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Abstract

In this note our goal is to introduce a generalized quaternionic structures, on the
total space of a complex Finsler space. Some important properties of this structures
are emphasized. A special approach is devoted to the commutative almost quater-
nionic connections.
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1 Introduction

Let (M, F) be a complex Finsler manifold, i.e., M is a smooth manifold and F' is

a Finsler metric on M. In this paper, we introduce the following metric G on T'M (cf.
Section 3):

G(z,m) = gi5(2,m)d2" ® Az + a(L)g;3 (2, n)on’ @ 67, (1.1)

where @ : Im(L) C R, — Ry, and L := F2.

We define an almost hyper-complex structure (G, Ji,J2), on the complexified holo-
morphic tangent bundle 7'M of a complex manifold M, where J; is the natural complex
structure and J is an almost complex structure defined by the help of a = a(L). We
demonstrate that (7'M, Jy, J2, J3) is a commutative quaternion structure, [Mu2|, where
J3 = J1 9} JQ.

In the rest of the § 4 we are concerned with the integrability conditions of the structures.
How Ji is the natural complex structure, his Nijenhuis tensor field is vanishing, but the
case of Jy is more complicated. Theorem 3.3. is the main result of this section, and tells
when the (J1,J2) structure is integrable.
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In Section 4 we evaluate under what conditions (7'M, G, Jy,J2) an almost hyper-
Hermitian is almost hyper-Kéhlerian or at least hyper-Kahlerian structure. This condi-
tions are in the Proposition 4.1., Theorem 4.2. and Theorem 4.3.

The last part ot this paper is about the construction of a metric compatible linear
connection with the commutative quaternion structure (Jp, Ja).

2 Preliminaries

Let M be a complex manifold, dimgM = n and (zk) local complex coordinates in a
chart (U, ). The holomorphic tangent bundle 7'M has a natural structure of complex
manifold, dimcT’M = 2n, and the induced coordinates in a local chart in v € T'M are
u = (¥, nF). The changes of local coordinates in u are given by:

o 90 929 59
ozk 0zk 0z * 02102k onp'h’ (2:2)
o _ oo
877"3 T 9k 877”"

Consider the sections of the complexified tangent bundle of 7M. Let VI'M C T'(T'M)
be the vertical bundle, locally spanned by {%}, and VT"M its conjugate. The idea of
complex nonlinear connection, briefly (c.n.c.), is an instrument in ’linearization’ of the
geometry of 7'M manifold. A (c.n.c.) is a supplementary complex subbundle to VT’ M in
T(T'M), i.e. T'(T'M) = HT'M @& VT'M. The horizontal distribution H,T"M is locally
spanned by

590

5 = o~ Mgy (23)

where Ng(z,n) are the coefficients of the (c.n.c.). The pair {6 := 0, 0 = %} will be

52k
called the adapted frame of the (c.n.c.) which obey to the change rules d; = gzz 53- and
O = az/’: 6; By conjugation everywhere we obtain an adapted frame {7, 9z} on T (T'M).

The dual adapted bases are {dz*,dn*} and {dz*, 57"}
The action of natural complex structure on Te(T'M) is

J(0) = i0;  J(Op) =i J(Of) = —idy; J(;) = oy (2.4)
wich in view of (2.3) yields

J(6) = iy J(Op) = i0k;  J(0p) = —idp;  J(Of) = i0y, (2.5)
and hence H(T'M) and H(T'M) are J invariant.

The base manifold of a complex Finsler space is 7'M and the main objects of this
geometry operate on the section of the complexified tangent bundle T(T" M), which itself
is decomposed into horizontal, vertical and their conjugates subbundles by a complex
nonlinear connection N, uniquely determined by the complex Finsler function, [3], [5].
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Definition 2.1. A complex Finsler metric on M is a continuous function F : T'"M — R
satisfying:

(a) L := F? is smooth on T'M := TM\{0}.
(b) F(z,m) > 0, the equality holds if and only if n = 0;
(c) F(z,An) = |A|F(z,n) for VA € C;
(d) the Hermitian matrix
(2.n) O*L
S\ 2 -
TSN anion
is positive-definite on T'M.
Definition 2.2. The pair (M, F') is called a complex Finsler space.

