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Abstract

In this paper, nonholonomic gerbes will be naturally derived for manifolds and vec-
tor bundle spaces provided with nonintegrable distributions (in brief, nonholonomic
spaces). An important example of such gerbes is related to distributions defining
nonlinear connection (N–connection) structures. They geometrically unify and de-
velop the concepts of Riemann–Cartan manifolds and Lagrange–Finsler spaces. The
obstruction to the existence of a spin structure on nonholonomic spaces is just the
second Stiefel–Whitney class, defined by the cocycle associated to a Z/2 gerbe, which
is called the nonholonomic spin gerbe. The nonholonomic gerbes are canonically en-
dowed with N–connection, Sasaki type metric, canonical linear connection and (for
odd dimension spaces) almost complex structures. The study of nonholonomic spin
structures and gerbes have both geometric and physical applications. Our aim is to
prove the Atiyah–Singer theorems for such nonholonomic spaces.
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1 Introduction

Connections and curving on gerbes (abelian and, more recently, nonabelian ones) play
an important role in modern differential geometry and mathematical physics. Gerbes en-
abled with connection structure were introduced as a natural higher-order generalization of
abelian bundles with connection provided a new possible framework to generalized gauge
theories. They appeared in algebraic geometry [1, 2], and were subsequently developed
by Brylinski [3], see a review of results in [4]. Bundles and gerbes and their higher gen-
eralizations (n–gerbes) can be understood both in two equivalent terms of local geometry
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(local functions and forms) and of non-local geometry (holonomies and parallel transports)
[5, 6, 7].

The first applications of gerbes formalism were considered for higher Yang–Mills fields
and gravity [8] and for a special case of a topological quantum field theory [9, 10]. The
approaches were renewed following Hitchin [11] with further applications in physics, for
instance, in investigating anomalies [12], new geometrical structures in string theory [13]
and Chern–Simons theory [14].

A motivation for noncommutative gerbes [15], related to deformation quantization
[16, 17], follows from the noncommutative description of D–branes in the presence of
topologically non–trivial background fields. In a more general context, the geometry of
commutative and noncommutative gerbes may be connected to the nonholonomic frame
method in (non) commutative gauge realizations and generalizations of the Einstein grav-
ity [18], nonholonomic deformations with noncommutative and/or algebroid symmetry
[19] and to the geometry of Lagrange–Fedosov nonholonomic manifolds [20]. Here, we
note that a manifold is nonholonomic (equivalently, anholonomic) if it is provided with a
nonintegrable global distribution. In our works, we restrict the constructions to a subclass
of such nonholonomic manifolds, or bundle spaces, when their nonholonomic distribution
defines a nonlinear connection (in brief, N–connection) structure. We use the term of
N–anholonomic manifold for such spaces. The geometry of N–connections came from the
Finsler and Lagrange geometry (see, for instance, details in Ref. [21], and Refs. [22, 23]
related to the Ehresmann connection and geometrization of classical mechanics and field
theory). Nevertheless, the N–connection structures have to be introduced in general rela-
tivity, string theory and on Riemann–Cartan and/or noncommutative spaces and various
types of non–Riemannian spaces if generic off–diagonal metrics, nonholonomic frames and
genalized connections are introduced into consideration, see discussion and references in
[24].

The concept of N–anholonomic spaces unifies a large class of nonholonomic mani-
folds and bundle spaces, nonholonomic Einstein, non–Riemannian and Lagrange–Finsler
geometries which are present in modern gravity and string theory, geometric mechanics
and classical field theory and geometric quantization formalism. N–anholonomic spaces
are naturally provided with certain canonical N–connection and linear connection struc-
tures, Sasaki type metric, almost complex and/or almost sympletic structures induced
correspondingly by the Lagrange, or Finsler, fundamental functions, and for gravitational
models by the generic off–diagonal metric terms. The N–connection curvatures and Rie-
mannian curvatures are very useful to study the topology of such manifolds.

The study of bundles of spinors on N–anholonomic spaces provides a number of geomet-
ric and physical results. For instance, it was possible to give a definition of nonholonomic
spinor structures for Finsler spaces [25], to get a spinor interpretation of Lagrange and
Hamilton spaces (and their higher order extensions), to define N–anholonomic Dirac op-
erators in connection to noncommutative extensions of Finsler–Lagrange geometry and to
construct a number of exact solutions with nonholonomic solitons and spinor interactions
[26, 27, 24]. But every compact manifold (being an holonomic or anhlolonomic one) is not
spin. The obstruction to the existence of spin structure, in general, of any nonholonomic
spin structure of a nonholonomic space, is the second Stiefel–Whitney class. This class is
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also the classifying cocycle associated to a Z/2 gerbe, which with respect to nonholonomic
manifolds is a nonholonomic gerbe. This way one can be constructed a number of new
examples of gerbes (Finsler and/or Lagrange ones, parametrizing some higher symmetries
of generic off–diagonal solutions in Einstein and string/ brane gravity, with additional
noncommutative and/or algebroid symmetries).

The aim of this paper is to study the main geometric properties of nonholonomic gerbes.
We shall generalize the Lichnerowicz theorem and prove Atiyah–Singer type theorems for
nonholonomic gerbes. For trivial holonomic manifolds, our results will transform into
certain similar ones from Refs. [28, 29] but not completely if there are considered ’non-
perturbative’ and nonlinear configurations as exact solutions in gravity models, see details
in [30].

We note that the problem of formulating and proof of Atiyah–Singer type theorems for
nonholonomic manifolds is not a trivial one. For instance, in Ref. [31], it is advocated the
point that it is not possible to define the concept of curvature for general nonholonomic
manifolds. Without curvatures, one can not be formulated any types of Atiyah–Singer
theorems. In Refs. [31, 32] one proposed such definitions for supermanifolds when su-
persymmetric structure is treated as nonholonomic distribution. There is a long term
history on defining torsions and curvatures for various classes of nonholonomic manifolds
(see, for instance, Refs. [35, 36]). More recently, one concluded that such definitions can
be given by using the concept of N–connection structure at least for Lagrange–Finsler
and Hamilton–Cartan spaces [33, 34]. We note that the problem of definition of cur-
vatures was discussed and solved (also by using the N–connection formalism) in modern
approaches to the geometry of noncommutative Riemann–Finsler or Einstein spaces and
generalizations [24, 19], Fedosov N–anholonomic manifolds [20], as well in the works on
nonholonomic Clifford structures and spinors [25, 26, 27] and generalized Finsler super-
spaces [37]. The Lichnerowicz type formula and Atiyah–Singer theorems to be proved here
for N–anholonomic spaces have strong relations to the mentioned classes of manifolds and
supermanifolds.

The article is organized as follows. In section 2 we recall the main results on non-
holonomic manifolds provided with N–connection structure, consider some examples of
such N–anholonomic spaces (generalized Lagrange/Finsler spaces and Riemann–Cartan
manifolds provided with N–connections) and define the concept of nonholonomic gerbe.
Section 3 is a study of nonhlonomic Clifford gerbes: we consider lifts and nonholonomic
vector gerbes and study pre–Hilbertian and scalar structures and define distinguished (by
the N–connection structure) linear connections on N–anholonomic gerbes and construct
the characteristic classes. Section 4 is devoted to operators and symbols on nonholnomic
gerbes. In section 5 we present a K–theory framework for N–anholonomic manifolds and
gerbes. We define elliptic operators and index formulas adapted to the N–connection struc-
ture. There are proven the Atiyah–Singer theorems for the canonical d–connection and
N–connection structures. The results are applied for a topological study of N–anholonomic
spinors and related Dirac operators. Appendix A outlines the basic results on distin-
guished connections, torsions and curvatures for N–anholonomic manifolds. Appendix B
is an introduction into the geometry of nonholonomic spinor structures and N–adapted
spin connections.
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2 Nonholonomic Manifolds and Gerbes

The aim of this section is to outline some results from the geometry of nonholonomic
manifolds provided with N–connection structure and to elaborate the notion of nonholo-
nomic gerbes.

2.1 The geometry of N–anholonomic spaces

We consider (n+m)–dimensional manifold of necessary smoothly class V with locally
fibred structure. A particular case is that of a vector bundle, when we shall write V = E
(where E is the total space of a vector bundle π : E → M with the base space M). We
denote by π> : TV → TM the differential of a map π : V n+m → V n defined by fiber
preserving morphisms of the tangent bundles TV and TM. The kernel of π> is just the
vertical subspace vV with a related inclusion mapping i : vV→ TV.

Definition 2.1. A nonlinear connection (N–connection) N on a manifold V is defined
by the splitting on the left of an exact sequence

0→ vV i→ TV→ TV/vV→ 0,

i. e. by a morphism of submanifolds N : TV→ vV such that N ◦ i is the unity in vV.

In an equivalent form, we can say that a N–connection is defined by a splitting to
subspaces with a Whitney sum of conventional horizontal (h) subspace, (hV) , and vertical
(v) subspace, (vV) ,

TV = hV ⊕ vV (1)

where hV is isomorphic to M. In general, a distribution (1) in nonintegrabe, i.e. nonholo-
nomic (equivalently, anholonomic). In this case, we deal with nonholonomic manfiolds/
spaces.

Definition 2.2. A manifold V is called N–anholonomic if on the tangent space TV it is
defined a local (nonintegrable) distribution (1), i.e. V is N–anholonomic if it is enabled
with a N–connection structure.

