (1.5).) The gµν metric tensor, and consequently the
affine connection field and the curvature tensor formed from its derivatives, depend on
space-time and velocity coordinates. With the appearance of the dependence on the ve-
locity vector, the curvature becomes dependent on its direction in each space-time point.
The direction (additional parameter) attributed to each space-time point is defined by
the orientation of the velocity of a test unit-mass in the given space-time point, V

|v| . The
curvature can no more follow a ”simple” Riemann geometry, it follows a Finsler geometry
whose metric is defined by the dependence of gµν on (xσ and) ẋρ.

Of course, the space-time plus four-velocity dependence of the metric tensor gµν af-
fects all its derivatives, including the formation of the affine connection field (from first
derivatives) and the Riemann curvature (or Ricci tensor, second, covariant derivative)

Γλµν =
1
2

[∂µgλν + ∂νgλµ − ∂λgµν ] Γλ
µν = gλρTρµν

and
Rµν = ∂µΓλ

νλ − ∂λΓλ
µν + Γλ

µσΓσ
νλ − Γλ

σλΓσ
µν .

The solution of the Einstein equation in velocity dependent field with Finsler geometry
must necessarily lead to solutions different from that of Schwarzschild.
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3 The role of the isotopic field charge spin conservation

The role of equation (1.4) is to retain the invariance between the two isotopic forms,
namely gravitational and inertial, of masses. The importance of this is to save the covari-
ance of our equations. Since two different kinds of (isotopic) masses appear in the energy
momentum “four-vector” (in the fourth column of Tµν ,) it does no longer transform as a
vector, and Lorentz transformation can no longer guarantee alone the covariance of our
equations.

As a consequence of the distinction between mV and mT , as well as the association of
the energy content with the mass mV and the components of the momentum with mT ,
we lose also the symmetry of the Tµν energy-momentum tensor. To retain symmetry in
Einstein’s field equations we must require again the invariant transformation of mV and
mT into each other in an appropriate gauge field, namely in D. We refer to [10] who fore-
saw the possible generalisation of YM type gauge invariance in general relativity “in close
analogy with the curvature tensor”. If we consider the energy-momentum tensor (in which
both isotopic states of mass appear) as the source of the gravitational field, then - in the
usual way - the scalar and the vector potential can be separated. See, m4 in T44 does not
compose a fourth component of a four-vector in the classical theory of gravitation where
there is a single scalar mass. If we consider now m4 = mV , the three components of the
kinetic mass mT can compose a three-vector, however Tµ4 will not form a four vector either.

To maintain the Lorentz invariance of our physical equations in the gravitational field,
we must demand to restore the invariance of

(
mT
mV

)
under an additional transformation that

should counteract the loss of symmetry caused by the introduction of two isotopic states
of mass. We discussed that transformation in Section 1. Further, in the case of gravi-
tation the relation of the scalar and the vector fields are not linear even if we have not
made distinction between the potential and kinetic masses. The non-linearity is coded in
the relation of the tensors [11] at the right side of the Einstein equation (2.10) (in units
c = 1), or we can write Gµν + Λgµν = 8πGTµν where the Einstein tensor is defined as
Gµν = Rµν − 1

2Rgµν whose covariant derivative must vanish.

Since our Tµν tensor has already lost its symmetry, we can take Λgµν into account
within a modified T ′

µν - handling the gravitational and kinetic masses in it together with
the dark energy - and we get the following formally symmetric equation: Gµν = 8πGT ′

µν .

The symmetry of the energy-momentum tensor can be saved by the invariant gauge
transformation of the IFCS. The most important analogy is between the behaviour of
the potential and the kinetic field charges of the individual fields that makes it proba-
ble to postulate a unique transformation to assure their invariance (cf., section 1)7. So

7As [12] stated, ”In contrast to the symmetry or invariance requirement in STR, the principle in GTR
is most often presented as strictly speaking a covariance requirement.” Gauge theories behave like GTR,
at least in this respect. General covariance “is not tied to any geometrical regularity of the underlying
spacetime, but rather the form invariance (covariance) of laws under arbitrary smooth coordinate trans-
formations” [12, p. 34]. [13] found that the more general geometry resulting from admitting local changes
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the invariance under the Lorentz transformation combined with the invariance of the iso-
topic field charge spin field provide together the covariance of the gravitational equation.
However, this combined transformation should now be taken into consideration in a field
with a metric depending on all space-time and velocity co-ordinates, following a Finsler
geometry.