The assertion (c) says that L is positively homogeneous with respect to the complex
norm, i.e. L(z,An) = A\L(z,7) for any A € C. The assertion (d) allows us to define
a Hermitian metric structure on 7'M, because gi; is a d-tensor complex nondegenerate,
called in [5] as the fundamental metric tensor of the complex Finsler space (M, F'), with
the inverse g” and ¢’'g,; = 53

The homogenity condltlon of the complex Finsler metric allows us to enumerate some
important results. Applying the Euler’s Theorem for L = F?2, we have:

Proposition 2.1. The complex Finsler metric satisfies the conditions

0 OL
(a) 377Lk77k L; 877 =L;
o, -
(b) 950° = 55 957 = Gei L = gign'i's
(c) Gtnt = 0; it = 0; G2’ =0;

j . 995 5 2L
(d) gij77Z = 0; 8n’g 7’ = g, where gij = o

A fundamental problem in a complex Finsler space remains that of determinating the
(c.n.c) function only on complex Finsler metric F. A well-known solution is provided by
the complex Chern-Finsler connection, [3]. Determined from the technique of good vertical

connection, it is proved that the Chern-Finsler connection is a unique N — (c.l.c) of (1,0)-
CF CF CF CF
type. With the notations in [5], the Chern-Finsler connection is: DI" = (Nz ;kv gk)

where

CF CF

w09 g aa O°L 0T ni8gm . G w09
N;: mi ! — o, i . Ll- — M Jm Cz — M J 26
Vi azj 77 g azjaﬁm7 ]k g 5Zk Y ]k g a,r/k- Y ( )
Cf Cf
and L%k:C;ikzo
CF CF

With a straightforward computation we obtained that L = 8 Ny.



88 Annamdria Szasz

Observation 2.1. As a direct consequance of (2.6) it results

oL
oL =6L=0z=— | =0 2.7
=oir =0 () (27)
Observation 2.2. We will use the notation for the Chern-Finsler connection whithout
the indexes CF,

Locally, in adapted frame fields of the (c.n.c) Chern-Finsler N, the components of the
Lie brackets are:

[0;,06] = ((5kN’ (5Nk)8 =0; (2.8)
[6;,0] = (6:N}))0; (@Mﬁ)(%;
.0 = @)
[6.00] = (@uN)os
[aj,ak] = 0 {83,3,;} = 0;
A simple computation get: o ' ‘
(8EN;‘)9im = (&ﬁN})giE' (2.9)

Now we can add that the nonzero torsion of the complex Chern-Finsler connection are
only:

Ti = Ly — Liy = ONf = OpN; QY = Cly; Ol = NG ply = GpN) - (2.10)

In the terminology of Abate and Patrizio [3], the complex Finsler space (M F) is
strongly Kéahler iff Tzk = 0, Kéhler iff TZ n = 0, and weakly Kéahler iff glean =0.In
[4] is proved that the strongly Kahler and the Kahler notions actually comc1de

3 Integrabilty of (Ji, J2, J3) structure
Consider a generalized Sasaki metric G on T'M given by
G(z,n) = g;5(z,m)dz" ® Az’ + a(L)g;5(2,m)dn' @ o7, (3.11)

where a : Im(L) C Ry — Ry
Let J; the natural complex structure on 7'M ), and J5 an other almost complex struc-
ture on 7'M defined by:

J(6r) =i, J2(0) = ;aak (3.12)
Ji(dg) = —idg 5 Ja(dp) = \}aék
J1(0)) = 10k P Jo(Ok) = —Vady,

N(0F) =—idy  ; Ja20) = —Vady.
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We will denote whith J3 := Jj o Jo. The following relations are true:
Jo= Ji=-1, Ji=1I (3.13)
Jidy = JoJi=J3
Jids = J3Ji=—J
Jods = J3Jo=—-J1

Using (3.12) and (3.13), according to [6], we obtain the next theorem:
Theorem 3.1. (T'M, Jy, Jo, J3) is a commutative quaternion structure.