Locally, a N–connection is defined by its coefficients Na
i (u),

N = Na
i (u)dxi ⊗ ∂a
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where the local coordinates (in general, abstract ones both for holonomic and nonholo-
nomic variables) are split in the form u = (x, y), or uα =

(
xi, ya

)
, where i, j, k, . . . =

1, 2, . . . , n and a, b, c, . . . = n+ 1, n+ 2, . . . , n+m when ∂i = ∂/∂xi and ∂a = ∂/∂ya. The
well known class of linear connections consists on a particular subclass with the coefficients
being linear on ya, i.e., Na

i (u) = Γa
bj(x)y

b.
A N–connection is characterized by its N–connection curvature (the Nijenhuis tensor)

Ω =
1
2
Ωa

ijdx
i ∧ dxj ⊗ ∂a,

with the N–connection curvature coefficients

Ωa
ij = δ[jN

a
i] = δjN

a
i − δiNa

j = ∂jN
a
i − ∂iN

a
j +N b

i ∂bN
a
j −N b

j ∂bN
a
i . (2)

Any N–connection N = Na
i (u) induces a N–adapted frame (vielbein) structure

eν = (ei = ∂i −Na
i (u)∂a, ea = ∂a) , (3)

and the dual frame (coframe) structure

eµ =
(
ei = dxi, ea = dya +Na

i (u)dxi
)
. (4)

The vielbeins (4) satisfy the nonholonomy (equivalently, anholonomy) relations

[eα, eβ] = eαeβ − eβeα = W γ
αβeγ (5)

with (antisymmetric) nontrivial anholonomy coefficients W b
ia = ∂aN

b
i and W a

ji = Ωa
ij .

2

The geometric constructions can be adapted to the N–connection structure:

Definition 2.3. A distinguished connection (d–connection) D on a N–anholonomic man-
ifold V is a linear connection conserving under parallelism the Whitney sum (1).

In this work we use boldfaced symbols for the spaces and geometric objects pro-
vided/adapted to a N–connection structure. For instance, a vector field X ∈ TV is
expressed X = (X, −X), or X = Xαeα = Xiei +Xaea, where X = Xiei and −X = Xaea
state, respectively, the irreducible (adapted to the N–connection structure) horizontal (h)
and vertical (v) components of the vector (which following Refs. [21] is called a dis-
tinguished vectors, in brief, d–vector). In a similar fashion, the geometric objects on
V like tensors, spinors, connections, ... are called respectively d–tensors, d–spinors, d–
connections if they are adapted to the N–connection splitting.

One can introduce the d–connection 1–form

Γα
β = Γα

βγe
γ ,

2One preserves a relation to our previous denotations [25, 26] if we consider that eν = (ei, ea) and
eµ = (ei, ea) are, respectively, the former δν = δ/∂uν = (δi, ∂a) and δµ = δuµ = (di, δa) when emphasize
that operators (3) and (4) define, correspondingly, the “N–elongated” partial derivatives and differentials
which are convenient for calculations on N–anholonomic manifolds.
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when the N–adapted components of d-connection Dα = (eαcD) are computed following
formulas

Γγ
αβ (u) = (Dαeβ)ceγ , (6)

where ”c” denotes the interior product. This allows us to define in standard form the
torsion

T α + Deα = deα + Γα
β ∧ eβ (7)

and curvature
Rα

β + DΓα
β = dΓα

β − Γγ
β ∧ Γα

γ . (8)

There are certain preferred d–connection structures on N–anholonomic manifolds (see
local formulas in Appendix and Refs. [21, 19, 20], for details on computation the compo-
nents of torsion and curvatures for various classes of d–connections).

2.2 Examples of N–anholonomic spaces:

We show how the N–connection geometries can be naturally derived from Lagrange–
Finsler geometry and in gravity theories.

2.2.1 Lagrange–Finsler geometry

Such geometries are usually modelled on tangent bundles [21] but it is possible to define
such structures on general N–anholonomic manifolds, in particular in (pseudo) Riemannian
and Riemann–Cartan geometry if nonholonomic frames are introduced into consideration
[24, 18]. In the first approach the N–anholonomic manifold V is just a tangent bundle
(TM,π,M), where M is a n–dimensional base manifold, π is a surjective projection and
TM is the total space. One denotes by T̃M = TM\{0} where {0} means the null section
of map π.

A differentiable Lagrangian L(x, y), i. e. a fundamental Lagrange function, is defined
by a map L : (x, y) ∈ TM → L(x, y) ∈ R of class C∞ on T̃M and continuous on the
null section 0 : M → TM of π. For simplicity, we consider any regular Lagrangian with
nondegenerated Hessian

Lgij(x, y) =
1
2
∂2L(x, y)
∂yi∂yj

(9)

when rank |gij | = n on T̃M and the left up ”L” is an abstract label pointing that the
values are defined by the Lagrangian L.

Definition 2.4. A Lagrange space is a pair Ln = [M,L(x, y)] with Lgij(x, y) being of
constant signature over T̃M.

The notion of Lagrange space was introduced by J. Kern [38] and elaborated in details
in Ref. [21] as a natural extension of Finsler geometry.

By straightforward calculations, one can be proved the fundamental results:
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1. The Euler–Lagrange equations

d

dτ

(
∂L

∂yi

)
− ∂L

∂xi
= 0

where yi = dxi

dτ for xi(τ) depending on parameter τ, are equivalent to the “nonlinear”
geodesic equations

d2xi

dτ2
+ 2Gi(xk,

dxj

dτ
) = 0

defining paths of the canonical semispray

S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi

where

2Gi(x, y) =
1
2

Lgij

(
∂2L

∂yi∂xk
yk − ∂L

∂xi

)
with Lgij being inverse to (9).

2. There exists on T̃M a canonical N–connection

LN i
j =

∂Gi(x, y)
∂yi

, (10)

defined by the fundamental Lagrange function L(x, y), prescribing nonholonomic
frame structures of type (3) and (4), Leν = (ei, −ek) and Leµ = (ei, −ek). 3

3. The canonical N–connection (10), defining −ei, induces naturally an almost complex
structure F : χ(T̃M) → χ(T̃M), where χ(T̃M) denotes the module of vector fields
on T̃M,

F(ei) = −ei and F( −ei) = −ei,

when
F = −ei ⊗ ei − ei ⊗ −ei (11)

satisfies the condition Fc F = −I, i. e. Fα
βF

β
γ = −δα

γ , where δα
γ is the Kronecker

symbol and “c” denotes the interior product.

4. On T̃M, there is a canonical metric structure

Lg = Lgij(x, y) ei ⊗ ej + Lgij(x, y) −ei ⊗ −ej (12)

constructed as a Sasaki type lift from M.

3On the tangent bundle the indices related to the base space run the same values as those related to
fibers: we can use the same symbols but have to distinguish like −ek certain irreducible v–components
with respect to, (or for) N–adapted bases and co–bases.
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5. There is also a canonical d–connection structure Γ̂γ
αβ defined only by the components

of LN i
j and Lgij , i.e. by the coefficients of metric (12) which in its turn is induced by a

regular Lagrangian. The d–connection Γ̂γ
αβ is metric compatible and with vanishing

h- and v–torsions. Such a d–connection contains also nontrivial torsion components
induced by the nonholonomic frame structure, see Proposition 5.2 and formulas
(A.3) in Appendix. The canonical d–connection is the ”simplest” N–adapted linear
connection related by the ”non N–adapted” Levi–Civita connection by formulas
(A.2).

We can conclude that any regular Lagrange mechanics can be geometrized as an al-
most Kähler space with N–connection distribution, see [21, 20]. For the Lagrange–Kähler
(nonholonomic) spaces, the fundamental geometric structures (semispray, N–connection,
almost complex structure and canonical metric on T̃M) are defined by the fundamental
Lagrange function L(x, y).

For applications in optics of nonhomogeneous media and gravity (see, for instance,
Refs. [21]) one considers metrics of type gij ∼ eλ(x,y) Lgij(x, y) which can not be derived
from a mechanical Lagrangian but from an effective ”energy” function. In the so–called
generalized Lagrange geometry one considers Sasaki type metrics (12) with any general
coefficients both for the metric and N–connection.

Remark 2.1. A Finsler space is defined by a fundamental Finsler function F (x, y), being
homogeneous of type F (x, λy) = λF (x, y), for nonzero λ ∈ R, may be considered as a
particular case of Lagrange geometry when L = F 2.

Now we show how N–anholonomic configurations can defined in gravity theories. In
this case, it is convenient to work on a general manifold V,dimV = n + m with global
splitting, instead of the tangent bundle T̃M.

2.2.2 N–connections and gravity

Let us consider a metric structure on V with the coefficients defined with respect to a
local coordinate basis duα =

(
dxi, dya

)
,

g = g
αβ

(u)duα ⊗ duβ

with

g
αβ

=
[
gij +Na

i N
b
jhab N e

j hae

N e
i hbe hab

]
. (13)

In general, such a metric (13) is generic off–diagonal, i.e it can not be diagonalized by
any coordinate transforms. We not that Na

i (u) in our approach are any general functions.
They my be identified with some gauge potentials in Kaluza–Klein models if the corre-
sponding symmetries and compactifications of coordinates ya are considered, see review
[39]. Performing a frame transform

eα = e α
α ∂α and eβ = eβ

βdu
β.



