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Abstract

In this paper, we make a survey of two - dimensional complex Finsler spaces. The
tools of this study are the complex Berwald frames {l, m, [, m}, {\, u, A, i} and the
Chern-Finsler connection with respect to these frames.
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1 Introduction

The study of two-dimensional real Finsler spaces was initiated by L. Berwald ([9]). His
theory is developed based on the choice of an orthonormal frame consisting of the normal-
ized Liouville field and a unit field orthogonal to it. Further substantial contributions on
this topic are from M. Matsumoto [12], G.S. Asanov [6], A. Bejancu and H.R. Faran [§],
Z. Shen [19], etc.

Based on some ideas from real case, the study of 2 - dimensional complex Finsler spaces
is a challenging topic. In a previous paper [17], we constructed the vertical Berwald frame
in which the orthogonality is, with respect to the Hermitian structure, defined by the
fundamental metric tensor of a 2 - dimensional complex Finsler space, on the holomorphic
tangent manifold 7M. The main purpose of this paper is to clarify some details about
the vertical Berwald frame and then, to investigate 2 - dimensional complex Finsler spaces
with respect to some extensions of this frame.

Subsequently, we have made an overview of the paper’s content.

In §2, we recall some preliminary properties of the n- dimensional complex Finsler
spaces and complete with some others needed.
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In §3, after we review the construction of the Berwald frame of a complex Finsler
manifold of dimension two, we prefer to work in a fixed local chart in which a local
complex Berwald frame is obtained, which is extended to one on the horizontal part. We
also find the expression of the complex Chern-Finsler connection with respect to these
local frames. The independence of the obtained results from chosen chart is incessantly
studied.

Some characterizations of the complex Finsler manifolds of dimension two comes from
the exploration of the vo—, ht— and vh— Riemann type tensors, (Theorems 4.1). An
immediate interest for the 2 - dimensional complex Berwald spaces is induced by the
properties of the ht— and vh— Riemann type tensors (Propositions 4.1, 4.2. 4.3). Also,
the investigations of hh— Riemann type tensor lead to some important characterizations
of 2 - dimensional complex Finsler spaces which are weakly Kéhler, (Propositions 4.4 and
4.5). All these results are in §4.

2 Preliminaries

In the beginning, we will make a short introduction in the complex Finsler geometry
and we will set the basic notions and terminology. For more, see [1, 15].

Let M be a n — dimensional complex manifold, z = (2¥) k=T are the complex coordi-
nates in a local chart.

The complexified of the real tangent bundle T M splits into the sum of holomorphic
tangent bundle 7'M and its conjugate T M. The bundle T’ M is itself a complex manifold,
and the local coordinates in a local chart will be denoted by u = (2, n*), _1—. They are
changed into (z’k,n/k)kzﬁ by the rules 2% = 2’*(2) and n'* = %Z; nt.

A complex Finsler space is a pair (M, F), where F' : "M — RT is a continuous
function satisfying the conditions:

i) L := F? is smooth on T/M := T'M\{0};

i1) F(z,m) > 0, the equality holds if and only if n = 0;

i1i) F(z,An) = |A|F(z,n) for Y\ € C;

In-

i) the Hermitian matrix (g;;(z,7)) is positive defined, where g;; := 82@'26%79' is the
fundamental metric tensor. Equivalently, it means that the indicatrix is strongly pseudo-
convex. . oo

Copsequently, from 4i7) we have 3%77’“ = %ﬁk =1L, 8?;,3 n* = %ﬁk =0and L =
gign'i’-

Roughly speaking, the geometry of a complex Finsler space consists of the study of
the geometric objects of the complex manifold 7'M endowed with the Hermitian metric
structure defined by g,;.

Therefore, the first step is to study the sections of the complexified tangent bundle of
T'M, which is decomposed in the sum To(T'M) = T'(T'M) @ T"(T'M). Let VI'M C
T'(T'M) be the vertical bundle, locally spanned by {a%k}, and VT" M its conjugate.

At this point, the idea of complex nonlinear connection, briefly (c.n.c.), is an instrument
in ’linearization’ of this geometry. A (c.n.c.) is a supplementary complex subbundle to
VI'M in T"(T'M), i.e. T'(T"M) = HT'M & VT'M. The horizontal distribution H,T'M
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is locally spanned by {32 = 87 - N/ia -}, where Nj(z,n) are the coefficients of the
(c.n.c.). The pair {0y := meak = 877k} will be called the adapted frame of the (c.n.c.)

which obey to the change rules o = %‘j,z & and O, = g'j,j 8; By conjugation, everywhere is
obtained an adapted frame {0z, dz} on T(T'M). The dual adapted bases are {dz*, on*}
and {dz*, 67*}.

Certainly, a main problem in this geometry is to determine a (c.n.c.) related only to
the fundamental function of the complex Finsler space (M, F).