Now we shall study the integrability problem for the obtained almost commutative
quaternion structure. The integrability conditions for such a structure are expressed with
the help of various Nijenhuis tensor fields obtained from the tensor fields Ji, Jo,J3 = JiJo.
For a tensor field K of type (1,1) on a given manifold, we can consider its Nijenhuis tensor
field Ng defined by

Ng(X,Y) =KX, KY] - K[X,KY] - K[KX,Y]+ K2[X,Y],

where X, Y are vector fields on the given manifold. For two tensor fields K, L of type (1,1)
on the given manifold, we can consider the corresponding Nijenhuis tensor field Nk 1,
defined by
Ngr(X,)Y) = [KX,LY|+[LX,KY] - K(X,LY]+[LX,Y]) —
—L(IKX,Y]|+[X,KY])+ (KL+ LK) [X,Y].

The almost commutative quaternion structure defined by (J1, J2, J3) is integrable if N =
0, No = 0, where N1, Ny are the Nijenhuis tensor fields of Ji, Jo. Equaivalently, the struc-
ture is integrable if N7 + No + N3 = 0, or if Nio = 0, where N3 is the Hijenhuis tensor

field of J3 = JyJ2 and Njpo is the Nljenhuis tensor field of Jy, Js.
Since Jp is the natural complex structure, then it is integrable, i.e.

N; =0.
Remains the study of No. With the help of the Lie brackets (2.8) we have obtained:

a (0L oL : i i
Ny[65,6,] = 22 (877]-5 o 5l> O + (Li; — L)
o (0L, OL : IV W SN
Ny(65,07) = 202 (ank aj ani ak) - (5,;,]\7]4)81 + (5leé~c)&l_ (6jNI%)5i+ (8,;:]\7]4)51
. a (9L :
. a 8L I W VAT A A
Na(d0p) = o 5~ o) o ((0N)07 = (FEN})& ) + (D ND)D; — (BeN )
. a’ oL :
N2(0,0) = o (anj k8J> +a 8 Nk )3 (&cNJl')dl)
.. a’ oL l I\ 3 arl A l
Na(05.85) = o —jak kaj +a 6kN — (6;Np)0p + (9 Np) o7 — <515Nj)5l)
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We have replaced the expressions for the torsions (2.10) in the above relations, and is
obtain:

No(65,01) = ;;/2 <§7]Lj§,g ng J> O — T}y0,

No(0;,8;) = ;;/2 <§§€aj SL] ak> ph0r+ oo — 040+ OF oy
No(85,0) = ;‘; (gfﬂ SL] 5k) 8 + T}0,

No(5;,85) = ;‘a (gﬁLk - SLJ 5k> @ (6L~ 0481 + 0 — sl
No(d;,0) = ;a (;,Lj - §i5k> O + aThd)

Ny(9;,0) = ;‘a (;Lj R — nga ) +a (el Oy — O, 0 + ol 07 pg,gél)

From the linear independence of the base fields it results that (7'M, G, J2) is complex if
and only if:

ALy Ly l

O, = 0 and plp =0, (3.14)

and their conjugates.

Theorem 3.2. The manifold (T"M, G, Js) is complex if and only if (M, F) is Kdhler, the
torsions @l— and p - are zero and
OL OL
oL — ==L ) =o. 3.15
<<9773 o ) (319

Corollary 3.1. (T"M, G, J3) is a complex manifold if and only if (M, F) is a generalized
complex Berwald space and @é‘fc = 0.

Observation 3.1. The notion of generalized complex Berwald space is described in [AM].