Riemann–Finsler and Lagrange Gerbes and the Atiyah–Singer Theorems 105

with coefficients

e α
α (u) =

[
e

i
i (u) N b

i (u)e a
b (u)

0 e
a

a (u)

]
, (14)

eβ
β(u) =

[
eii(u) −N b

k(u)eki (u)
0 eaa(u)

]
, (15)

we write equivalently the metric in the form

g = gαβ (u) eα ⊗ eβ = gij (u) ei ⊗ ej + hab (u) −ea ⊗ −eb, (16)

where gij + g (ei, ej) and hab + g (ea, eb) and the vielbeins eα and eα are respectively
of type (3) and (4). We can consider a special class of manifolds provided with a global
splitting into conventional “horizontal” and “vertical” subspaces (1) induced by the “off–
diagonal” terms N b

i (u) and prescribed type of nonholonomic frame structure.
If the manifold V is (pseudo) Riemannian, there is a unique linear connection (the

Levi–Civita connection) ∇, which is metric, ∇g = 0, and torsionless, ∇T = 0. Neverthe-
less, the connection ∇ is not adapted to the nonintegrable distribution induced by N b

i (u).
In this case, it is more convenient to work with more general classes of linear connections
(for instance, with the canonical d–connection (A.3)) which are N–adapted but contain
nontrivial torsion coefficients because of nontrivial nonholonomy coefficients W γ

αβ (5).
For a splitting of a (pseudo) Riemannian–Cartan space of dimension (n+m) ( we con-

sidered also certain (pseudo) Riemannian configurations), the Lagrange and Finsler type
geometries were modelled by N–anholonomic structures as exact solutions of gravitational
field equations [24, 18].

2.3 The notion of nonholonomic gerbes

Let denote by S a sheaf of categories on a N–anholonomic manifold V, defined by a
map of U→ S(U), where U is a open subset of V, with S(U).

Definition 2.5. A sheaf of categories S is called a nonholonomic gerbe if there are satisfied
the conditions:

1. There exists a map rU1̂U2̂
: S(U1̂)→ S(U2̂) such that for superpositions of two such

maps rU1̂U2̂
◦ rU2̂U3̂

= rU1̂U3̂
for any inclusion U1̂ → U2̂.

2. It is satisfied the gluing condition for objects, i.e. for a covering family ∪îUî of U
and objects uî of S(Uî) for each î, when there are maps of type

q̂iĵ : rUî∩Uĵ ,Uĵ

(
uĵ

)
→ rUî∩Uĵ ,Uî

(
uî

)
such that q̂iĵqĵk̂ = q̂

ik̂
, then there exists and object u ∈ S(U) such that rUî,U

(u) →
uî.
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3. It is satisfied the gluing condition for arrows, i.e. for any two objects P,Q ∈ S(V)
the map

U→Hom(rUV(P), rUV(Q))

is a sheaf.

This Definition is adapted to the N–connection structure (1) and define similar objects
and maps for h– and v–subspaces of a N–anholonomic manifold V. That why we use
”boldfaced” symbols.

For certain applications is convenient to work with another sheaf A called the N–bund
of the nonholonomic gerbe S. It is constructed to satisfy the conditions:

• There is a covering N–adapted family
(
Uî

)̂
i∈I

of V such that the category of S(Uî)
is not empty for each î.

• For any u(1),u(2) ∈ U ⊂ V, there is a covering family
(
Uî

)̂
i∈I

of U such that
rUîU

(u(1)) and rUîU
(u(2)) are isomorphic.

• The N–bund is introduced as a family of isomorphisms A(V) +Hom(u, u), for each
object u ∈ S(U), defined by a sheaf A in groups, for which every arrow of S(U) is
invertible and such isomorphisms commute with the restriction maps.

For given families
(
Uî

)̂
i∈I

of V and objects uî of S(Uî), we denote by uî
î1...̂ik

the

element r(Uî1
∩...∩Uîk

,Uĵ)

(
uî

)
and by Uî1...̂ik

the elements of the intersection Uî1
∩ ...∩Uîk

.

The N–connection structure distinguishes (d) V into h– and v–components, i.e. defines a
local fiber structure when the geometric objects transform into d–objects, for instance, d–
vectors, d–tensors,..... There are two possibilities for further constructions: a) to consider
the category of vector bundles over an open set U of N–anholonomic manifold V, being
the base space or b) to consider such N–anholonomic vector bundles modelled as V = E
with a base M, where dimM = n and dimE =n+m.

Definition 2.6.
a) A N–anholonomic vector gerbe CNQ is defined by the category of vector bundles S(U)
over U ⊂ V with typical fiber the vector space Q.
b) A nonholonomic gerbe CNd is a d–vectorial gerbe S(U) if and only if for the each open
U ⊂M on the h–subspace M of V the set S(U) is a category of N–anholonomic manifolds
with h–base M.
In both cases of nonholonomic gerbes a) and b) the maps between d–objects are isomor-
phisms of N–anholonomic bundles/ manifolds adapted to the N–connection structures.

Let us consider more precisely the case a) (the constructions for the case b) being
similar by substituting U→U and V→M). There is a covering family (Uα̂)α̂∈I of V and
a commutative subgroup H of the set of linear transforms Gl(Q), such that there exit
maps

q′
α̂β̂

: Uα̂ ∩U
β̂
×Q→ Uα̂ ∩U

β̂
×Q,

q′
α̂β̂

: (u(1),u(2))→
(
u(1), q

′
α̂β̂

(u(1))u(2)

)
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when c
α̂β̂γ̂

= q′
α̂β̂
q′
β̂γ̂
q′γ̂α̂ is an H 2–Cech cocycle. Locally, such maps are parametrized

by non–explicit functions because of nonholonomic character of manifolds and subspaces
under consideration.

3 Nonholonomic Clifford Gerbes

Let V be an N–anholnomic manifold of dimension dimV = n+m. We denote by O(V),
see applications and references in [18], the reduction of linear N–adapted frames which
defines the d–metric structure (16) of the V. The typical fiber of O(V) is O(n+m) which
with respect to N–adapted frames splits into O(n)⊕O(m). There is the exact sequence

1→ Z/2→ Spin(n+m)→ O(n+m)→ 1

with two N–distinguished, respectively, h– and v–components

1 → Z/2→ Spin(n)→ O(n)→ 1,
1 → Z/2→ Spin(m)→ O(m)→ 1

where Spin(n+m) is the universal covering of O(n+m) splitting into Spin(n)⊕Spin(m)
distinguished as the universal covering of O(n) ⊕ O(m). To such sequences, one can be
associated a nonholnomic gerbe with band Z/2 and such that for each open set U ⊂ V it
defined SpinN (U) as the category of Spin N–anholonomic bundles over U, such spaces
were studied in details in Refs. [24, 25, 26, 27], see also Appendix 6. The classified cocycle
of this N–anholonomic gerbe is defined by the second Stiefel–Whitney class.

In a more general context, the N–anholonomic gerbe and SpinN (U) are associated
to a vectorial N–ahnolonomic gerbe called the Clifford N–gerbe (in a similar form we
can consider associated Clifford d–gerbe, for the case b) of Definition 2.6). This way
one defines the category ClN (V) which for any open set U ⊂ V, one have the cate-
gory of objects being Clifford bundles provided with N–connection structure associated
to the objects of SpinN (U). We can consider such gerbes in terms of transition func-
tions. Let q′

α̂β̂
be the transitions functions of the bundle O(V). The N–connection dis-

tinguish them to couples of h- and v–transition functions, i.e. q′
α̂β̂

= (q′
îĵ
, q′

âb̂
). For such

d–functions one can be considered elements q
α̂β̂

= (q̂iĵ , qâb̂
) acting correspondingly in

Spin(n + m) = (Spin(n), Spin(m)) . Such elements act, by left multiplication, corre-
spondingly on Cl(Rn+m) distinguished into (Cl(Rn), Cl(Rm)) . We denote by s

α̂β̂
(u) =

(ŝiĵ(u), s
âb̂

(u)) the resulting automorphisms on Clifford spaces. We conclude that the
Clifford N–gerbe is defined by maps

s
α̂β̂

: Uα̂ ∩U
β̂
→ Spin(n+m)

distinguished with respect to N–adapted frames by couples

ŝiĵ : Uî ∩Uĵ → Spin(n) and s
âb̂

: Uâ ∩U
b̂
→ Spin(m).
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For trivial N–connections, such Clifford N–gerbes transform into the usual Clifford gerbes
defined in Ref. [28]. 4

3.1 Gerbes and lifts associated to d–vector bundles

There are two classes of nonholonomic gerbes defined by lifting problems, respectively,
associated to a vector bundle E on a N–anholonomic manifold V and/or associated just
to V considering that locally a such space posses a fibered structure distinguished by the
N–connection, see corresponding cases a) and b) in Definition 2.6.

3.1.1 Lifts and N–anholonomic vector gerbes

Let us denote by Q the typical fiber of a vector bundle E on V with associated principal
bundle Gl(Q). We suppose that this bundle has a reduction EK for a subgroup K ⊂ Gl(Q)
and consider a central extension for a group G when

1→ H → G→ K → 1. (17)

Such an extension defines a N–anholonomic gerbe CH on V when for each open set
U ⊂ V the objects of CH(U) are G–principal bundles over U when the quotient by H is
the restriction of EK to U.

We consider the projection π : G→ K and suppose that for (existing) a representation
r : G→ Gl(Q′) and surjection f : Q′ → Q one can be defined a commutative Diagram 1,

Q′ Q′

Q Q-
? ?

f

π(s)

r(s)

f

-

Figure 1: Diagram 1

For such cases it is defined a N–anholonomic vectorial gerbe CH,Q′ on V when an object
of C(U) is parametrized eU ∝ r where eU is an object of CH(U). Such constructions are
adapted to the N–connection structure on U. If (Uα̃)α̃∈I is a trivialization of E, with
transition functions q′

α̃β̃
= (q′

ĩj̃
, q′

ãb̃
), we can define the maps q

α̃β̃
: Uα̃ ∩U

β̃
→ G over q′

α̃β̃
.