The next step is the action of a derivative law D on the sections of T (T'M). First,
let us consider the Sasaki type lift of the metric tensor g;5,

G = g;;d2' ® d& + gg;0m' @ o1 (2.1)

A Hermitian connection D, of (1,0)— type, which satisfies in addition D;xY = JDxY,
for all X horizontal vectors and J the natural complex structure of the manifold, is the so
called Chern-Finsler connection (cf. [1]), in brief C — F. The C' — F' connection is locally
given by the following coefficients (cf. [15]):

g A - , . _ _
k mk YYlm | l l
N =g" 5 T Ll]n L =9"0kg57 3 Cir = 9" 0k9;7 L%k = C%k =0, (2.2)

where here and further on Jj, is the adapted frame of the C — F (c.n.c.) and Dj, d; = L;k(;i,
Dy, 0j = C’;k(‘)i, etc. The C' — F' connection is the main tool in this study.

Denoting by 7 17 ,” |7 , 7" and ”|”, the h—, v—, h—, T— covariant derivatives with
respect to C — F' connection, respectively, for any X" it results

Xhoo =0 X + X' Ljy s X' =0p X'+ X'Cly; (2.3)
XI% D= 5EXi ; Xi‘E =07 Xt
and
M = =1 =03 n'le =0 (2.4)

9i5k = ik = gij|k = gg\g = 0;
(gw )‘k - (g” )\k - (gm e =0; (92‘377])’12 = 9ik.

The nonzero curvatures of the C' — F' connection are denoted by

R(6h,05)8; = Rig,0i 5 R(On,6)8; = Eipy6i s R(0n, Of)65 = Pip,0;
R(64,05)0; = Ry, 055 R(On,05)0; = Zly, 05 R(6n, 04)0; = Pip,0;

R(On, 0p)0; = Sip,0i5 R(Oh, 0p)0; = Sif, 0

jkh“t
where
R = —0;L% — 03 ~(N})C jl s Eie = —0Cik = S (2.5)
P = —0pL%, — 0p(N)Cy 5 Sy = — 0505 = Sy
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Considering the Riemann tensor
R(W,Z,X.Y) : = GR(X.T)W,Z), (2.6)
R(W.Z,X.Y) = R(Z,W.Y,X)

for W, X, Z,Y horizontal or vertical vectors, it results the hh—, hto—, vh—, vi— Riemann
l

_ .. _a.pl = =l ool ., Ql :
type tensors: Rs;np = 9585 5 Prinke = 955505 S5ink = 952545 Sjink = 91557, Which have
properties Rz]kh R]zhk ySiikR T Pj‘iﬁk? Pﬁkﬁ = Sk Sﬁkﬁ = Sjiﬁk = Sﬁijk’ where
R o= Ry, ete., (see [15], p. 77).

Further on, everywhere the index 0 means the contraction by 7, for example R :=

T Ohk
i
thkn :
- ATI . s ATi.
Prop031t10n 2.1. 1) ROhk —0rNL s Reygpe = 'gwéhNk,
— . 1 — -
W B Ohk -g" C'Omhlk s Promy, = COFhIk ’ POOk 0;
(2 . (2 .= — 7 . 1
i) 8 f Cjklfﬂ thk - jk“h’ Zore = Siio SOhk Skho’
Erjnk = _Ckalh ; Sfjﬁk = —Cjrily, where we denoted Cjry, == Ct ikgir and C\5p s its
conjugate;

w) Cipppp = (OrLiy) gir + (O N{) Cimis
v) Cignjre = (OnLyy,)gir;
o 7 {2 A
vi) Py = Fogli = Fog, Gy = 0.
Proof. i) and iii) results by (2.3), (2.4), (2.5) and C}, = Ci, = 0.

For ii) we have

i A ; - 0, m
PFOEIC = gifpéﬁk = gifaﬁNli = —gﬁa}; <gm1 Sim 77]>
8 m

_ gzrgmlgsz <ahgls) 8zk 77 g”gmzah ( 95 ) 17]

Because Cjy7, 1= Clﬁﬁ 1t leads to

Comape = (Cimn ik = 0 (Cipn’) = 5% (Cien’) — Nis <(3;3ng)771>

- a%k (Clﬁnl) - Nljah ((asglr) ) NSCWL‘SZ = 3zk (Clﬁﬁl) N;C 7. From here,

result the second relation of ii). The others immediately result by this.

Now, differentiating N{g;z = g”" T nd with respect to n' yields Lbgir = %‘i’{ — NiCim,
which differentiated by 7" leads to 1V)
Differentiating legw = 62 — N ka, by 77 it results v).
It is obvious that Péhk &N ‘. Hence,
= —0 Lty — Op(NL)Cl = —05(0;NL) + PL CY)
=—0; (&N,i)'—i— Pl kCﬂ 9, POhk + Pl kC’;l
—Péhkb—f—Pé C};],le vi). O

Proposition 2.2. For any X € T'%(T'M) the following properties hold true:
i) Xlrjj = X)jle = CipXpis
it) X|E|j - Xj;lz = _P&;jX\i-
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Proof. We have

55,04 X = L, (8,X) = L, X]; and

_5]-,8',;_ X = —Py.0,X = =Py X|;.

