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QUOTIENT CI–ALGEBRAS

A. BORUMAND SAEID1 and A. REZAEI2

Abstract

In this paper we introduce the notion of (regular) congruence relations on CI–
algebras and we construct quotient algebra ( X

θF
; ∗, F1) via a closed filter F of X.

Moreover, we show that there exists a bijection from the set of all filters containing
filter G to the set of all filters of X

G .
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1 Introduction

Y. Imai and K. Iseki [3] introduced two classes of abstract algebras: BCK–algebras and
BCI–algebras. BCI–algebras as a class of logical algebras are the algebraic formulations
of the set difference together with its properties in set theory and the implicational functor
in logical systems. They are closely related to partially ordered commutative monoids as
well as various logical algebras. Their names are originated form the combinators B, C,
K and I in combinatory logic. It is known that the class of BCK–algebras is a proper
subclass of the class of BCI–algebras[2].

Recently, H. S. Kim and Y. H. Kim defined a BE-algebra [4]. Biao Long Meng, defined
notion of CI–algebra as a generation of a BE–algebra.[6]. BE-algebras and CI-algebras
are studied in detail be some researchers [1, 5, 7, 8] and some fundamental properties of
CI–algebra are discussed.

For better understanding this algebraic structure we need to study it in detail and one
of important tool is congruence relation and quotient structure of an algebraic structure. In
this paper, we introduce the concept of congruence relation on CI–algebras and introduce
the notion of closed filter in CI–algebra and construct quotient algebra via closed filter
and investigate related properties.
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2 Preliminaries

Definition 1. [6] An algebra (X; ∗, 1) of type (2, 0) is called a CI–algebra if

(CI1) x ∗ x = 1;

(CI2) 1 ∗ x = x;

(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z),
for all x, y, z ∈ X.

We introduce a relation ”≤” on X by x ≤ y if and only if x ∗ y = 1.
Example 1. [5] Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d

1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d d d d d 1

Then (X; ∗, 1) is a CI–algebra.

Definition 2. [5] A subset F of X is said to be a filter when it satisfies the conditions:

(F1) 1 ∈ F ;

(F2) x, x ∗ y ∈ F ⇒ y ∈ F .

Example 2. In Example 1 F1 = {1, a} and F2 = {1, b} are filters of X but F3 = {1, c} is
not a filter because c ∗ b = 1 ∈ F3 and c ∈ F3 but b /∈ F3.

Definition 3. [5] A CI–algebra X is said to be transitive if for any x, y, z ∈ X,

y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

Example 3. [5] Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Then X is a transitive CI–algebra.

Definition 4. [5] A CI–algebra X is called commutative if

(x ∗ y) ∗ y = (y ∗ x) ∗ x, for any x, y ∈ X.

Example 4. Let X := {1, a, b} be a set with the following table.

∗ 1 a b

1 1 a b
a 1 1 b
b 1 a 1

Then X is a commutative CI–algebra.
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3 Congruences Relations in CI–algebras

Throughout this section X always means a transitive CI–algebra.

Definition 5. A relation θ on X is called a congruence relation if

(C1) θ is an equivalence relation on X;

(C2) θ satisfies the substitution property with respect to ∗, that is,

(x, y), (u, v) ∈ θ ⇒ (x ∗ u, y ∗ v) ∈ θ.

(R) A congruence relation θ is called regular when it satisfies

(1, x ∗ y), (1, y ∗ x) ∈ θ ⇒ (x, y) ∈ θ.

Let Con(X) be the set of all congruence relations on CI–algebra X and ConR(X) be
the set of all regular congruence relations on X.

Example 5. Let X := {1, a, b}. Define a binary operation ∗ on X by the following table:

∗ 1 a b

1 1 a b
a 1 1 1
b 1 1 1

then (X; ∗, 1) is a CI–algebra. Consider θ = {(1, 1), (a, a), (b, b)}, we can see that θ is
a congruence relation on X, but it is not regular because (1, a ∗ b), (1, b ∗ a) ∈ θ, while
(a, b) /∈ θ.