This states that CH,Q′ is defined by r(q
α̃β̃

).
There is a natural scalar product defined on such N–anholonomic gerbes. Its existence

follows from the construction of Clifford N–gerbe Cl(V) because the group Spin is compact
and its action on Cl(Rn+m) preserves a scalar product which is distinguished by the N–
connection structure [24, 25, 26, 27]. We can consider this scalar product on each fiber of

4We apply the ideas and results developed in that paper in order to investigate N–anholonomic manifolds
and gerbes.
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an object eU of Cl(U) and define a Riemannian d–metric

<,>eU =<,>heU
+ <,>veU

distinguished by the N–splitting into h- and v–components. The family of such Rieman-
nian d–metrics defines the Riemannian d–metric on the N–anholonomic gerbe Cl(V).
There is a canonical such structure defined by the N–connection when (gij , hab) in (16)
are taken to be some Euclidean ones but Na

i (u) are the coefficients for a nontrivial N–
connection.

It should be emphasized that the band has to be contained in a compact group in
order to preserve the Riemannian d–metric. In result, we can give the

Definition 3.1. A Riemannian d–metric on a N–anholonomic vector gerbe CNQ is given
by a distinguished scalar product <,>eU = (<,>heU

, <,>veU ) on the vector bundle eU ,
defined for every object of CNQ and preserved by morphisms of such objects.

We can define a global section of a N–anholonomic vector gerbe associated to a 1–Cech
N–adapted chain q

α̂β̂
= (q̂iĵ , qâb̂

) by considering a covering space (Uα̂)α̂∈I of V when for
each element α̂ of I, an object eα̂ ∈ C(Uα̂), a section zα̂ of eα̂ and a family of morphisms

q
α̂β̂

: eα̂
β̂
→ eβ̂

α̂ one has zα̂ = q
α̂β̂

(z
β̂
). The family of global sections Z

(
q
α̂β̂

)
associated to(

q
α̂β̂

)
α̂,β̂∈I

defining a d–vector space. If V is compact and I is finite, one can prove that

Z
(
q
α̂β̂

)
is not empty. For such conditions, we can generalize for N–anholonomic vector

gerbes the Proposition 5 from Ref. [28],

Proposition 3.1. Let the N–anholonomic vector gerbe CNQ is a nonholonomic gerbe
associated to the lifting problem defined by the extension (17) and the vector bundle E and
for a reprezentation r : G → Gl(Q′) the conditions of the Diagram 1 are satisfied. Then
for each G–chain q

α̂β̂
and each element (zα̂)α̂∈I of the d–vector space of global sections

Z
(
q
α̂β̂

)
it is satisfied the condition that there is a section z of E such that z|Uα̂

= f◦ zα̂.

Proof. It is similar to that for the usual vector bundles given in [28] but it should be
considered for both h– and v–subspaces of V and E. In ”non–distinguished” form, we can
consider a global section (zα̂)α̂∈I associate to Z

(
q
α̂β̂

)
. One has zα̂ = q

α̂β̂
(z

β̂
) implying

that f(zα̂) = f(z
β̂
) on U

α̂β̂
. We conclude that the family [f(zα̂)]α̂∈I of local sections z of

E, such that z|Uα̂
= f◦ zα̂ being distinguished in N–adapted sections z|Uî

= f◦ ẑi and
z|Uâ

= f◦ zâ.�

For a chain z
α̂β̂

= zα̂ − qα̂β̂
(z

β̂
), we can construct a 2–cocycle

z
β̂γ̂
− zα̂γ̂ + z

α̂β̂
= z

α̂β̂γ̂
.

Nevertheless, even there are a chain q
α̂β̂

and a global section z = (zα̂)α̂∈I such that
zα̂ = q

α̂β̂
(z

β̂
) and f(zα̂) = z|Uα̂

it may does not exist a global section for another N–
adapted chain. One has to work with the d–vector space Z of formal global sections of the
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N–anholonomic vector gerbe CNQ. The d–vector space is defined by generators [z] where
z is an element of a set of global sections

Z
(
q
α̂β̂

)
=

[
Z

(
q̂iĵ

)
, Z

(
q
âb̂

)]
.

We can consider that any element of the space Z is defined by a formal finite sum of global
sections.

3.1.2 Lifts and d–vector gerbes

The constructions from the previous section were derived for vector bundles on N–
anholonomic manifolds. But such a nonholomic manifold in its turn has a local fibered
structure resulting in definition of a nonholonomic gerbe CNd as a d–vectorial gerbe. We
denote by Qm the typical fiber which can be associated to a N–anholonomic manifold V of
dimension n+m, from the map π : V n+m → V n, see Definition 2.1. We can also associate
a principal bundle Gl(Qm) supposing that this bundle has a reduction VK for a subgroup
K ⊂ Gl(Qm) with a central extension of type (17). For such an extension, we define a
d–vector gerbe CdH on hV when for each open set U ⊂ hV the objects of CdH(U) are
G–principal bundles over U when the quotient by H is the restriction of VK to U.

For the projection π : G→ K and (supposed to exist) representation r : G→ Gl(Q′m)
and surjection f : Q′m → Qm one can be defined a commutative Diagram 2,

Q′m Q′m

Qm Qm-
? ?

f

π(s)

r(s)

f

-

Figure 2: Diagram 2

By such a Diagram, it is defined a d–vectorial gerbe CgH,Q′ on hV when an object
of C(U) is parametrized eU ∝ r where eU is an object of CgH(U). The constructions are
adapted to the N–connection structure on U. We note that the objects and regions defined
with respect to h–subspaces are not boldfaced as those considered for N–anholonomic
vector bundles. Stating

(
Uĩ

)̃
i∈I

as a trivialization of hV, with transition functions q′
ĩj̃
, we

can define the maps q̃ĩi : Uĩ∩Uĩ → G over q′
ĩj̃
. This means that CgH,Q′ is defined by r(q̃ij̃).

There is also is a natural scalar product (a particular case of that for N–anholonomic
gerbers) in our case defined by d–vector gerbes. We can consider such a scalar product just
for the Clifford N–gerbe Cl(hV) following the fact that the group Spin is compact and its
action on Cl(Rn) preserves a scalar product. We conclude that this scalar product exists
for any object eU of Cl(U) and that a d–metric (16) states a splitting <,>eU =<,>heU

+ <,>veU . There are some alternatives: There is a family of Riemannian d–metrics on
the d–vector gerbe Cl(hV) but this is not adapted to the N–connection structure. One
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has to apply the concept of d–connection in order to define N–adapted objects. If the d–
metric structure is not prescribed, we can introduce a scalar product structure defined by
the N–connection when (gij , hab) in (16) are taken to be some Euclidean ones but Na

i (u)
are the coefficients for a nontrivial N–connection.

Definition 3.2. A d–metric (it is connected to a N–anholonomic Riemann–Cartan struc-
ture) on a d–vector gerbe CNd is given by a distinguished scalar product <,>eU = (<,>heU

, <,>veU ) on the d–vector bundle eU , defined for every object of CNd and preserved by
morphisms of such objects.

Following this Definition, for the d–vector gerbes, one holds the Proposition 3.1 and
related results.

3.2 Pre–Hibertian and d–connection structures

For simplicity, hereafter we shall work only with N–anhlonomic manifolds. We empha-
size that the constructions can be extended to vector bundles E on such a nonhonomic
manifold V. The proofs will be omitted if they are similar to those given for holonomic
manifolds and vector spaces [28] but (in our case) adapted to the splitting defined by the
N–connection structure. We shall point out the nonholonomic character of the construc-
tions. Such computations may be performed directly by applying ”boldfaced” objects.

3.2.1 Distinguished pre–Hilbertian and scalar structures

Let us consider the two elements 1z and 2z of the d–vector space Z
(
q
α̂β̂

)
=[

Z
(
q̂iĵ

)
, Z

(
q
âb̂

)]
(we use left low labels which are not indices running values). For a

partition of unity (U′
α̂′ , fα̂′)α̂′∈I′ subordinated to (Uα̂)α̂∈I .

5 Since the support of fα̂′ is
a couple of compact subsets of U′

α̂′ distinguished by the N–connection structure, we can
consider restrictions of 1zα̂(α̂′) and 2zα̂(α̂′) to U′

α̂′ denoted respectively 1zα̂α̂(α̂′) and
2zα̂α̂(α̂′). We can calculate the value

∫
< 1zα̂α̂(α̂′), 2zα̂α̂(α̂′) > which is invariant for any

partition. This proofs

Proposition 3.2. The scalar product

< 1z, 2z > =
∑
α̂′

∫
< fα̂′ 1zα̂α̂(α̂′), fα̂′ 2zα̂α̂(α̂′) > (18)

=
∑
î′

∫
< f̂i′ 1ẑîi(̂i′), f̂i′ 2ẑîi(̂i′) > +

∑
â′

∫
< fâ′ 1zââ(â′), fâ′ 2zââ(â′) >

defines a pre–Hilbert d–structure of
(
Z

(
q
α̂β̂

)
, <,>

)
.

For two formal global sections of d–vector gerbe CNd, we can write

1z = [zβ1 ] + ...+
[
zβp

]
and 2z = [zγ1 ] + ...+

[
zγp

]
5this means that for each α̂′ there is an α̂(α̂′) such that U′

α̂′ is a subset of Uα̂(α̂′)
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where zβp and zγp are global sections. The scalar product on the space Z, of formal global
sections of the d–vector gerbe CNd, can be defined by the rule

< [ 1z] , [ 2z] > = < 1z, 2z >Z
(
q
α̂β̂

)

if 1z and 2z are elements of the same set of global sections Z
(
q
α̂β̂

)
and

< [ 1z] , [ 2z] > = 0

for the elements belonging to different sets of such global sections.