On the other hand,

3,08 X = 0, (96X) = 80(0,X) = ; (X|x) — By(X})
% X|k[j + L X — Xyl — C4 X and

8, 05| X = 6; (@;X) — (8, X) = 8; (X|) — Op(X)

= Xz — X%

From the above relations it results i) and ii). O

Let us recall that in [1]’s terminology, the complex Finsler space (M, F) is strongly
K@hler iff T}k = 0, Kahler iff T;knj = 0 and weakly Kahler iff gﬁTjkn]ﬁl = 0, where
T} =Ly — Li;. In [10] it is proved that strongly Ké&hler and Kéhler notions actually
coincide. We notice that in the particular case of complex Finsler metrics which come from
Hermitian metrics on M, so-called purely Hermitian metrics in [15], (i.e. g7 = g;5(2)), all
those nuances of Kéhler coincide. On the other hand, as in Aikou’s work [2], a complex
Finsler space which is Kéhler and L}, = L}k(z) is named complex Berwald space. From
Proposition 2.1 iii) and by Ez‘jkﬁ = Pjiﬁk’ a complex Berwald space is a Kahler space with
either Sk = 0 or Pjiﬁk =0.

3 The complex Berwald frame

Let (M, F) be a 2 - dimensional complex Finsler space, (2*,7) k=132 be complex co-

ordinates on 7'M and VI'M be the vertical bundle spanned by {d)}. Further on, the
indices 14, j, k, ... run over {1,2}. Let g;; be the fundamental metric tensor of the space and
G the Hermitian metric structure (2.1), defined on T (7' M), with respect to the adapted
frames of Chern-Finsler (c.n.c.).

We set [ := l’@z and its dual form is w = [;0n, where

= ' and 1= g = g5 (3.1)
Now, our aim is to construct an orthonormal frame in the vertical bundle VT’ M, which
is 2 - dimensional in any point. Therefore, it is decomposed into VI'M = {I} & {I}+,
where {l}* is spanned by a complex vector m. Requiring the orthogonality condition
G(l,m) =0 and G(m,m) = 1, i.e. m is a unit vector and, using m; := gﬁmj, the above
llml + l2m2 =0
mymt +mem2 =1 "
We try to solve this system following the same technique from [8] for real case. Never-
theless, let us pay more attention to this system. Passing in real coordinates, it contains
three real equations with four real unknowns. So that it doesn’t admit an unique solu-

tion. Formally, solving this system as one linear, it is obtained the ’solutions’ m' = %,

two conditions get the linear system {
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m? = lzl, m1 = —AIl? and my = Al', where A = lymy — lomy, which indeed are not com-

pletely determined because A depends on m;. We can say more about these ’solutions’. A
straightforward computation proves that |A| = /g and A’ = 7 A under a change of the

local coordinates (2", nk)k:ﬁ into (2, n’k)k:ﬁ, where g := det(g;;) and 7 := det <gzz,§>
Therefore, a natural question is if there exists at least A with the above mentioned prop-
erties. The answer will come below, when we find two distinct particular solutions for
A.

Subsequently, our statement will be made for a fixed choice of A and then {I,m,1,m}
with

1 . )
m = Z(—lzal +1,09) (3.2)

will be called the complex Berwald frame. Surely, the dependence of the chosen for A will
be analyzed everywhere.

But when we work in a fixed local chart, we can choose A = /g, i.e. A is real, which
produces the unique solutions m!' = _TZ;’ m? = %, my = —\/§l2 and mo = \/§l1. Thus,
we have

m = \}g(—b@l + 1182), (3.3)
in this fixed chart.
Then {I,m,[,m}, with m given by (3.3) will be called the local complex Berwald frame
of the space.
Note that (3.3) provides only a local frame, because the set of natural local basis in
every chart does not have tensorial character. For this reason, considering a change of the
local coordinates, we obtain

, T by T O ., T 07

m :7m,mlzm@m ,mi:mﬁmr7

7]
which show that m is not a vector, but it depends on the local change. Therefore, it will
say that m from (3.3) is a pseudo-vector.

Although m from (3.3) depends on the local changes of the coordinates, it is very
important in our study, in a fixed chart. Certainly, further on we will be very careful
with the global validity of our assertions. We will see that together with its horizontal
extension it gives rise to some invariants which will characterize two dimensional complex
Finsler spaces. A first and useful remark is that the quantities m;m’, mim/, m;m; and
m;m are independent of the chosen local chart, and hence they have global meaning.