We have seen, that J; is integrable, J is integrable when the conditions in the Theorem
3.2. are fullfield, then the integrability condition for the (Ji, Jo2, J3) quaternion structure
are in the next theorem:

Theorem 3.3. The commutative quaternion structure (Ji, Ja, J3) is intergable if and only
if (M, F) is a generalized complex Berwald space and @;‘E =0.
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4 Hyper-Kéahler Structures on 7'M

The structure defined in (3.13) is one hypercomplex four dimensional. Moreover,
(T'M, G, Jy,J2) has an almost hyper-Kéahlerian structure if the following conditions are
satisfied:

(a) (T'M, G, Jy,J2) is an almost hyper-Hermitian manifold;
(b) The fundamental 4-form € is closed.

For the point (a) we shall be interested in the conditions under wich the metric G
is almost Hermitian with respect to the almost complex structures Ji, Jo, considered in
(3.12), i.e.

G(JlX, J1Y) = G(X, Y) G(JQX, JQY) = G(X, Y), VX,Y € TC(T/M).
We have

Proposition 4.1. (T'M, G, J1) (T'M, G, J2) and (T'M, G, J3) are almost Hermitian man-
ifolds, i.e. G(JX,JY) = G(X,Y) VX, Y.

Proof. For J; the condition G(J1 X, 1Y) = G(X,Y) is verified imediatly, and for .J it’s
enough to verify for the elements of the adapted frame < dy, O, 0% (9,;} the above relations.
The nonzero values of G(JoX, JoY') are

Ly L
Va ' a
1

= —agip = gk = G4, 0F)

G(J20j, 20y) = G(=Vadj, —/asy) = aG(65,6;) =
a- g5 = G(0;,0),

. . 1. .
G(J26j, J20;) = G(—=0;, 512)256;(33'7512):

For the almost hyper-Hermitian manifold (7'M, G, J1, J2) the fundamental 2—forms
¢1, ¢2 are defined by

¢1(X1Y):G(X7J1Y)> ¢2(X7Y):G(X>J2Y)7

where X, Y are vector fields on sections of Teo(T'M).

Since we have a third almost complex structure J3 = J1Jo which is almost Hermitian
with respect to G, we can consider a third 2—form ¢3 defined by ¢3(X,Y) = G(X, J3Y),
next we have the fundamental 4-form €2, defined by

Q=01 Np1+ 2 NP2+ ¢3 A ¢3.

The almost hyper-Hermitian manifold (7'M, G, Ji, J3) is almost hyper-Kéhlerian if the
fundamental 4-form ) is closed, i.e. d2 = 0. The condition for €2 to be closed is equivalent



92 Annamdria Szasz

to the conditions for ¢, 2 (and hence for ¢3 too) to be closed, i.e. dg; = 0,d¢pe = 0. In
our case, it is more convenient to study the conditions under which the 2-forms ¢1, ¢ are
closed.

The expressions of ¢1, ¢ in adapted local frames are

o1(z,m) = —igj,;dzi AdE — ia(L)gj,;(Snj A 6. (4.16)
pa(z,m) = —\/a(L)gj,;,dzj A 07" + \/a(L)ng(S??j AdzR. (4.17)

With a straightforward computation using properties of the Chern-Finsler (c.n.c.) results

d¢y

—i {(5igj,;,dzi Adzd A dZF + brg;pdE A dd A dZR+
Oi(ag;r)dn’ A on* A dn' + Oslag,p)on A o0 A ST +

3igj,;(577i Adzd A dZF + agjjgéh(le)énj Adz A dzh} +
-@gﬂ-ﬂéﬁi A dz A dZF — ag;pdn (NY)on"™ A dz! A dzh} +

—5i(agﬂ;)dzi A6 A SR — agj,fﬁh(Nlj)dzl AdnP A 5ﬁk] +

+ o+ o+ + o+

6,(ag;z)dZ A S A 67F + ag,rdp(NF)S1P A dZH A 577’1} -

—  agp0s(N7)d2' A 67" A 6" + agpon (NF)on? A dzh A 577"} =

—

1 . . A A
= —i {2(5igjk — 8;g;5)dz" Ad2d A dEF + (02,5 — 059;5)d2" A d2? A dzF+

\V)