Example 6. Let X := {1, a, b}. Define a binary operation ∗ on X by the following table:

∗ 1 a b

1 1 a b
a 1 1 b
b b b 1

then (X; ∗, 1) is a CI–algebra. Consider θ = {(1, 1), (a, a), (b, b), (1, b), (b, 1), (1, a), (a, 1),
(a, b), (b, a)}, we can see that θ is a regular congruence relation on X.

Example 7. In Example 1, θ = {(1, 1), (a, a), (b, b), (c, c), (d, d), (1, b), (b, 1), (1, a),
(a, 1), (1, c), (c, 1), (a, b), (b, a), (a, c), (c, a), (c, b), (b, c)}, we can see that θ is a regular con-
gruence relation on X.

Definition 6. A filter F of X is called closed if x ∗ 1 ∈ F , whenever x ∈ F .

Example 8. In Example 1, F1 and F2 are closed filters of X.

Let F be a filter of X and θ ∈ Con(X). Define a relation θF on X as follows:

θF = {(x, y) : x ∗ y, y ∗ x ∈ F}.
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and define Fθ as follows:

Fθ = {x ∗ y : (x, y) ∈ θ}.

Proposition 1. If F is a filter of X and θ ∈ Con(X), then

(i) θF ∈ ConR(X);

(ii) Fθ is a closed filter on X;

(iii) Fθ = {x : (1, x) ∈ θ};

(iv) FθF
is the largest closed filter contained in F .

Proof. (i) It is evident that θF is an equivalence relation on X. We only show that
θF satisfies the substitution property and the condition (R).

Suppose that (x, y), (u, v) ∈ θF , then x∗y, y∗x ∈ F and u∗v, v∗u ∈ F . By transitivity
we have (u ∗ v) ∗ ((x ∗ u) ∗ (x ∗ v)) = 1 and (v ∗ u) ∗ ((x ∗ v) ∗ (x ∗ u)) = 1. Since F is a
filter, we have (x ∗ u) ∗ (x ∗ v) ∈ F and (x ∗ v) ∗ (x ∗ u) ∈ F . Hence (x ∗ u, x ∗ v) ∈ θF and
similarly (x ∗ v, y ∗ v) ∈ θF . Since θF is an equivalence relation, we have (x ∗u, y ∗ v) ∈ θF .
Thus it is proved that θF satisfies the substitution property. Now, we show that θF is
regular. Suppose that (1, x ∗ y), (1, y ∗ x) ∈ θF . By (CI2) and definition of θF , we have
x ∗ y = 1 ∗ (x ∗ y) ∈ F and y ∗ x = 1 ∗ (y ∗ x) ∈ F , this implies that (x, y) ∈ θF . Therefore
θF ∈ ConR(X).

(ii) Since (x, x) ∈ θ, x∗x = 1 ∈ Fθ. Suppose that x∗y, x ∈ Fθ. There are (u, v), (p, q) ∈
θ such that x∗y = u∗v and x = p∗q. Since (u, v) ∈ θ ∈ Con(X), we have (u∗v, v∗v) = (u∗
v, 1) = (x∗y, 1) ∈ θ and similarly (1, x) ∈ θ. By (CI2) we have (1∗y, x∗y) = (y, x∗y) ∈ θ.
Hence by transitivity we have (1, y) ∈ θ and therefore 1 ∗ y = y ∈ Fθ. Thus Fθ is a filter
of X.

If x ∈ Fθ, then there exists (p, q) ∈ θ such that x = p ∗ q. By θ ∈ Con(X), we have
(p ∗ p, p ∗ q) = (1, p ∗ q) = (1, x) ∈ θ. It follows that x ∗ 1 ∈ Fθ and hence Fθ is closed.

(iii) For brevity, we put A = {x : (1, x) ∈ θ}. Suppose that x ∈ Fθ. There exists
(u, v) ∈ θ such that x = u ∗ v. Since θ is a congruence relation, we have (u ∗ u, u ∗ v) =
(1, u ∗ v) = (1, x) ∈ θ. That is Fθ ⊆ A. It is easy to show the converse.