Proposition 3.3. Any element zα̂ of the Hilbert completion L2(Z
(
q
α̂β̂

)
) of the pre–

Hilbert d–structure (18) is a N–adapted family of L2 sections zα̂ of eα̂ such that zα̂ =
q
α̂β̂

(z
β̂
).

Proof. The proof is similar to that for the Proposition 7 in Ref. [28] and follows defining
a corresponding Cauchy sequence

(
zα̂

)
α̂∈N of(

Z
(
q
α̂β̂

)
, <,>

)
. For nonholonomic configurations, one uses d–metric structures which

can be Riemannian or Riemann–Cartan ones depending on the type of linear connection
is considered, a not N–adapted, or N–adapted one.�

We can consider morphisms between d–objects commuting with Laplacian 4s and
define a pre–Hilbertian structure defined by

< 1z, 2z > =
∫
< 4s( 1z), 2z >,

where 4s( 1z)α̂ = 4s( 1zα̂). There is a canonical N–adapted Laplacian structure [24, 25,
27] defined on nonholonomic spaces by using the canonical d–connection structure, see
Proposition 5.2 in Appendix. We denote by Hs(Z

(
q
α̂β̂

)
) the Hilbert completion of the

pre–Hilbert space constructed by using 4s.

3.2.2 D–connections on N–anholonomic gerbes and characteristic classes

The canonical d–connection structure gives rise to a such connection on each d–object
eU of C(U) and defined a family of d–connections inducing such a structure on the N–
anholonomic gerbe C. We consider an open covering (Uα̂)α̂∈I of V and d–objects C(Uα̂)
as trivial bundles with m–dimensional fibers. The d–connection Γα̂ of a d–object eα̂ of
C(eα̂) is defined by a 1–form with coefficients (A.3) on T Uα̂. The curvature of this
d–connection is Rα̂, see (8).

Having defined the curvature of the N–anholonomic gerbe, it is possible to compute
the 2k Chern class of eα̂,

cα̂2k ∼ Tr

[(
i

2π
Rα̂

)k
]
,
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where Tr denotes the trace operation, which is invariant for transforms eα̂ → e′α̂. In a
more general case, we can compute the sum

c(C) = c1(V) + ...+ c2(V)

for the total Chern form of an N–anholonomic gerbe. This form define locally the total
Chern character

ch(C)Uα̂
= Tr

[
exp

(
i

2π
R

)]
. (19)

It should be noted that the formula (19) is defined by a d–metric (16) and its canonical
d–connection (A.2) which correspond respectively to the Riamannian metric and the Levi–
Civita connection. The notion of connection is not well–defined for general vector gerbes
but the existence of Riemannian structures gives a such possibility. In the case of N–
anholonomic frame, even a d–metric structure is not stated, we can derive a canonical d–
connection configuration by considering a formal d–metric with gij and hab taking diagonal
Euclidean values and computing a curvature tensor R[N ] by contracting the N–connection
coefficients Na

i and theirs derivatives. As a matter of principle, we can take the N–
connection curvature Ω (2) instead of R[N ] but in this case we shall deal with metric
noncommpatible d–connections. Finally, we not that we need at leas to Chern characters,
one for the d–connection structure and another one for the N–connection structure in
order to give a topological characteristic of N–anholonomic gerbes.

4 Operators and Symbols on Nonholonomic Gerbes

On N–anholonomic manifolds we deal with geometrical objects distinguished by a N–
connection structure. The aim of this section is to analyze pseudo–differential operators
Dα on such spaces.

4.1 Operators on N–anholonomic spaces

In local form, the geometric constructions adapted to a N–connection are for open sets
of couples (Rn,Rm) , or for Rn+m. Let us consider an open set U ⊂ Rn+m and denote by
Zr(U) the set of smooth functions p(v,u) defined on U×Rn+m satisfying the conditions
that for any compact U′ ⊂ U and every multi–indices α and β one has∥∥∥DαDβp(v,u)

∥∥∥ < Cα,β,U′ (1 + ||u||)r−|α| ,

for Cα,β,U′ = const.

Definition 4.1. A map p̂ of two smooth functions k(U) and k′(U) with compact support
defined on U, p̂ : k(U) → k′(U), such that locally

p̂(f) =
∫
p(v,u)f̂(u)ei<v,u>δu,

where f̂ is the Fourier transform of function f, is called to be a pseudo–differential distin-
guished operator, in brief pdd–operator.
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Now we extend the concept of pdd–operator for a N–anholonomic manifold V endowed
with d–metric structure (16). In this case, k(U) and k′(U) are smooth sections, with
compact support, of V provided with local fibered structure. A map p̂ is defined for a
covering family (Uα̂)α̂∈I satisfying the conditions:

1. Any restriction of V to Uα̂ is trivial.

2. The map p̂α̂ : k(Uα̂×Qm) → k′(U′
α̂×Q

m), where the vector space Qm is isomorphic
to vV, dim(vV) = m, defines the restriction of p̂ to Uα̂. There is a horizontal
component of the map, p̂̂i : k(Uî×Q

m) → k′(U ′
î
×Qm)

3. For any section z′ over hUα̂ = Uî and z = (z1, ...zm) = φa(z′), we can define

tb =
a=m∑
a=1

∫
pab(xi, vk)ẑa(vl)ei<x,v>δvj

and p̂a(z′) = ψ−1
a (tb), where the carts φa and ψa are such that

φa(Uî×Q
m) = ψa(Uî×Q

m) ' hU×Rm

and the map p̂a is defined by a matrix pab defining an operator of degree r.

4. The values tb, za, φa, ψa and pab can be extended to corresponding distinguished
objects

tb → tα = (ti, tb), za → zα = (zi, za),
φa → φα = (φi, φa), ψa → ψα = (ψi, ψa), pab → pαβ .

Definition 4.2. A map p̂ satisfying the conditions 1-4 defines a pdd–operator on N–
anholonomic manifold V provided with d–metric structure (16). For Euclidean values
for h- and v–components of d–metric, with respect to N–adapted frames, one gets a pdd–
operator generated by the N–connection structure.

The Definition 4.2 can be similarly formulated for N–anholonomic vector bundles E→
V. We denote by locHs(V,E), with s being a positive integer, the space of distributions
sections u of E such that D(u) is a locL2 section, where D is any differential d–operator of
order less than s. The subset of elements of locHs(V,E) with compact support is written
compHs(V,E). The space locH−s(V,E) is defined to be the dual space of compHs(V,E)
and the space compH−s(V,E) is defined to be the dual space of locHs(V,E).

Definition 4.3. The Sobolev canonical d–space Hs is an Hilbert space provided with the
norm ∥∥∥∥∫

< 4̂
s
u,u >

∥∥∥∥1/2

defined by the Laplace operator 4̂
s

+ D̂αD̂α of the canonical d–connection structure (A.2).
Every d–operator p̂ of order less than r can be extended to a continuous morphism Hs →
Hs−r.
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We can generalize the last two Definitions for N–anholonomic gerbes:

Definition 4.4. A d–operator D of degree r on N–anholonomic gerbe C provided with
d–metric and canonical d–connection structures is defined by a family of operators De of
degree r defined on an object e of the category C(U) when for each morphism ϕ : e → f
one holds Dfϕ

# = ϕ#De.

In this Definition the map ϕ# transforms a section z to ϕ(z) and it is supposed that De

is invariant under N–adapted authomorphisms of e. It is also assumed to be a continuous
operator as a map

De : compHs(U, e)→ locHs−r(U, e).

For a global distributional section z as an element ofHs(Zqαβ
), we can write q

α̂β̂

(
Deα̂

β̂

(eα̂
β̂
)
)

=(
D

eβ̂
α̂

(eβ̂α̂)
)
. This proves

Proposition 4.1. Any d–operator D of degree r defined on an N–anholonomic gerbe C
provided with d–metric and canonical d–connection structures induces two maps

D
Z

(
q
α̂β̂

) : Hs

(
Z

(
q
α̂β̂

))
→ Hs−r

(
Z

(
q
α̂β̂

))
and DZ : Hs (Z)→ Hs−r (Z) .

In this paper, we shall consider only pdd–operators preserving C∞ sections.

4.2 The symbols of nonholonomic operators

Let us consider a pdd–operator p̂α̂(f) =
∫
pα̂(v,u)f̂(u)ei<v,u>δu defined for a restric-

tion of p̂ to Uα̂ from a covering (Uα̂)α̂∈I of an open U ⊂ V.

Definition 4.5. The operator p̂α̂ is of degree r with the symbol σ(p) if there exist the
limit σ(p|Uα̂

) = limλ→∞ (pα̂(v,λu)/λr) .

This definition can be extended for a sphere bundle SV of the cotangent bundle T ∗V
of V and for π∗E being the pull–back of the vector bundle E on V to T ∗V. The symbols
defined by the matrix pαβ define a map σ : π∗E→π∗E. This map also induces a map
σS : π∗SE→π∗SE if we consider the projection πS : SV→ V.

Now we analyze the symbols of operators on a N–anholonomic vector gerbe CNQ

defined on V endowed with the operator D of degree r. For each object e of C(U), it is
possible to pull back the bundle e by the projection map πSU : SU→ U to a bundle π∗SUe
over SU. This nonholonomic bundle is the restriction of the co–sphere bundle defined by
a fixed d–metric on T ∗V. We can define a category consisting from the family CS(U) with
elements π∗SUe and baps of such elements induced by maps between elements of C(U).
In result, we can consider that the distinguished by N–connection map U → CS(U) is a
N–anholonomic gerbe with the same band as for C. For an object e, it is possible to define
the symbol σDe : π∗SUe→ π∗SUe.