/
a

13 . . I . .
o giion A 67" A o' + a’a—r_]igﬂ;énj A STF A 6T +

[&«gﬂ; — ag;i0; (N,lc) dz? A dzZF A Snt + [@gﬂ; — agmék(]\f,ll) dzd A dZF A 677i}
So we have deduced
Theorem 4.1. The manifold (T'M, G, Jy) is Kahler if and only if:

0i9;k = 09k (4.18)
ad(L)y=0<a(l)=ceR
9", = ad;(NY})

and their conjugates.
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Analogous for d¢s we have:

/

dpo = — (6Lg]k+\fdzg]k dz? A 6iF A d2t + (4.19)

-3

_.I_

(\]
@\S
IS

(0:L)g;1 + Vadigp, dz? A oiF A dE +

_|_
Q
\§

|
/\/\/\/\/\/‘\/‘\/\
[\]
s}
§

(5ngk+\f5zgjk>5 IAndEF A de —
(0:L) gjk—i-\f&g]k)é IAdEP A dE -

[\
SN S
S

(%) g]k+\f&g]k dz A 6iF A 6t +

+

\)
Q\%
)

(O;L) g]k—f—falg )5 I AdZR Aoyt —

(9:L) g]k—i-f&g]k dz? A 6TF A 6+

§

/
2\[(B-L)gjk + f&g]k> o A dZF A i +
+Vagpon(NF)dz? A dzh A d2" + Vagr0p(NF)d2? A dz! A 0"
+fgjk8h(le)dz] Adz Aoyt
—V/agx0 (N )d2! A dz" A dzF — Vagpon(N])d2! A oy A dZF
\fgjk,a (N} Nz A S A dZF

Q

Theorem 4.2. The almost complex manifold (T'M, G, J3) is almost Kdhler if and only if
one of the next condition sets are fullfield:

a=0 and 5igjg = 0; (4.20)
or

/
8ig;k = 0igi OF =0, Lkg; =~ ( ) 9il» a(aiL)ng = —0ig;r, , (4.21)
and their conjugates.
Using the integrability conditions for J in Theorem 3.2., we obtain:

Theorem 4.3. The manifold (T'M, G, J3) is Kdhler if and only if, one of the next con-
dition sets are fullfield:

a=0 and G is purely Hermitian; (4.22)
or
l a/ . .

and their conjugates.
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Corollary 4.1. The structure (T'M, G, Jy, Ja, J3) is Hyper-Kdhlerian if and only if (M, F)
is a complex Berwald manifold with @j.]—c =0,ad =0, G is purely Hermitian, and or a =0

or Lgﬂ.glj =0.

5 Metric compatible linear connection with the commuta-
tive quaternion structure

Further we will deal with linear connections compatible with a commutative quaternion
metric structure.

Definition 5.1. A linear connection D on T'M 1is called metric connection commutative
quaterion if:
DJ;=0,i=1,2,3; and DG =0. (5.24)

The general family of the linear connections D compatible with the metric G, according
to [6], is
. 1 .
DxY = DxY + 5g—l(z)xg)y, (5.25)

where D is an arbitrary linear connection.
Let us consider the connection transformations:

Dxy B DLy = DyY + %JlDX(JIY) (5.26)
DxY B D2y = DyxY + %JQDX(JQY) (5.27)
DxY B D3y = Dyvy - %ngx(,}gy) (5.28)
Dxy B Dly = DyY + %(ng)y (5.29)

where (Dxg)y is a 1-form defined as follows (Dxg)yZ = (Dxg)(Y, Z). Obviously D% J; =
0,1=1,2,3, X € Tc(T'M).
Then, according to [6], we consider the commutative quaternion connection:

_ 1. . . y 3
DxY = 1 {DXY — H(Dx 1Y) — Jo(Dx J2Y) + Jg(DXJ3Y)} (5.30)

where D is an arbitrary linear connection.
Proposition 5.1. The following relation is true:
DD* = D*D,

where DD* (respectively D*D) is a connection obtained from D (respectively D*) by re-
placing D with D* (respectively D).
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Proof.