With respect to the local complex Berwald frame, Oy, and gi; are decomposed as follows

9; = l;1 +m;m and hence 9i; = lil; + mim;. (3.4)
From here we deduce that
C’;k = 9™ Ohgim = Al'mypm; + Bmimym;, (3.5)

where we set
A= mjmkth,?j ; B = mhmkaC]}-‘k.
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The dependence of the vertical terms A and B of the local charts is obvious, A’ =
|7T.|2A B = |§| B. Thus, A and B are not invariants, but if they are zero in a local chart,

then they are zero in any local chart. But, AB? is an invariant to a change of local chart.
Moreover, by means of A and B and setting A = B,/g with |[B|?> =1 or A = \/Ag with
|A|? = 1, we obtain two particular solutions for m from (3.2) which certify the existence
of the complex Berwald frames.

Further on, all our work will be with respect to the local complex Berwald frame,
where m is given by (3.3).

Therefore, the formulas from Proposition 3.2, in [17], become

1) = 2;;52- ) = %z 1(my) %mi; I(my) = %m (3.6)
m(l;) = Am;; m(l;) = lm, ;om(my;) = %BmZ ! li; m(m;) = =Bmg;
U0 = gedts 100 = —gelt s 1m) = —oomd 5 T(m) = 5
m(l) = m' s m) =0
m(m') = —lei —Al' 5 m(m') = —lli - 1Bmi.
2 F 2

By a direct computation, using the above relations, we obtain formulas for the vertical
covariant derivatives of [, m,[ and m with respect to the C' — F' connection

—1 1 1
llj = gglilis bl; = 5plil + mimg; (3.7)
1 1 B —1 B
mil; = ﬁm-l- — Flimj — Emimj : mib 2szl + 5 = Mim;;
~ 1, . 1
ll‘] = f5§ 7Fl]ll lz|’ == ﬁl]lz F|j ,
, ~1 B : . 1 1 B
- . . _ (A
m'; 2Flm —|-2mj ;o m'f; = 2Fljm le Qme
and their conjugates.
Moreover, because [ (C’,gj) =0 and l(C,Zj) = —%C,?j by some computation, it results
) 3A
Bl = 0B = (Il + mpm)B = 2th + Blsm®my;
: 5A
Alp = OpA = (Il +mpm) A= — o2l + Alsm®my,;
: 3B
B‘h = OpB = (Ixl + mpm) B = —ﬁlh-i-BLngmh.

Now, via the natural isomorphism between the bundles VT'M and T'M, composed
with the horizontal lift of HT'M, we obtain the following orthonormal local frame on
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HoT'M,
(IN:=16, p=m';, \:=106, p=m's}.

Let D be the C' — F connection on (M, F'). Further on, let us give an explicit expression
for C'— F connection with respect to horizontal local frame {\, u, A, i}. Moreover, using
(3.4) and L;k = g™ 5kgjm it results

e = UL+ Ulimgly + VELmy, + XU'mgmy, (3.9)

+Omiljlk + Ymimjlk + Emiljmk + Hmimjmk,
where we set
J o =Uik ij, U :=m/I*[; LY Vo= UmFlL Ll X = mImFlL LY, (3.10)
O : =U"m;L G Y i=m 1k m, jk:§ E:=Um miij; H = mjmkmiL;k,.
Here the horizontal settled quantities do not have tensorial character, because under

the change of charts we have

T

il (U + T,m°l,.) ; (3.11)

2

J = J4+ T, U =

V= T(V—f—Tbl“ L) X' = (X 4+ T,m*m®l,) ;

7] |7

/ T apb

0 = (O + T41%m,) ; Y =Y + Thm®’m, ;
7]

E' = E+ 751 m, ; H = |§:| (H 4+ Tym®m®m,.),

927 92'F 922"
02% 9zb 92992k *

Firstly, the properties of the C' — F' connection N}, = L;-knj and 3ij = L;k, (see [15]),
permit us to establish some links between the vertical and horizontal terms (3.10) of this
connection. Indeed,

Ni = F(JUl, + VI'my + Om'ly, + Em'my,) and

L;k = (Ll 4+ mym)[F(JU'l, + VIimg + Omil, + Emimy)]

= [T + FUDNUly, + [Fm(J) =V — FAOl'mjly, + [FL(V) + 3V]iil;my,

+[Em(V) + FAJ + AFBV — FAE|l'mjmy, + [FI(O) — 10lmil 1},

+[Fm(0) + J — $FBO — Elm'mjly + [FI(E) + $E]mil;my,

+[Fm(E) +V 4+ FAO]m'mjm;, which together with (3.9) give,

A
where 7, :=

Proposition 3.1. Let (M, F) be a 2 - dimensional complex Finsler space. Then
i) J|k = 5=l + [£(U + V) + AOImy;
i) Vg = —5=Vig + [A(E — J) — $BV + £ X]|my;
iti) Ol = 550l + [+(E+Y — J) + £ BOJmy;
iv) E’k = %Elk + [%(H — V) - AO]mk
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Proof. In the fixed local chart the assertions i)-iv) are true. We must prove their global
validity. For example, under the change of a local chart, we have

Vi + 35Vl = [A(E' = J) = §B'V' + £ X'Imj, .

