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Abstract

In this paper we construct a distinguished Riemannian geometrization on the dual
1-jet space J*(7, M) for the multi-time quadratic Hamiltonian function

H = hay(1)g" (1, 2)pipl + UL (4, 0)p? + F(t, ).

Our geometrization includes a nonlinear connection IV, a generalized Cartan canoni-
cal N-linear connection CT'(N) (together with its local d-torsions and d-curvatures),
naturally provided by the given quadratic Hamiltonian function depending on poly-
moimenta.
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1 Short introduction

In the last decades, numerous scientists have been preoccupied by the geometrization
of Hamiltonians depending on polymomenta. In such a perspective, we point out that the
Hamiltonian geometrizations are achieved in three distinct ways:

¢ the multisymplectic Hamiltonian geometry — developed by Gotay, Isenberg, Mars-
den, Montgomery and their peers (see [11], [10]);

¢ the polysymplectic Hamiltonian geometry — elaborated by Giachetta, Mangiarotti
and Sardanashvily (see [8], [9]);
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¢ the De Donder-Weyl Hamiltonian geometry — studied by Kanatchikov (see the pa-
pers [12], [13], [14]).

In such a geometrical context, the recent studies of Atanasiu and Neagu ([4], [5],
[6]) initiate the new way of distinguished Riemannian geometrization for Hamiltonians
depending on polymomenta, which is in fact a natural ”multi-time” extension of the
already classical Hamiltonian geometry on cotangent bundles synthesized in the Miron et
al.’s book [17]. Note that our distinguished Riemannian geometrization for Hamiltonians
depending on polymomenta is different one by all three Hamiltonian geometrizations from
above (multisymplectic, polysymplectic and De Donder-Weyl).

2 Metrical multi-time Hamilton spaces

Let us consider that h = (hgp (t)) is a semi-Riemannian metric on the ”multi-time”
(temporal) manifold 7™, where m = dim7. Let g = (gij(tc,mk,pi)) be a symmetric
d-tensor on the dual 1-jet space E* = J'*(7, M"), which has the rank n = dim M and a
constant signature. At the same time, let us consider a smooth multi-time Hamiltonian
function

E* > (t% 2%, p%) — H(t% 2", p?) € R,
which yields the fundamental vertical metrical d-tensor

G) _ 1 PH

C@) = 2 aprap

where a,b=1,..,mand i, =1,...,n.

Definition 1. A multi-time Hamiltonian function H : E* — R, having the fundamental
vertical metrical d-tensor of the form
1 9°H

D) fpe k ey L v ey djrae ko c
G(a)(b)(t L ’pk) - 26}7?8}?? - hflb(t )g (t y L 7pk)7

is called a Kronecker h-regular multi-time Hamiltonian function.

In such a context, we can introduce the following important geometrical concept:

Definition 2. A pair MH? = (E* = JY(T,M), H), where m = dim7 and n = dim M,
consisting of the dual 1-jet space and a Kronecker h-regular multi-time Hamiltonian func-
tion H : E* — R, is called a multi-time Hamilton space.

Remark 1. In the particular case (T,h) = (R,d), a 7single-time” Hamilton space
will be also called a relativistic rheonomic Hamilton space and it will be denoted by
RRH" = (J%(R,M), H).
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Example 1. Let us consider the Kronecker h-reqular multi-time Hamiltonian function
Hy : E* = R given by .

Hy = —hap(t)" (2)p{ 1], (1)
where hap(t) (pij(z), respectively) is a semi-Riemannian metric on the temporal (spatial,
respectively) manifold T (M, respectively) having the physical meaning of gravitational
potentials, and m and c are the known constants from Theoretical Physics representing
the mass of the test body and the speed of light. Then, the multi-time Hamilton space
GMH) = (E*,Hy) is called the multi-time Hamilton space of the gravitational
field.

Example 2. If we consider on E* a symmetric d-tensor field g¥ (t, ), having the rank n
and a constant signature, we can define the Kronecker h-reqular multi-time Hamiltonian
function Hs : E* — R, by setting

Hy = hay(0)g" (£, 2)pipl + UL (4, 0)pf + F(t, ), (2)

where U((;)) (t,x) is a d-tensor field on E*, and F(t,x) is a function on E*. Then, the multi-
time Hamilton space NEDMH?, = (E*, Hy) is called the non-autonomous multi-time
Hamilton space of electrodynamics. The dynamical character of the gravitational
potentials g;j(t,xz) (i.e., the dependence on the temporal coordinates t°) motivated us to
use the word ”non-autonomous”.