(iv) By (ii), FθF
is a filter and it is obvious that FθF

⊆ F . Let G be another closed
filter contained in F . For any x ∈ G, since G is a closed filter, we have x ∗ 1 ∈ G ⊆ F .
This means that x ∗ 1, 1 ∗ x ∈ F and (1, x) ∈ θF . By (iii), we obtain x ∈ FθF

. This yields
that G ⊆ FθF

and hence that FθF
is the largest closed filter contained in F .

Theorem 1. Let F be a filter of X. If F is closed filter, then F = FθF
.

Theorem 2. Let θ ∈ ConR(X). Then θ = θFθ
.

Proof. Let θ ∈ ConR(X). It is sufficient to show that θFθ
⊆ θ. We assume that

(x, y) ∈ θFθ
. By definition, we have x ∗ y, y ∗ x ∈ Fθ and hence there exist (p, q), (u, v) ∈ θ

such that x ∗ y = u ∗ v, y ∗ x = p ∗ q. Since θ ∈ Con(X), we have (1, x ∗ y) = (1, u ∗ v) =
(u ∗u, u ∗ v) ∈ θ. Similarly (1, y ∗x) ∈ θ. Since θ is regular we have (x, y) ∈ θ. This means
that θFθ

⊆ θ and hence θ = θFθ
.
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Conversely, suppose that θ = θFθ
. Since Fθ is the closed filter, the congruence θ = θFθ

is regular.
Note. For a nonempty subset F of X we define the binary relation ∼F in the following
way:

x ∼F y if and only if x ∗ y ∈ F and y ∗ x ∈ F .

The set {b : a ∼F b} will be denoted by [a]F and denote X
∼F

= {[x]F : x ∈ X}.
For θ ∈ Con(X) we will denote [x]θ = {y ∈ X : xθy}, abbreviated by Fx and since
1 ∈ X, then [1]θ = F1. We will call Fx(θ) the θ-equivalence class containing x, and denote
X
θ = {Fx : x ∈ X}. For a congruence relation θ the operation ∗ on X

θ is defined by
Fx ∗ Fy = Fx∗y. This binary operation is well-defined.

Lemma 1. If F is a closed filter of X, then F1 = F .

Proof. If x ∈ F , then by (CI2) 1 ∗x = x, and since F is closed then x ∗ 1 ∈ F . Hence
x ∼F 1. Therefore x ∈ [1]F = F1.

Conversely, if x ∈ F1, then 1 ∼F x, i.e., x = 1 ∗ x ∈ F by definition of ∼F . Thus
F1 ⊆ F . Therefore F1 = F .

Proposition 2. Let θ ∈ Con(X). If θ is regular, then θ is identical with the congruence
relation derived from the closed filter F1.

Proof. Let x ∗ y ∈ F1 and y ∗ x ∈ F1. Then Fx∗y = Fy∗x = F1. Since θ is regular thus
Fx = Fy, and therefore xθy.

Conversely, if xθy, then x ∗ yθy ∗ y = 1. In the same way we have y ∗ xθ1. This shows
x ∗ y ∈ F1 and y ∗ x ∈ F1.

Theorem 3. Let θ ∈ Con(X). Then (X
θ ; ∗, F1) is a CI–algebra.

Proof. Let Fx, Fy, Fz ∈ X
θ , for any x, y, z ∈ X. Then

(1) Fx ∗ Fx = Fx∗x = F1,
(2) F1 ∗ Fx = F1∗x = Fx,
(3) Fx ∗ (Fy ∗ Fz) = Fx ∗ Fy∗z = Fx∗(y∗z) = Fy∗(x∗z) = Fy ∗ Fx∗z = Fy ∗ (Fx ∗ Fz).
This proves that (X

θ ; ∗, F1) is a CI–algebra.