- ‘%%{wr + 5=V, — [A(E — J) — $BV + £ X|m,}, where V'|| := 0, V.

Because V|, + 5=V, — [A(E — J) — $BV + £ X|m, = 0, by its change rule it results
that it is zero in any local chart. Analogous results the geometric character of the others
assertions. ]

Proposition 3.2. Let (M, F) be a 2 - dimensional complex Finsler space. Then

i) It is Kdhler if and only if U =V and Y = F;

i1) It is weakly Kdhler if and only if U = V.
Proof. i) By (3.9), Lt — L, = (U = V)I'myly, + (V = U)l'lymy + (Y — E)m'myly, + (E —
Y)m'ljmy. So, Ly —Ly;=0ifand only if U =V and YV = E.

To prove ii) we compute gﬁTjknjﬁl = FQ(Lé-k — L};j)lilj = FYX(V — U)my,. It results
giﬂ?knjﬁl =0ifand only if U = V.

Taking into account the local changes of U —V and Y — F, it follows the global validity
of these statements. O

Further on, several calculuses imply the following properties.

Proposition 3.3. With respect to the local Berwald frame, we have:

ML) = JL+Um; ; ML) =M1 =0; A1) =—-JI'—0Om’"; (3.12)
1 - 1, - -
A(m;) = Ol — §(J —Y)m;; AMmy) = §(J—i— Y)m; ;
, 1 S 1 - -
A(m') = =Ul'+ i(J -Y)m'; A(m') = —i(J—i—Y)mZ ;
plli) = Vii+Xmg; () = g(l') = 05 p(l’) = =VI' = Em’ ;
1 1 - _
p(mi) = El; + §(H = V)m; ;5 p(mi) = §(V+ H)m; ;
. ] . . 1 -
plm) = ~ XU~ (H = Vim' 5 plom') = —5(V + By

Ng) = (J+Y)g; plg) =V +H)g; 6 =LA+ mp; ML) =p(L)=0
and their conjugates.

Then, from (3.12) we deduce that

1 1. - = _
mij = —5l(J+ V) + (V4 H)mjlma; my; = S[(J +Y)l + (V + H)mgmi;

mj; = 5[(J+ V)l + (V + H)m;m'; mp; = —5[(J+Y)l5 + (V 4+ H)m;]m

and theirs conjugates.
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4 Curvatures of the C-F connection

In this section, we shall compute the curvature coefficients of the C'—F' connection with
respect to the local frames {l,m, [, m} and {\, u, A, i}. By means of these, we characterize
the 2 - dimensional complex Finsler spaces.

4.1 The vv— Riemann type tensor

Firstly, we study the vv— Riemann type tensor Sfﬁk. Taking into account Proposition
2.1 iii) and the formulas (3.5), (3.7) and (3.8), we have

Sfjﬁk = —(Algmymy, + Bmemymy)|;,

= [—Al; + 321 + (—AB + 2)mylzmymy,

+(=Blg + gl — B my)memymy, i

= (—=A|sm® — AB + %)m,;l;mjmk + (=B|sm® — %)mﬁmfmjmk.

But, Sfjﬁk is symmetric in j, k and 7, h. Therefore, it results that

_ _ B
Sfjﬁk = Impmrm;my, ; Alsm® = —AB + ok (4.1)
. BB
where I:= —Blzm® — —

We note that I is invariable to the changes of the local coordinates thanks to S, Tk and
m mympms which are tensors. Further on, we point out some properties of the function
I, called by us the vertical curvature invariant.

4.2 The vh— Riemann type tensor

Let Eﬁﬂk be the vh— Riemann type tensor. Using the Proposition 2.1 iii) and the
formulas (3.5) and (3.13), we have

Ere = —[Apls + AT + V)il + AV + H)lzmy, (4.2)
B, . B._
+Bjpme + 5 ( + Y)mely + (V4 Hymemp]m;my.

We wish to investigate the relationship among A, B, I and to characterize the 2 -
dimensional complex Finsler spaces by means of these. For this, contracting the Bianchi

identity -
EFjEk|§ - Sfjgkm + Efjf)kcfh =0, (4‘3)
(see [15], p. 77), with the tensor m™m/m¥m® and taking into account (4.2) and (3.7), we
obtain i
Efjﬁklgmrmjmkms = —{Bjlsm® + gBm

+3[-L(J +Y) + B(J +Y)|sm® — 2(V + H)]I;

+3[Blsm*(V + H) + B(V + H)|sm®Imz };

Sfjgkmme]msmk =1

Efjﬁkahmijmkmg = —[%Bm + BB@mf5 + ATB(j +Y)+ BT(V + H)my,.
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Hence
Blsm® = —{%[—I(j +Y) 4+ B(J+Y)[sm® — %(V + 0l (4.4)
+;[( I+¥)(\7+H) + B(V + H)|sm®