An important role for the subsequent development of our distinguished Riemannian
geometrical theory for multi-time Hamilton spaces is represented by the following result
(proved in paper [4]):

Theorem 1. If we have m = dim7T > 2, then the following statements are equivalent:
(i) H is a Kronecker h-regular multi-time Hamiltonian function on E*.
(ii) The multi-time Hamiltonian function H reduces to a multi-time Hamiltonian func-
tion of non-autonomous electrodynamic type. In other words we have

H = hay(t)g" (t, 2)pp} + UL (£, 2)p? + F(t,3). (3)

Corollary 1. The fundamental vertical metrical d-tensor of a Kronecker h-regular multi-
time Hamiltonian function H has the form

1 0°H { hi1(t)g (t, 2%, pt), m=dim7T =1

= 357 ) (@
@® 2 31)?323? hap(t) g (t¢,2%),  m =dim T > 2.
We recall that the transformations of coordinates on the dual 1-jet space J™* (7, M)
are given by
- , L o’ ot
— b et A~ 5a — b
BT (). B =F (). = on O,

where det (8;“/(9251’) # 0 and det (02°/027) # 0. In this context, let us introduce the
following important geometrical concept:
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Definition 3. A pair of local functions on E* = JY(T, M), denoted by

_ (a) (a)
N = <]¥(z)b7 ];f(z)]> )
whose local components obey the transformation rules
~ (b) Ot° o) Ot ozt O}
N = N9 5
1Yoote 1 atc gz Ote

v 0 OF o 0F ouk  OF)
Nowge =Y Wige oz ~ api7

s called a nonlinear connection on E*. The components ]}f ((52, (resp. ];7 ((S; ) are called

the temporal (resp. spatial) components of N.

Following now the geometrical ideas of Miron from [15], paper [4] proves that any
Kronecker h-regular multi-time Hamiltonian function H produces a natural nonlinear
connection on the dual 1-jet space E*, which depends only on the given Hamiltonian
function H:

Theorem 2. The pair of local functions N = (]ygg)b,];f%)) on E*, where (xi,. are the

Christoffel symbols of the semi-Riemannian temporal metric hqy)

Niw = xiur

N(a) _LGb agijai_ agij oH + g, aQH + gs aziH
205" 4 |oakaph  opk 0aF | T oziopt T Y osiopn |

represents a nonlinear connection on E*, which is called the canonical nonlinear con-
nection of the multi-time Hamilton space M H]) = (E*, H).

Taking into account Theorem 1 and using the generalized spatial Christoffel symbols
of the d-tensor g;; which are given by

ok _ g" (Ogi | Ogy  9gi
Yo 2 \0xd 9zt Ot )’

we immediately obtain the following geometrical result:

Corollary 2. For m = dim7 > 2, the canonical nonlinear connection N of a multi-time
Hamilton space MH)}, = (E*, H), whose Hamiltonian function is given by (3), has the

components
(@) _ (@ _ _pk (a)
N =xbephs Wy = ~T52k + T

where
(a) hab

Tt = 1 WUivej + Uspei) (5)

and

- _ OUw, s
Uzb — glkU(b) 5 Ukbor - Oz" Ustkr'
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3 The Cartan canonical connection CT'(N) of a multi-time
Hamilton space

Let us consider that M H = (JY*(7, M), H) is a multi-time Hamilton space, whose
fundamental vertical metrical d-tensor is given by (4). Let

(a) (a)
N = <J¥<Sb7 ];Rfﬁj)
be the canonical nonlinear connection of the multi-time Hamilton space M H},.

Theorem 3 (the generalized Cartan canonical N-linear connection). On the
multi-time Hamilton space MH? = (JY*(T, M), H), endowed with the canonical nonlinear
connection N, there exists a unique h-normal N -linear connection

. a 3 7 Z(k)
CT(N) = (Xbc’ Ajer Hj, Cj(c>>’

having the metrical properties:

o 9o A ik) k()
() Aje =5 5w =Hig Ciie) = Ciop
where 7,7, 7,7 and ”|E]§)) ” represent the local covariant derivatives of the h-normal N -

linear connection CT'(N).

Proof. Let CT(N) = (x4, A

jer
local coefficients are defined by the relations

H;k, C;Elz)) ) be an h-normal N-linear connection, whose

il
. _ 9" 0gy
Agc = ch’ A;c = 2 5tc )

9" (Ogjr _ Ogkr  Ogjk
H", ==— — —
L) <5ack T S )

i(c) 2 61)% 8}95 8p$ ’

Taking into account the local expressions of the local covariant derivatives induced by
the h-normal N-linear connection CT'(IV), by local calculations, we deduce that CT'(NV)
satisfies conditions (i) and (ii).

Conversely, let us consider an h-normal N-linear connection

CT(N) = (Af, A5, Hiy, C3F)

which satisfies conditions (i) and (ii). It follows that we have

gj ogi;
2 ot

Aa _ . a At
be— Xbes Ajc -
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Moreover, the metrical condition g;;, = 0 is equivalent with

Sk griHjj + girH;k-

Applying now a Christoffel process to indices {i, j, k}, we find

7 _ 9" (0gjr n Ogkr  0Gjk
kg \dak T dad bar )
By analogy, using the relations C’;Elz)) = Cf((j)) and g”\glz)) = 0, together with a Christoffel
process applied to indices {i, j, k}, we obtain

5J(k):_gﬁ 8gjr agkr_agjk
w2\ ap, o5 ape )

In conclusion, the uniqueness of the generalized Cartan canonical connection CT(N)
on the dual 1-jet space E* = J*(7, M) is clear. O

Remark 2. (i) Replacing the canonical nonlinear connection N of the multi-time Hamilton
space M H with an arbitrary nonlinear connection N, the preceding Theorem holds good.