Example 9. In Example 6, θ = {(1, 1), (a, a), (b, b), (1, a), (a, 1)},
is a regular congruence relation on X. Hence [1] = F1 = {1, a}, [a] = Fa = {1, a}, and
[b] = Fb = {b}. Therefore X

θF
= {F1, Fb} with the following table.

∗ F1 Fb

F1 F1 Fb

Fb Fb F1

is a CI–algebra.

Theorem 4. If F is a closed filter of X, then ( X
θF

, ∗, F1) is a CI–algebra.

Proof. By Proposition 1 and Theorem 3, is clear.
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Theorem 5. Let F be a filter of a commutative CI–algebra X. Then the quotient
( X

θF
; ∗, F1) is a commutative CI–algebra.

Proof. Suppose that Fx, Fy ∈ X
θF

. Then

(Fx ∗ Fy) ∗ Fy = Fx∗y ∗ Fy = F(x∗y)∗y = F(y∗x)∗x = Fy∗x ∗ Fx = (Fy ∗ Fx) ∗ Fx.

This shows that ( X
θF

; ∗, F1) is commutative.

Example 10. In Example 4 F = {1, a} is a closed filter of X and
θF = {(1, 1), (a, a), (b, b), (a, 1), (1, a)}. Hence [1] = F1 = {1, a}, [a] = Fa = {1, a}, and
[b] = Fb = {b}. Therefore X

θF
= {F1, Fb} with the following table.

∗ F1 Fb

F1 F1 Fb

Fb F1 F1

is a commutative CI–algebra.

A mapping f : X → Y of CI–algebras is called a CI–homomorphism if f(x∗y) = f(x)∗
f(y), for all x, y ∈ X. Since x∗x = 1 for all x ∈ X, then f(1) = f(x∗x) = f(x)∗f(x) = 1.
Therefore f(1) = 1.

Proposition 3. Let f : X → Y be a CI–homomorphism and Y is a commutative CI–
algebra. If θ := {(x, y) : f(x) = f(y)}, then θ is a regular congruence relation on X.

Proof. It is obvious θ is an equivalence relation on X. We only show that θ satisfies
the substitution property and the condition regularity. Suppose that (x, y) and (u, v) ∈ θ.
Then we have f(x) = f(y) and f(u) = f(v). Since f is a homomorphism this yields,

f(x ∗ u) = f(x) ∗ f(u) = f(y) ∗ f(v) = f(y ∗ v).

Then (x ∗ u, y ∗ v) ∈ θ.
Now, let (x ∗ y, 1), (y ∗ x, 1) ∈ θ. Then f(x ∗ y) = f(y ∗ x) = f(1) = 1. Since Y is

commutative we have

f(x) = 1 ∗ f(x) = (f(y) ∗ f(x)) ∗ f(x) = (f(x) ∗ f(y)) ∗ f(y) = 1 ∗ f(y) = f(y).

Hence f(x) = f(y), and therefore (x, y) ∈ θ, hence θ is regular.

Theorem 6. Let f : X → Y be a CI–homomorphism, Y is a commutative CI–algebra
and θ = {(x, y) : f(x) = f(y)}. Then X

θ
∼= f(X).

Proof. By Proposition 3 and Theorem 3, we get that (X
θ ; ∗, F1) is a CI–algebra. Let

v : X
θ → f(X) be such that v(Fx) = f(x) for all Fx ∈ X

θ . Then
(1) if Fx = Fy, then (x, y) ∈ θ therefore f(x) = f(y). Hence v(Fx) = v(Fy).
(2) Let y ∈ f(X). Then there exists x ∈ X such that f(x) = y. Then Fx ∈ X

θ and
v(Fx) = f(x) = y. Hence v is onto.
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(3) if f(x) = f(y), then (x, y) ∈ θ. This implies that Fx = Fy. Hence v is one to one.
(4) v(Fx ∗ Fy) = v(Fx∗y) = f(x ∗ y) = f(x) ∗ f(y) = v(Fx) ∗ v(Fy). Then v is CI–
homomorphism.