Proposition 4.2. For any sequence fk of elements of Hs

(
Z

(
q
α̂β̂

))
and a constant f[0]

such that ‖fk‖s < f[0], there is a subsequence fk′ converging in Hs′ for any s > s′.
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The proof follows from the so–called Relich Lemma (Proposition 5) in Ref. [28]: we
have only to consider it both for the so–called h– and v–subspaces. For simplicity, in
this subsection, we outline only some basic properties of d–operators for N–anholonomic
gerbes which are distinguished by the N–connection structure: First, the space Op(C) of
continuous linear N–adapted maps of Hs

(
Z

(
q
α̂β̂

))
is a Banach space. Secondly, the last

Preposition states the possibility to define Or the completion of the pseudo–differential
operators in OP (C) of order r and to extend the symbol σ to this completion. Finally,
the kernel of such an extension of the symbol to Or contains only compact operators.

5 K–Theory and the N–Adapted Index

This section is devoted to K–theory groups K0 and K1 associated to symbols of d–
operators on N–anholonomic gerbes as elements of K0(T ∗V).

5.1 K–theory groups K0 and K1 and N–anholonomic spaces

We show how some basic results from K–theory (see, for instance, Ref. [40]) can be
applied for nonholonomic manifolds.

5.1.1 Basic definitions

Let us denote by An the vector space of n × n complex matrices, consider natural
injections An → An′ for n ≤ n′ and denote by A∞ the inductive limit of the vector space
An, n ∈ N. For a ring B and two idempotents a′ and b′ of B∞ = B ⊗ A∞, one says that
a ∼ b if and only if there exists elements a′, b′ ∈ A∞ such that a = a′b′ and b = b′a′. Let us
denote by [a] the class of a and by Idem(B∞) the set of equivalence classes. Representing,
respectively, [a] and [b] by elements of B ⊗An and B ⊗An′ , we can define an idempotent

of B ⊗An+n′ represented by [a + b] =
(
a 0
0 b

)
. The semi–group Idem(B∞) provided

with the operation [a] + [b] = [a+ b] is denoted by K0(B).
One can extend the construction for a compact N–manifold V and a the set of complex

valued functions C(V) on V. For compact manifolds, it is possible to consider a trivial
bundle isomorphic to V×Cr and identify a vector bundle over V to an idempotent of
C(U)⊗Ar, for U ⊂ V, which is also an idempotent of C(U)∞. This allows us to identify
K0(V) to K0(C(U)). Such a group for N–anholonomc manifold is a distinguished one,
i.e. d–groups, into two different components, respectively for the h–subspace and the
v–subspaces of V.

Now we define the K1 group: Let Alr(B) is the group of invertible elements con-
tained in the matrix group Ar(B). For r′ ≤ r, there is a canonical inclusion map
Alr′(B) → Alr(B). The group Al∞(B) denotes the inductive limit of the groups Alr(B)
and Al∞(B)con is the respective connected component. In result, the group K1(B) is
the quotient Al∞(B)/Al∞(B)con. For a compact N–anholonomic manifold V, one defines
K1(V) by K1(C(U)).
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5.1.2 N–anholonomic elliptic operators and indices

We consider a N–anholonomic gerbe C on manifold V and an elliptic operator D of
degree r on C, inducing a distinguished morphism

D : L2
(
Z

(
q
α̂β̂

))
→ H2−r

(
Z

(
q
α̂β̂

))
.

Let (1−4)−r′ be an operator of degree −r, for instance, we can take 4 to be the Laplace
operator 4̂

s
+ D̂αD̂α of the canonical d–connection structure (A.2). It is possible to

define the symbol σ(D) = (1−4)−r′D which is an operator with image in Z
(
q
α̂β̂

)
being

an invertible morphism.
For an exact sequence

0→ B1 → B2 → B3 → 0

of C∗–algebras, one has the following exact sequence in K–theory

K1 (B1)→ K1 (B2)→ K1 (B3)→ K0 (B1)→ K0 (B2)→ K0 (B3) .

Let us consider O(H), the space of continuous operators on an Hilbert space H, and denote
by K the subspace of compact continuous operators. There is the following exact sequence

0→ K →O(H)→ O(H)/K = Ca→ 0

when K0 (K) = Z. Now, it is possible to introduce the class [σ(D′)] , for D′ = (1−4)−r′D,
of K1(Ca).

Definition 5.1. The image of [σ(D′)] in K0 (K) depends only on the symbol of operator
D and define the index of this operator.

We consider finite covering families Uα̂ of V when C(Uα̂) are trivial bundles. One
holds

Proposition 5.1. One exists a class [σD] in K1(T ∗V) associated to the symbol of an
elliptic operator D of degree r on N–anholonomic gerbe C on V.

Proof. A similar result is proven in [28] for the Riemannian gerbes. We do not repeat those
constructions in distinguished form for h- and v–components but note two important differ-
ences: In the N–anholonomic case there are N–connections, d–metrics and d–connections.
In result, one can follow two ways: to define the class for the canonical d–connection
and/or to derive the class from the N–connection structure and related curvature of N–
connection.

We denote by X∗V (with the fibers isomorphic to the unit ball defined by the N–
connection) the compactification of T ∗V. The sphere N–anholonomic bundle S∗V is iden-
tified to X∗V/T ∗V. In result, one can define the exact sequence

0→ C(T ∗V)→ C(X∗V)→ C(S∗V)→0
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resulting to the following exact sequence

K1 [C(S∗V)⊗Ar] → K0 [C(T ∗V)⊗Ar] (20)
→ K0 [C(X∗V)⊗Ar]→K1 [C(S∗V)⊗Ar]→ 0.

The last sequence allows us to consider the boundary operator δ([σ′D]) as an element of
K0 [C(T ∗V)⊗Ar] being isomorphic to K0 [T ∗V] where[

σ′D
]
∈ K1 [C(S∗V)⊗Ar] ' K1 [C(S∗V)]

for any N–anholonomic component of the sequence (20). This concludes that the index of a
d–operator D depends only on the class of boundary operator δ([σ′D]). For N–anholonomic
configurations, such constructions are possible both the canonical d–connection and if it is
not defined by a d–metric, one can re–define the constructions just for the N–connection
and related metric compatible and N–adapted linear connection and resulting curvatures.

It should be noted that the class [σD] is not unique. For N–anholonomic spaces, we
can define such classes, for instance, by using the canonical d–connection or following
d–metrics and d–connections derived from the N–connection structure.

5.2 The index formulas and applications

The results stated in previous subsections allow us to deduce Atiyah–Singer type the-
orems for N–anholonomic gerbes (in general form, for any their explicit realizations like
Lagrange, or Finsler, gerbes and Riemann–Cartan gerbes provided with N–connection
structure). Such theorems my have a number of applications in modern noncommuta-
tive geometry and physics. We shall consider the topic related to Dirac d–operators and
N–anholonomic gerbes.

5.2.1 The index formulas for d–operators and gerbes

The Chern character of the cotangent bundle T ∗M induces a well known isomorphism
K0(T ∗M) ⊗ R → evHc(M,R) when for elements u∗ ⊂ T ∗M and t ∈ R one has the map
u∗ ⊗ t → tch(u∗). The constructions may be generalized for N–anholonomic gerbes, see
(19), with additional possibilities related to the N–connection and d–connection structures.

We denote by d∗V ect(Ind) the subspace of K0(V∗), with N–anholonomic manifold V∗

constructed to have local coordinates ∗uα = (xi, ∗ya), with ∗ya being dual to ya, where
uα = (xi, ya) are local coordinates on V. We consider the symbol σp of a d–operator p̂ on
corresponding to V∗ N–anholonomic gerbe. The mentioned subspace is also a subspace
of evHc(V,R). In result, the map d∗V ect(σp) → R given by ch(

[
σ′p

]
) → ind(p̂) can be

extended to a linear map evHc(V,R)→ R.
One can be performed similar constructions starting from the N–anholonomic space

T ∗V and using the distinguished isomorphism

K0(T ∗V)⊗ R→ evHc(V,R).

In this case, we introduce dV ect(Ind) as the subspace of K0(T ∗V) generated by σp related
to T ∗V. Here we also note that the symbol operator σp and related maps can be introduced
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for d–metric and canonical d–connection structures or for a ”pure” N–connection structure.
So, there are two classes of symbols σp (both in the case related to the constructions with
V∗ and to the case for constructions with T ∗V), i. e. four variants of relations Chern
character – index of d–operator and corresponding extensions to linear maps.

The above presented considerations consist in a proof (of four Atiyah–Singer type
theorems):

Theorem 5.1. The Poincare duality of N–anholonomic gerbes implies the existence of
classes t∗d(V), t∗V (V) and td(V), tV (V) for which, respectively,

Ind∗d(p̂) =
∫
V∗
ch

([
σ′p

])
∧ t∗d(V), ch

([
σ′p

])
related to d–metric,

Ind∗N (p̂) =
∫
V∗
ch

([
σ′p

])
∧ t∗N (V), ch

([
σ′p

])
related to N–connection

and

Indd(p̂) =
∫

T ∗V
ch

([
σ′p

])
∧ td(V), ch

([
σ′p

])
related to d–metric,

IndN (p̂) =
∫

T ∗V
ch

([
σ′p

])
∧ tN (V), ch

([
σ′p

])
related to N–connection.

The index formulas from this Theorem present topological characteristics for Lagrange
(in particular, Finsler) spaces and gerbes, see (10) and (12), of nonholonomic Riemann–
Cartan spaces, see ansatz (16), considered for constructing exact solutions in modern
gravity [19].