4 Appendix

Comparison of the invariance properties in classical GTR and in the IFCS
model

In classical physics, conservation laws − as consequences of the invariance properties
of the investigated systems − can be obtained by integration of the Euler-Lagrange equa-
tions of motion of classical mechanical point systems. According to Hamilton’s principle
the variation of the action integral of the system’s Lagrangian must be zero. These conser-
vation laws include the conservation of the energy − invariance under translation in time.
That conserved energy is equivalent with a well determined amount of mass E = mc2,
where m = mV is gravitational mass, and this conservation law does not provide any
information on the quantity of kinetic mass.

In general relativistic treatment, the source of the gravitational field is the Tµν momentum-
energy stress tensor, which includes the sources of inertial and gravitational effects as
well. Applying the same variational method and integration for the Einstein equation
(using [+ + + −] signature) we derive the conservation of the −T44 element of the Tµν

momentum-energy stress tensor. − T44 is energy density of the gravitational field, and
is proportional to a certain amount of mass. According to invariance under translations
in the Minkowski space (Lorentz transformation) the conserved current can be written in
the form

∂µTµν ≡ ∂µ

(
Lδµν − ∂νϕr

∂L

∂∂µϕr

)
= 0,

where ϕr denote functions on which (and their first derivatives) the Lagrangian may de-
pend.

The Einstein equation

Rµν −
1
2
Rgµν + Λgµν = 8πGTµν

provides the elements of Tµν in which – according to the left side – the contribution of the
kinetic and potential components are mixed by the gµν curvature tensor. Applying the

called gauges described not only gravity but also electromagnetism. He showed also that the conservation
laws of Noether follow in two distinct ways in theories with local symmetries. This led to the Bianchi
identities, which hold between the coupled equations of motion, and which are due to the local gauge
invariance of action. Later [14] demonstrated that the conservation of the electric charge followed from the
local gauge invariance in the same way as energy-momentum conservation does from co-ordinate invariance
in GTR.
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usual integration method and Gauss’ theorem, we get the fourth column of the momentum-
energy stress tensor for a conserved quantity, that is nothing else but the four-momentum
density, which behaves like a four-vector and whose individual components are

Pν =
1
ic

∫
T4νdV

or separated

Pk =
1
ic

∫
T4kdV =

1
ic

∫
∂kϕi

∂L

∂∂4ϕi
dV (k = 1, 2, 3);

H = −icP4 = −
∫

T44dV =
∫ (

∂4ϕi
∂L

∂∂4ϕi
− L

)
dV

that are considered the conserved total momentum and energy of the field respectively.

If we take into account the qualitative difference between the masses mT (thar appear
in the components of Pk) and mV (that appears in H) that are mixed by the curvature
tensor gµν in the elements of Tµν , this consideration will involve the mixed mT and mV

dependence of the Lagrangians as well. As a consequence, Pk and H cannot be considered
separately, and independently of each other, conserved quantities. (We do not investigate
here the ambiguous interpretations of invariant mass.) The covariance of the gravitational
equation can no longer be secured by the Lorentz invariance alone. The lost symmetry of
nature can be restored only with the shown invariance between the isotopic mass states
(as field charges of the gravitational field, conservation of ∆) which are rotated in an
isotopic field charge spin gauge field. The covariance of the gravitational equation is a
result of invariance under the combination of the Lorentz transformation and rotation in
the isotopic field charge field. In the latter case the four components of (Pk [mT ] ,H [mV ])
transform as isovectors. Due to the IFCS gauge transformation, the transformation of
the field components can be described in a (space-time +) velocity dependent gauge field,
whose metric, consequently, depends also on the velocity components, and is subject of a
Finsler geometry.
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