Theorem 7. If G and F are filters of X and G ⊆ F , then

(a) G is also a filter of F .

(b) F
G as the quotient of the filters F via the filter G is a filter of X

G .

Proof. (a) is immediate from Definition 2.3.
In order to prove (b), first we must show that each element F

G is also an element of X
G . To

avoid the ambiguity, we denote the element of F
G containing x by Fx(F ).

Suppose y ∈ X and x ∈ F . If x ∼G y, then x ∗ y ∈ G, and so x ∗ y ∈ F and x ∈ F . By
definition y ∈ F . This says Fx(F ) ∈ X

G or each element of F
G is also an element of X

G .
Next we prove that F

G is a filter of X
G . Since G ⊂ F , G1 = G ∈ F

G . Let Gx ∗Gy ∈ F
G for all

Gx ∈ F
G . Then Gx ∗ Gy = Gx∗y ∈ F

G . It follows x ∗ y ∈ F and x ∈ F . By definition of F
we have y ∈ F , and so Gy ∈ F

G .

Theorem 8. If F ∗ is a filter of F
G , then F = ∪{x : Fx ∈ F ∗} is a filter of X and G ⊆ F .

Proof. Since F = F1 ∈ F ∗, 1 ∈ F and G ⊆ F . Let x ∗ y ∈ F and x ∈ F . Then
Fx∗y = Fx ∗ Fy ∈ F ∗ and Fx ∈ F ∗. By definition we have Fy ∈ F ∗ and so, y ∈ F . This
shows that F is a filter of X.

Note. The set of all filters of X is denoted by F (X), the set of all filters containing
filter G of X is denoted by F (X, G).

Theorem 9. If G is a filter of X, then there is a bijection from F (X, G) to F (F
G).

Proof. Define f : F (X, G) → F (F
G) by f(F ) = F

G . By Theorem 7(b), f is well-defined,
also Theorem 8 implies that f is onto. We can also prove that f is one-to-one. Let F1,
F2 ∈ F (X, G) and F1 6= F2. Without loss of any generality, we may assume that there
exists a y ∈ F2−F1. If f(F1) = f(F2), then Fy ∈ f(F2) and Fy ∈ f(F1). Thus there exists
x ∈ F1 such that Fx = Fy, so x ∼G y, that x ∗ y ∈ G and y ∗ x ∈ G. Since G ⊆ F1, we
have x ∗ y ∈ F1 and x ∈ F1. Hence y ∈ F1, which is a contradiction, so f is one-to-one.

Theorem 10. Let F be a filter of X. Then there is a canonical surjective homomorphism
ϕ : X → F

G by ϕ(x) = Fx, and ker ϕ = F , where ker ϕ = ϕ−1(F1).

Proof. It is clear that ϕ is well-defined. Let x, y ∈ X. Then ϕ(x∗y) = Fx∗y = Fx∗Fy =
ϕ(x) ∗ ϕ(y). Hence ϕ is homomorphism. Clearly ϕ is onto. We have ker ϕ = {x ∈ X :
ϕ(x) = F1} = {x ∈ X : Fx = F1} = {x ∈ X : x ∗ 1, 1 ∗ x ∈ F} = {x ∈ X : x ∈ F} = F .
Note. It is well-known that, for every set X, the set of equivalence relations on X, Eq(X),
with the inclusion ordering (in the powerset of X ×X) is a complete lattice in which the
infimum is the meet and the supremum is the transitive closure of the join.

Theorem 11. Con(X) is a sublattice of Eq(X).
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4 Conclusion

Quotient algebra play a central roll in universal algebra and their properties are used
for better understanding the algebraic structure. In this note, we have introduced the
concept of congruences relations and closed filter of CI–algebras and investigated some
of their useful properties of this structure. We show that Quotient of a CI-algebra via a
regular congruences and closed filter is a CI-algebra. We prove that there exists a bijection
from the set of all filters containing filter G to the set of all filters of X

G . We hope that our
result can used for classification of this algebraic structure and finding the relationship to
the other algebraic structures.
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