. 1
(DDYHxY = i {DXY — Ji(DXIWY) — Jo( DY oY) + J3(DX J3Y)} =

1 (- 1 . . 1 .
— Z {DXy + §G_1(DxG)y — Jl(Dx(J1Y) + §G_1(DxG)(le))—

. 1 . . 1 .
- Jo(Dx(2Y) + §G_1(DXG)(J2Y)) + J3(Dx (J3Y) + QG_I(DXG)(JgY))} =

= i {DxY — \(Dx (1Y) = Jo(Dx (oY) + J3(Dx (J3Y) } +
1

+ = {Gil(DxG)y — J1G71<DXG)(J1Y) — JQGil(DXG)(JQY) + JgGil(DXG)(ka)}

8
On the other hand:

- - 1 -
(D*D)xY = DxY + 5G—l(DXG)y = (5.32)

1., . . .
= 1 {ny — hW(Dx 1Y) — Jo(Dx JoY) + Jg(ijg,Y)} +

1 . . . .

- gG’l {(DxG)y — W (DxG)py — Jo(DxG) pyy + J3(DxG) yy } =
1, .- . . .

= 1 {DXy — Jl(D)(JlY) — JQ(D)(JQY) + Jg(ij3Y)} +

1

+ —{GYDxG)y — G ' (DxG) sy — G ' a(DxG) pyy + G 1 I5(DxG) sy }

8
where DxGy Z = DXG(Y, 7). Therefore DD* = D*D. n
Theorem 5.1. The following linear connection:
DxY = (DD*)xY, XY € To(T'M)

or equivalently

1. . . . .
DxY = {DxY — J1(DxY) — Jo(Dx JoY) + J3(Dx JsY) } + (5.33)
1 . . . .
+ 3 {Gil(DxG)Y — GilJl(DxG)le — Giljg(DxG)JQY + G71J3(DXG)J3Y}

s a metric commutative quaternion connection, where D an arbitrary linear connection
onT'M.

Proof. DxJ; =0, i =1,2,3, because D is obtained from D (that is commutative quater-
nion) by replacing the arbitrary connection with D*.

Similary, DxG = 0 because, based on Proposition 5.1., D = D*D, i.e. D is obtained
from the metric connection D* by replacing the arbitrary connection with D. ]
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Theorem 5.2. If V is the Levi-Civita connection defined by the metric G, then the con-
nection

- 1
DxY = 1 {V)(Y — Jl(VXJ1Y) — JQ(V)(JQY) + Jg(VXJ3Y)} (5.34)
has properties
(a) DxG =0, DxJ; =0,i=1,2,3, X € To(T'M);
(b) D is uniquily determined by the metric commutative quaternion structure.

Proof. Both results from (5.33) considering VxG = 0. ]

The local expression of the Levi-Civita connection defined by the metric G will be
studied in a forthcoming paper.

References

[1] Aldea, N., The Holomorphic Flag Curvature of the Kdhlr Model of a Complex
Lagrange Space, Bull. of the Transilvanian Univ. Brasov 9(44), (2002), 39-46.

[2] Aldea, N., Munteanu G., On complex Landsberg and Berwald spaces, Journal of
Geometry and Physics 62 (2012), 368-380.

[3] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in
Math., 1591, Springer-Verlag, 1994.

[4] Chen, B., Shen, Y., Kdhler Finsler metrics are actually strong Kdhler, Chin. Ann.
Math. Ser. B 30(2) (2009), 173-178.

[5] Munteanu, Gh., Complex Spaces in Finsler, Lagrange and Hamilton Geometries,
Kluwer Acad. Publ., 2004.

[6] Munteanu, Gh., Metric Almost Semiquaternion Structures, Bull. Math. Soc. Sci.
Roumanie, 32(80) (1988), no.4, 153-160.

[7] Oproiu, V., Hyper-Kdhler structures on the tangent bundle of a Kdhler manifold,
Balkan J. of Geom. and its Appl., 15, no.1, (2010), 104-119.

[8] Peyghana, E., Tayebi, A., Finslerian complex and Kdhlerian structures, Nonlinear
Analysis: Real World Applications 11 (2010), 3021-3030.