A _ o B
+QFB|G +2BBym” + AB(J +Y)|mj + 1, + §B‘B}

and its conjugate.
On the other hand, contracting in (4.3) by m™m/m*I%, using
Efﬂk|gmr7”rﬂmklS = —%{Bml() — %Blﬁ + %[—%(J +Y)+ (J+Y)[plln
+55(V + H) + (V + H)lglmz} and

Srjskpmm? Fmb = EgjppCm mImtI* = 0

klé

T
we have,

B J+Y .
Bjlo = *B\h—*[—T (J +Y)[olln (4.5)
B V+H _ _
5l + (V+ H)lgJmy,

and its conjugate.
The conjugates of (4.4), (4.5) and Theorem 4.1 ii) allow us to write

Buly = (B~ BI-25 4 (74 ¥)loll (1.6)
B v ol
—{%[—I(J +Y)+ B(J+Y)|sm® — f,(v + H)]lg
+;[(—I+BQB)(V + H)+ B(V + H)|sm*

A - _ _ B -
+2FB|O + 2BB|sms + AB(J + Y)}mk + I|k + §B|k}m]"

It is also worthwhile to note the following identity

- 1
Bl = 55Bily (4.7)

B B 1 BB
—{I|k + 5B|k + §B|k + = ( I—T)[(J + Y)lk + (V + H)mk]}mj,

which is obtained from (3.7), (3.8) and (4.1).
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Therefore, (4.6) and (4.7) lead to

_ _ i 5  B,1, J+Y
Bljjk — Bl = CjpB)i + §{f[_T + (J +Y)o]lkl; (4.8)
l V+H

F[ 5 + (V + H)lo]mul;
+[§(J +Y)+(J+Y)|sm® — %(V + H)|lgm;
+[B(V + H) + (V + H)|sm® + A(J + Y)]mym; — Bym;},

because C’;kB‘Z- = (%Bm + BB‘SmS)mkmj.

4.3 The hv— Riemann type tensor

Now let us consider the hv— Riemann type tensor Pfjﬁk' By Proposition 2.1.ii) and
formulas (3.5) and (3.13), it results that

Prgir = —F[A + A(J + Y)lp + A(V + H)myJmemy,. (4.9)

But, Proposition 2.1 vi) allows us to reconstruct Pfjﬁk;' Indeed,

Pfjﬁk = Pfoﬁk’j + PFOEsClij (4.10)
and from (4.9), we obtain
S AL A s
PronsCij = —FlgAp + BAjsm (4.11)
+AA(J +Y) + BA(V + H)mzmjmym;
and
1. _ _ ~
Promli = —{=5Awl; + FBAym; + FAR|j — A(J +Y)lkly (4.12)
_ FAB

+A[FB(J+Y)—(V+ H)]lkmj + T(V + H)mkmj

+F[/_l‘j(J +Y)+ /_1(] + YY)l
+F[A\j(V + H)+ AV + H)|jlmy fmemy,.

Plugging (4.11) and (4.12) into (4.10), gives

1 - _ _ _
P = —{—§A|klj + FBAymj + FAyl; — A(J +Y)ll; (4.13)
+A[FB(J+Y) — (V + H)]lgm;
_ _ _ 3FAB
+[AAp + FBAym® + FAA(J +Y) + (V + H)|mgm;

+F[A|;(J+Y)+ A(J + )|,
—i—F[/_l\j(V + H)+ AV + H)|jlmy}memg,.
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Recall the following property, P, = 25 = Z5,5,- Writing it by means of (4.2) and
(4.13), we obtain the conditions

_ 3_
Ajlo =S4k ; (4.14)
_ i 1 B A
B AB _ _
[(ﬁ + 7)(1/ +H)+ AV + H)|sm®+ AA(J+Y)

A _
+fA‘O + BA|sms]m
and theirs conjugates.

From both formulas (4.14), it follows that

— 3 — 1— _
Aply = gpAwl + {5 Bk — BA (4.15)

B . A
o= (J+Y)+ A +Y)|im* = S(V+H
57 +Y)+ A +Y)|sm® — = (V + H)Jly

B  AB . _
(G + 5V + H) + A(V + H)[em® + AA(J +Y)
A _
+fA‘O + BA‘SmS]mk}mj.