(ii) The generalized Cartan canonical connection CT'(N) of the multi-time Hamilton
space M H}, verifies also the metrical properties

hab/c = hab\k = hab’y;)) =0, Gijje = 0.

(iii) In the case m = dim7T > 2, the coefficients of the generalized Cartan canonical
connection CT'(N) of the multi-time Hamilton space M H)' reduce to

il
a _ .a i_gaglj i T i(k)
be = Xier Aje =T Hp =T Gy =0 (6)

4 Local d-torsions and d-curvatures of the Cartan canonical
connection CT'(N)

Applying the formulas that determine the local d-torsions and d-curvatures of an h-

normal N-linear connection DI'(N) (see these formulas in [23]) to the generalized Cartan

canonical connection CT(N), we obtain the following important geometrical results:

Theorem 4. The torsion tensor T of the generalized Cartan canonical connection CT(N)
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of the multi-time Hamilton space M H)', is determined by the local d-components

hr hy v
m>1|m= m>2|m=1 | m2>2
hrhr | 0 0 0 0 i
T (s 1
hacht | O O K P
W G [ plh) @)
vhr |0 0 0 Poin) | P
harhar | 0 0 0 R | R,
) OF)
vhar | 0 Py |0 Priigy | 0
VU 0 0 0 0 0
where
(i) form =dim7 = 1, we have
(1)
e O o pn o AL
13T T S TR T T gyt + An = 0rXxans
(1) 1) (1)
wo 280w Yo e
pW 2 " gl g 1
(i) gpt v g ot
0 M
o e e
RM — 2 _
(r)ij oxd ort

(ii) for m = dim T > 2, using the equality (5) and the notations

NGa X

_ d d
Xfab = b ota + XFaXa — XFoXdas
_ 3% 8F2j

R + TP rr. TP 1"

kij = Hpd oxt ki® pj ki pis
we have
ro_ r ) G _ ‘ o _
Taj - 7Aja’ P(T)a(bj) - 5{:A¥‘a’ R(T)ab o Xgabpgz’
(f)
ON (7ys
R(f) .= — 2()] _X(]:ca (C)'7
(r)ay ota (r)i

D ok o [ )
Ry = —Ppipp + [T<r>iu Tyl -

Theorem 5. The curvature tensor R of the generalized Cartan canonical connection
CT(N) of the multi-time Hamilton space M H)!, is determined by the following adapted
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local curvature d-tensors:

hT hM (%
m>1m=1 | m>2|m=1 m > 2
(d)(@)
brht | Xae |0 Bur |0 Q0 _Rglcz))(fl‘%bc
[ l 1 7
hahr | 0 Rill(c ) Ry, _REi))((lgl(k)_ _Rilk( ) —R ) @)k
I (& D) (& Ik
vhr 0 ‘Pil(l) 0 _P((¢1)§(1l))1(1) _Pz‘l(l) 0 o
I l _ _nl i
hahar | 0 RE’(’Z) i _RE§)>(<1z§j<]?c> _R”ﬁk) e
e e i
j _ DR _— _ Qll
vw_ |0 Siayw | 0 Shmaw = ~Sia | 0
where, for m > 2, we have the relations
(DG _ sid dpi (@) _ _ cdpi (@@ _ _ sdepl
_R(z)(a)bc - 5lXabc - 5aRlbc7 _R(l)(a)bk - _5aRlbk= _R(i)(a)jk - _5amijk7
and, generally, the following formulas are true:
(i) for m = dim T = 1, we have x1;; =0 and
§AL,  6H! . . 1(r) (1
Ry, = &E; - 5tzk + AL HL — Hj ALy + Ci((liRE,n;lk»
SH.,  §5H!
I 2] ik r oyl r rrl I(r) p(1)
Rijk = 5% — g5+ HiHre = HigHyy + Cipy Ry gy
L) _ OAL i) A p(D) ()
Faty = gp1 ~ CGon + G Fona)
OH!,
L (k) _ ij (k) U(r) p(1) (k)
i) = gp1 ~ G TG i)
U5) I(k)
g _ 9% 9% oty _ or 1)
W = gpr T gyl i(h) Or(1) ~ Gy Cr(1y;

(ii) for m = dim7 > 2, we have

d _ axgb o 8ch
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Xabe = Bre ~ g T Xopxde = xbexhy,
Ry, = a(;éb - aaAtz%C + AR AL — ALAY,
Rl = %;1% - 831;% + AT, — T AL,

i’jk - 881;% - %zijk + ngrik - F;kzrij'
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