5.2.2 N–anholonomic spinors and the Dirac operator

The theory and methods developed in this paper have a number of motivations fol-
lowing from applications to the theory of nonholonomic Clifford structures and Dirac
operators on N–anholonomic manifolds [25, 26, 27, 24]. In Appendix 6, there are given
the necessary results on N–anholonomic spinor structurs and spin d–connections.

The Dirac d–operator:
We consider a vector bundle E on an N–anholonomic manifold V (with two compatible

N–connections defined as h– and v–splittings of TE and TV)). A d–connection

D : Γ∞(E)→ Γ∞(E)⊗ Ω1(V)

preserves by parallelism splitting of the tangent total and base spaces and satisfy the
Leibniz condition

D(fσ) = f(Dσ) + δf ⊗ σ

for any f ∈ C∞(V), and σ ∈ Γ∞(E) and δ defining an N–adapted exterior calculus by
using N–elongated operators (3) and (4) which emphasize d–forms instead of usual forms
on V, with the coefficients taking values in E.
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The metricity and Leibniz conditions for D are written respectively

g(DX,Y) + g(X,DY) = δ[g(X,Y)], (21)

for any X, Y ∈ χ(V), and
D(σβ) .= D(σ)β + σD(β), (22)

for any σ, β ∈ Γ∞(E).
For local computations, we may define the corresponding coefficients of the geometric

d–objects and write

Dσβ́

.= Γά
β́µ

σά ⊗ δuµ = Γά
β́i
σά ⊗ dxi + Γά

β́a
σά ⊗ δya,

where fiber ”acute” indices, in their turn, may split ά .= (́ı, á) if any N–connection structure
is defined on TE. For some particular constructions of particular interest, we can take E =
T ∗V and/or any Clifford d–algebra E = ICl(V) with a corresponding treating of ”acute”
indices to of d–tensor and/or d–spinor type as well when the d–operator D transforms
into respective d–connection D and spin d–connections ∇̂S (A.18), ∇̂SL (A.19).... All
such, adapted to the N–connections, computations are similar for both N–anholonomic
(co) vector and spinor bundles.

The respective actions of the Clifford d–algebra and Clifford–Lagrange algebra can be
transformed into maps Γ∞(Sp)⊗Γ(ICl(V)) to Γ∞(Sp) by considering maps of type (A.8)
and (A.14)

ĉ(ψ̆ ⊗ a) .= c(a)ψ̆ and ĉ(ψ ⊗ a) .= c(a)ψ.

Definition 5.2. The Dirac d–operator (Dirac–Lagrange operator) on a spin N–anholonomic
manifold (V,Sp, J) where J : Sp→ Sp is the antilinear bijection, is defined

ID .= −i (ĉ ◦ ∇S) (23)
=

(
ID = −i ( ĉ ◦ ∇S), −ID = −i ( −ĉ ◦ −∇S)

)
Such N–adapted Dirac d–operators are called canonical and denoted ÎD = ( ÎD, −ÎD )
if they are defined for the canonical d–connection (A.3) and respective spin d–connection
(A.18) ((A.19)).

Now we can formulate the (see Proof of Theorem 6.1 [24])

Theorem 5.2. Let (V,Sp, J) be a spin N–anholonomic manifold ( spin Lagrange space).
There is the canonical Dirac d–operator (Dirac–Lagrange operator) defined by the almost
Hermitian spin d–operator

∇̂S : Γ∞(Sp)→ Γ∞(Sp)⊗ Ω1(V)

commuting with J and satisfying the conditions

(∇̂Sψ̆ | φ̆) + (ψ̆ | ∇̂Sφ̆) = δ(ψ̆ | φ̆)

and
∇̂S(c(a)ψ̆) = c(D̂a)ψ̆ + c(a)∇̂Sψ̆

for a ∈ ICl(V) and ψ̆ ∈ Γ∞(Sp) determined by the metricity (21) and Leibnitz (22)
conditions.
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The Clifford N–gerbe and the Dirac operator:
We consider the Clifford N–gerbe ClN (V) on a N–anholonomic manifold V, see section

3, provided with d–connection structure (16). For an opening covering (Uα̂)α̂∈I of V, the
canonical d–connection (A.2) is extended on all family of Uα̂ as a corresponding family of
N–adapted so(n+m) forms Γ̂α̂ on Uα̂ satisfying

Γ̂α̂ = ad(q
β̂α̂

)−1Γ̂
β̂

+ (q
β̂α̂

)−1δ
(
q
β̂α̂

)
where δ

(
q
β̂α̂

)
is computed by using the N–elongated partial derivatives (3) and (4). This

d–connection induces the covariant derivative δ + Γ̂α̂. Fixing an orthogonal basis eα̂, to
which (3) are transformed in general, on TUα̂, we can write

Γ̂α̂ =

Γ̂î =
k̂=n∑
k̂=1

Γ̂
îk̂
e
k̂
, Γ̂â =

b̂=n+m∑
b̂=n+1

Γ̂
âb̂
e
b̂

 .

In local form, the d–spinor covariant derivative was investigated in Refs. [25, 26, 27, 24].
We can extend it to a covering family (Uα̂)α̂∈I of V by introducing the d–object %

β̂α̂
= −1

4

Γ̂
β̂α̂

= −%
α̂β̂
, see formula (A.18) in Appendix.

Let eU be an object of ClN (U). For a trivialization (Uα̂)α̂∈I , we can generalize for
N–anholonomic gerbes the Definition 5.2 and write

IDeU

.=
α̂=n+m∑

α̂=1

eα̂ID =

 î=n∑
î=1

êiID,
â=n+m∑
â=n+1

eâ
−ID


where ID is defined locally by (23). On any such object one holds a distinguished variant of
the Lichnerowicz–Weitzenbock formula (defined by the d–connection and/or N–connection
structure)

D2 = ID∗ID +
1
4
←−
R

where ID∗ID is the Laplacian and
←−
R is the scalar curvature (A.6) of the corresponding d–

connection (the definition of curvature of a general nonholonomic manifold is not a trivial
task [31, 32] but for N–anholonomic manifolds this follows from a usual N–adapted tensor
and differential calculus [33, 34, 35, 36] (see the suppersymmetric variant in [37]) like that
presented in Appendix 5.2.2.

Such global d–spinors are canonically d–harmonic if IDeα̂
(
←−
Rα̂) = 0 for each

←−
Rα̂. If a d–

metric (16) is not provided, we can define a formal canonical d–connection N Γ̂α
βγ computed

by formulas (A.3) with gij and hab taken for Euclidean spaces (this metric compatible
canonical d–connection is defined only by the N–connection coefficients). Introducing
N Γ̂α

βγ into (A.4) and (A.6), one computes respectively the curvature NRα
β and scalar

curvature N←−R.
For the Riemannian gerbes derived for compact Riemannian manifolds V with strictly

positive curvature, it is known the result that the topological class τ(V ) associated to the
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index formula for operators on the Cl(V ) gerbe is zero [28]. One holds a similar result
for N–anholonomic manifolds and gerbes Cl(V) but in terms of d–metrics and canonical
d–connections defining τ̂(V) = 0. We can compute the class N τ̂(V) = 0 even a d–metric
is not given but its N←−R is strictly positive and the N–anholonomic manifold is compact.

Acknowledgement: The author is grateful to C. Castro for useful discussions.

The Canonical d–Connection

A d–connection splits into h– and v–covariant derivatives, D = D + −D, where
Dk =

(
Li

jk, L
a
bk

)
and −Dc =

(
Ci

jk, C
a
bc

)
are correspondingly introduced as h- and v–

parametrizations of (6),

Li
jk = (Dkej)cei, La

bk = (Dkeb)cea, Ci
jc = (Dcej)cei, Ca

bc = (Dceb)cea.

The components Γγ
αβ =

(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
completely define a d–connection D on a

N–anholonomic manifold V.
The simplest way to perform a covariant calculus by applying d–connections is to use

N–adapted differential forms like Γα
β = Γα

βγe
γ with the coefficients defined with respect to

(4) and (3).

Theorem 5.3. The torsion T α (7) of a d–connection has the irreducible h- v– components
(d–torsions) with N–adapted coefficients

T i
jk = Li

jk − Li
kj , T

i
ja = −T i

aj = Ci
ja, T

a
ji = Ωa

ji,

T a
bi = T a

ib =
∂Na

i

∂yb
− La

bi, T
a
bc = Ca

bc − Ca
cb. (A.1)

Proof. By a straightforward calculation, we can verify the formulas.�

The Levi–Civita linear connection ∇ = {∇Γα
βγ}, with vanishing both torsion and

nonmetricity, is not adapted to the global splitting (1).
One holds:

Proposition 5.2. There is a preferred, canonical d–connection structure, D̂, on N–
aholonomic manifold V constructed only from the metric and N–connection coefficients
[gij , hab, N

a
i ] and satisfying the conditions D̂g = 0 and T̂ i

jk = 0 and T̂ a
bc = 0.

Proof. By straightforward calculations with respect to the N–adapted bases (4) and (3),
we can verify that the connection

Γ̂α
βγ = ∇Γα

βγ + P̂α
βγ (A.2)

with the deformation d–tensor 6

P̂α
βγ = (P i

jk = 0, P a
bk = eb(Na

k ), P i
jc = −1

2
gikΩa

kjhca, P
a
bc = 0)

6P̂α
βγ is a tensor field of type (1,2). As is well known, the sum of a linear connection and a tensor field

of type (1,2) is a new linear connection.
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satisfies the conditions of this Proposition. It should be noted that, in general, the com-
ponents T̂ i

ja, T̂
a
ji and T̂ a

bi are not zero. This is an anholonomic frame (or, equivalently,
off–diagonal metric) effect.�

With respect to the N–adapted frames, the coefficients
Γ̂γ

αβ =
(
L̂i

jk, L̂
a
bk, Ĉ

i
jc, Ĉ

a
bc

)
are computed:

L̂i
jk =

1
2
gir (ekgjr + ejgkr − ergjk) , (A.3)

L̂a
bk = eb(Na

k ) +
1
2
hac

(
ekhbc − hdc ebN

d
k − hdb ecN

d
k

)
,

Ĉi
jc =

1
2
gikecgjk, Ĉ

a
bc =

1
2
had (echbd + echcd − edhbc) .