Moreover, from (3.7), (3.8) and (4.1), we have

Alj = —A|kl +{-BAj — ABj; + B\k (4.16)
B AB
(ﬁ - 7)[(J + YY)l + (V + H)my|}m;.
By subtracting (4.15) from (4.16), we get
Al = Aply = Cjr Ay (4.17)

CA(By, - [?(J FY) 4 (T4 V)]s’ — %(v +HL,

—[B(V +H)+ (V+ H)|sm®+ A(J +Y)]my }mj,
because C;Z,CZ” = (%Z‘O + BA|;m®)mpm;.
Theorem 4.1. Let (M, F) be a 2 - dimensional complex Finsler space.

i) If |A| # 0 and B = 0, then

(J+Y)|sm® = %(V FH); (V4 H)om® = —A(J +Y); (4.18)
ii) If AB% # 0 then
T+ = 225 v mh =237 (119
By = [g(J+Y)+ (J+Y)|om® — (V + H)Jy

+[B(V +H)+ (V+ H)|sm*+ A(J +Y)|my.
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Proof. Writing the identity i) from Proposition 2.2 for the vertical terms A and B it
involves Aly; — Ajjlx = C;kA‘Z- and Bl — Bjlk = C;kB|i. But, taking into account (4.17)
and (4.8), it follows

A(Bl— [ +Y) + (T +Y)|am — oV + H)lg (4.20)
—[B(V+H)+(V+H)|sm*+AJ +Y)|mp}m; =0
and
BT (7Yl (121)
+%[V T (V + H)lo]mxl;
H (W 4Y) + (4 )’ = (V4 )l

+[B(V + H) + (V + H)|sm® + A(J + Y)|mpm; — Bjym;} = 0.

Hence, we have the cases:

1. If the space is purely Hermitian, the identities (4.20) and (4.21) are identically
verified.

2. If the space in non-purely Hermitian, then |A| # 0 on M, and by (4.20) we obtain

B 1
By = [5(J+Y)+ (J+Y)lm® — £ (V + H)Jly (4.22)
+[B(V 4+ H) + (V + H)|sm® + A(J +Y)|my,
which substituted into (4.21) leads to

_ J+Y V+H
B{[—T + (J 4+ Y)|o]lrlj + [

+ (V + H)lp]mgl;} = 0.

But, we have emphasized two kinds of non-purely Hermitian spaces:

a) If |A| # 0 and B = 0 then, together with (4.22), we obtain i).

b) If AB% # 0 then |B| # 0, in any open set, and by (4.22) results

(J+Y)|o=LE and (V+ H)|p = —YF, which with (4.21) imply ii).

The independence of the above statement to the changes of local charts results by
straightforward computations using (3.11). O

4.4 Two-dimensional complex Berwald spaces

The above considerations offer us the premises for some special characterizations of the
2 - dimensional complex Berwald spaces. Firstly, we write the identity iv) of Proposition
2.1 in terms of the local complex Berwald frame. Some computations give

8,—1L§.k = {[I(J) + %J]liljlk +[[(U) — %U]limjlk + (V) — %V]liljmk

+HUX) — 5= X]lmymy, + [[(0) + 5=0Imilily + 1Y) + 5=Y|mim;l,

+[U(E) + sz Elmilymy, + [[(H) — 5 H]m mmy }j,
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+{[m(J) = £0)ll + [m(U) — £(Y — J) + L BUl'mjy,
[ (V) E—J)+ §BV]lilymy + [m(X) — 5(H - U
+[m(0) — $BOImiljly, + [m(Y) + £0Jmim;ly, + [m(E) +
+m(H) + (Y + E) + $ BH|m'mjmy, }m,.
Using = 7;, = —Cjzpp and (4.2) it results
Cimpp = [Apls + A(J + Y)lsly, + AV + H)lsmy, + Bypmy + 2(J + Y)mely + £(V +
H)memg|mjmy,.

— V) + BX]l'mjmy,
%O]mlljmk

=

The above outcomes substituted into Proposition 2.1 iv), lead to

Proposition 4.1. Let (M, F') be a 2 - dimensional complex Finsler space. Then
i) Jlg = —gpJli + £0mg; Vig = gpVig + [#(E = J) = 3BV]my;
i) (U) — 55U = [(X) — 55X =1(0) + 50 = (YY) + 5=Y = (E) + 55 E

vii) +Bp + &
i) Bym" + 5 (V + H) = m(H) + $(Y + E) + }BH + FB[m(E) + 4:0).

Next, we rewrite the identity v) from Proposition 2.1, 3hL§ r = Cjrnl kg™t with respect
to the complex Berwald frame. Taking into account Proposition 3.1, we have

OpLiy = {[IU) + 3=Ull'mjlmg + [[(X) + 50 X]|I'mjmy,

+U(Y) = &Y mimle + [[(H) + 55 Hmimjmy

+{m(U) = A(Y = J) + 3BU — £ X|l'mjly, + [m(Y) + AO — £(H — U)Jmim;ly,

—i—[m(X) + A(U +V - H) + BX]lijmk

+[m(H) + A(Y + E) + +X + 3 BH|m'mjmy }my,.

On the other hand, Cjrkg™ = {[Ajy — A(J + Y )l — A(V + H)my]l!

+[By, — B(JT+ YY)l — Z(V + H)ymy]m'}m;my,. From here we obtain

Proposition 4.2. Let (M, F) be a 2 - dimensional complex Finsler space. Then
DIU) + 5:U =1(X) + 5= X = 1Y) — 5=Y = (H) + 5= H = 0;
i) m(U) — A(Y = J) + 3BU — X = £ A — A(J+Y);
iii) m(Y) + AO — +(H —U) = +Bjy — 2(J +Y);
iv) m(X)+AU+V —H)+BX = A|kmk —A(V+H);
v) m(H)+ A(YY + E) + +X + $BH = Bym" — 2(V + H).