For the canonical d–connection, there are satisfied the conditions of vanishing of torsion
on the h–subspace and v–subspace, i.e., T̂ i

jk = T̂ a
bc = 0.

The curvature of a d–connection D on an N–anholonomic manifold is defined by the
usual formula

R(X,Y)Z + DXDY Z−DY DXZ−D[X,X]Z.

By straightforward calculations, we can prove:

Theorem 5.4. The curvature Rα
β + DΓα

β = dΓα
β − Γγ

β ∧ Γα
γ of a d–connection has the

irreducible h- v– components (d–curvatures) of Rα
βγδ,

Ri
hjk = ekL

i
hj − ejLi

hk + Lm
hjL

i
mk − Lm

hkL
i
mj − Ci

haΩ
a
kj ,

Ra
bjk = ekL

a
bj − ejLa

bk + Lc
bjL

a
ck − Lc

bkL
a
cj − Ca

bcΩ
c
kj ,

Ri
jka = eaL

i
jk −DkC

i
ja + Ci

jbT
b
ka, (A.4)

Rc
bka = eaL

c
bk −DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebCi

jc + Ch
jbC

i
hc − Ch

jcC
i
hb,

Ra
bcd = edC

a
bc − ecCa

bd + Ce
bcC

a
ed − Ce

bdC
a
ec.

Contracting respectively the components of (A.4), one proves

Corollary 5.1. The Ricci d–tensor Rαβ + Rτ
αβτ has the irreducible h- v–components

Rij + Rk
ijk, Ria + −Rk

ika, Rai + Rb
aib, Rab + Rc

abc, (A.5)

for a N–holonomic manifold V.

Corollary 5.2. The scalar curvature of a d–connection is

←−
R + gαβRαβ = gijRij + habRab, (A.6)

defined by the ”pure” h– and v–components of (A.5).
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6 Nonholonomic Spinors and Spin Connections

We outline the necessary results on spinor structures and N–connections [25, 26, 27, 24].
Let us consider a manifold M of dimension n. We define the the algebra of Dirac’s

gamma matrices (in brief, h–gamma matrices defined by self–adjoints matrices Ak(C)
where k = 2n/2 is the dimension of the irreducible representation of the set gamma ma-
trices, defining the Clifford structure ICl(M), for even dimensions, or of ICl(M)+ for odd
dimensions) from the relation

γ ı̂γ ̂ + γ ̂γ ı̂ = 2δı̂̂ II. (A.7)

We can consider the action of dxi ∈ ICl(M) on a spinor ψ ∈ Sp via representations

c(dxı̂) .= γ ı̂ and c(dxi)ψ .= γiψ ≡ ei ı̂ γ ı̂ψ. (A.8)

For any tangent bundle TM and/or N–anholonomic manifold V possessing a local (in
any point) or global fibered structure F (being isomorphic to a real vector space of dimen-
sion m) and, in general, enabled with a N–connection structure, we can introduce similar
definitions of the gamma matrices following algebraic relations and metric structures on
fiber subspaces,

eâ
.= eâa(x, y) e

a and ea .= eaa(x, y) e
a, (A.9)

where

gab(x, y) eâa(x, y)e
b̂
b(x, y) = δâb̂ and gab(x, y) eaa(x, y)e

b
b(x, y) = hab(x, y).

In a similar form, we define the algebra of Dirac’s matrices related to typical fibers (in
brief, v–gamma matrices defined by self–adjoint matrices M ′

k(C) where k′ = 2m/2 is the
dimension of the irreducible representation of ICl(F ) for even dimensions, or of ICl(F )+

for odd dimensions, of the typical fiber) from the relation

γâγ b̂ + γ b̂γâ = 2δâb̂ II. (A.10)

The action of dya ∈ ICl(F ) on a spinor −ψ ∈ −Sp is considered via representations

−c(dyâ) .= γâ and −c(dya) −ψ .= γa −ψ ≡ eaâ γâ −ψ. (A.11)

A more general gamma matrix calculus with distinguished gamma matrices (in brief,
d–gamma matrices) can be elaborated for N–anholonomic manifolds V provided with d–
metric structure g = [g,− g] and for d–spinors ψ̆ .= (ψ, −ψ) ∈ Sp .= (Sp, −Sp), which are
usual spinors but adapted locally to the N–connection structure, i. e. they are defined
with respect to N–elongated bases (3) and (4). Firstly, we should write in a unified form,
related to a d–metric (16), the formulas (A.9),

eα̂
.= eα̂a(u) e

α and eα .= eαα(u) eα, (A.12)

where
gαβ(u) eα̂α(u)eβ̂β(u) = δα̂β̂ and gαβ(u) eαα(u)eββ(u) = gαβ(u).
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The second step, is to consider d–gamma matrix relations (unifying (A.7) and (A.10))

γα̂γβ̂ + γβ̂γα̂ = 2δα̂β̂ II, (A.13)

with the action of duα ∈ ICl(V) on a d–spinor ψ̆ ∈ Sp resulting in distinguished irreducible
representations (unifying (A.8) and (A.11))

c(duα̂) .= γα̂ and c = (duα) ψ̆ .= γα ψ̆ ≡ eαα̂ γα̂ ψ̆ (A.14)

which allows us to write

γα(u)γβ(u) + γβ(u)γα(u) = 2gαβ(u) II. (A.15)

In the canonical representation we can write in irreducible form γ̆
.= γ ⊕ −γ and ψ̆

.=
ψ ⊕ −ψ, for instance, by using block type of h– and v–matrices, or, writing alternatively
as couples of gamma and/or h– and v–spinor objects written in N–adapted form,

γα .= (γi, γa) and ψ̆ .= (ψ, −ψ). (A.16)

The decomposition (A.15) holds with respect to a N–adapted vielbein (3). We also note
that for a spinor calculus, the indices of spinor objects should be treated as abstract
spinorial ones possessing certain reducible, or irreducible, properties depending on the
space dimension. For simplicity, we shall consider that spinors like ψ̆, ψ, −ψ and all type
of gamma objects can be enabled with corresponding spinor indices running certain values
which are different from the usual coordinate space indices. In a ”rough” but brief form
we can use the same indices i, j, ..., a, b..., α, β, ... both for d–spinor and d–tensor objects.

The spin connection S∇ for the Riemannian manifolds is induced by the Levi–Civita
connection ∇Γ,

S∇ .= d− 1
4
∇Γi

jkγiγ
j dxk. (A.17)

On N–anholonomic spaces, it is possible to define spin connections which are N–adapted
by replacing the Levi–Civita connection by any d–connection.

Definition 6.1. The canonical spin d–connection is defined by the canonical d–connection
(A.2) as

S∇̂ .= δ − 1
4

Γ̂α
βµγαγ

βδuµ, (A.18)

where the absolute differential δ acts in N–adapted form resulting in 1–forms decomposed
with respect to N–elongated differentials like δuµ = (dxi, δya) (4).

We note that the canonical spin d–connection S∇̂ is metric compatible and contains
nontrivial d–torsion coefficients induced by the N–anholonomy relations (see the formulas
(A.1) proved for arbitrary d–connection). It is possible to introduce more general spin
d–connections SD by using the same formula (A.18) but for arbitrary metric compatible
d–connection Γα

βµ.
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Proposition 6.1. On Lagrange spaces, there is a canonical spin d–connection (the canon-
ical spin–Lagrange connection),

SL∇̂ .= δ − 1
4

LΓα
βµγαγ

βδuµ, (A.19)

where δuµ = (dxi, δyk = dyk + LNk
i dx

i).

We emphasize that even regular Lagrangians of classical mechanics without spin par-
ticles induce in a canonical (but nonholonomic) form certain classes of spin d–connections
like (A.19).

For the spaces provided with generic off–diagonal metric structure (13) (in particular,
for such Riemannian manifolds) resulting in equivalent N–anholonomic manifolds, it is
possible to prove a result being similar to Proposition 6.1:

Remark 6.1. There is a canonical spin d–connection (A.18) induced by the off–diagonal
metric coefficients with nontrivial Na

i and associated nonholonomic frames in gravity the-
ories.

The N–connection structure also states a global h– and v–splitting of spin d–connection
operators, for instance,

SL∇̂ .= δ − 1
4

LL̂i
jkγiγ

jdxk − 1
4

LĈa
bcγaγ

bδyc. (A.20)

So, any spin d–connection is a d–operator with conventional splitting of action like ∇S ≡
(∇S, −∇(S)), or ∇(SL) ≡ ( ∇SL, −∇SL). For instance, for ∇̂SL ≡ ( ∇̂

SL
, −∇̂

SL
), the

operators ∇̂SL and −∇̂SL act respectively on a h–spinor ψ as

∇̂
SL
ψ
.= dxi δψ

dxi
− dxk 1

4
LL̂i

jkγiγ
j ψ (A.21)

and
−∇̂

SL
ψ
.= δya ∂ψ

dya
− δyc 1

4
LĈa

bcγaγ
b ψ

being defined by the canonical d–connection (A.2).
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