We note that the assertions of Propositions 4.1 and 4.2 are preserved to changes of
local charts.
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Proposition 4.3. If (M, F) is a 2 - dimensional complex Berwald space, then

1 1 1= 1 1
;= Ul +[=(Y—-J)— =B i Y| =——=YI; — =Omg;
3 1= 1 1 =
Olp = —5 70l + 5 BOmy: X = 5= Xl + [ (H = 2V) = BX]my;
1 2 1=
Hlg = gpHlp — (Y + 5 BH)my; (4.23)
equivalently with
A|]_f = —A(j Y)l]; — A(7 + ij)m];, (4.24)
B, - = B _ -
equivalently with
Ulp = L+ [A(Y = J) — 1pu+ lX]m ; (4.25)
T 2 FoR '
1 1
Y|, = =—=YI —(H —U) — AO]my;
12 op Ltk + [F( ) Jrmu;
3
X|p = —ﬁXlk — [2AU — AH + BX]my;
1 1 1
Hlp = —55Hlk — [24Y + S BH + - X]my;
equivalently with
Ay = A(J+ YY)l + AV + H)my; (4.26)
B B
B|k: = §(J + YY)l + 5(‘/ + H)my,.

Proof. Under the assumption of Berwald, we have 9;G* = 3;LN,i = 3,3L§k = 0 which
together with Proposition 4.2 induces (4.23). Using Theorem 2.2 and Propositions 4.2 and
4.3 it results the equivalence between (4.23), (4.24), (4.25) and (4.26). By straightforward
computations it results their global validity. O

We note that the equivalent sets of relations (4.23), (4.24), (4.25) and (4.26) have a
geometric character and are only necessary conditions for complex Berwald space. These
become sufficient together with weakly Kéahler condition.

4.5 The hh— Riemann type tensor

Let us investigate the hh— Riemann type tensor Ry k- By (2.5), (3.5) and (3.12) we
can write

Rfﬁk = giFR;ﬁk _ .
H(pA + mp ) (NP (Almgmy, + Bmimm,,)}
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= = (Llr + mamg) [ ML) + FALG)E (AL + Bm')mms,]
— (lily + mymz) my [ (L ) + Fia(LY )15 (Al' + Bm®)ymjm,). It results that

AL

—[5\( )m1+FB)\(L l)m]mn]mrlh
[l Jk)+FAM(L K5 )mymp]lrmy,
[a(L;

)mi + FB:U’( sknl )mjm]mfmﬁ'

Further on, our goal is to find the link between the horizontal covariant deriva-
tives of the functions (3.10) and theirs properties. Indeed, from (4.27) it follows that
Roono = —LEAVIFLLE )G — LER(PIFLLE ymy, = —LJgly, — LEJism®my, and Rgggy, =
—LFX(ljliL;'.k). The property Rgon0 = Rgogr leads to Fj\(ljliL}k) = Jplr + FJjgm*my,

which gives

_ _ 1 1
J|0 = J‘() ; J|8m = *V|() + §V(J+Y)

F
Moreover, by (4.27)

Regop = —LFAWIFGLE )l — LEA(V1Fm; Ly ymy + ALFO(J + Y )m:

= —LJjgls — LOgms + 3 LFO(J 4+ Y)m; and

Rg,00 = —LEX(IFLLE) — LPANIFISmy, LY )m, + LL2AO0(J + Y)m

= —LFA(I*;Li,) — LFAOgm, + $L2AO(J + Y )m,.
But, Ryo50 = R.goo = L0 leads to

Jolr + [Opp — FO(J + Y)|m, = FA(I*I,LL,) + FA[O;g — 3FO(J +

The contraction with m” gives

(4.28)

)lm-

O — %FO(J +Y) - FAO; + %LAO(J+ Y)=Ujg+ %FU(JUF Y). (4.29)

Next, from (4.27) we have
Rygpom”™ = =LAWL ymily, — Lp(PIF LY ymamy,
= —F[O‘()lﬁ — %FO(j—i- Y)]l;l [O|Sm — *O(V + H)]
On the other hand

Rg,onm” = —LAX(m";LE,) — $L(J + Y) (Ul + Xmy) — LEAX(I*m

+3LFA(J +Y) (Ol + Emy,).

Using Ryopom” = R,gnom” = ROTOhm we obtain

(O — 3FO(J + V)|l + F[Osm® — $0(V + H)my,

= FA(m"l;L.,) + LAN(*m, L7,) + 1F(J +Y)(Ulyp + Xmy)
—%LA(j + ?)(Olh + Emh),

which by transvection with m” gives

~ 1 - 1 -
O|S77”LS — §O(V —|—H) — AE|6 = FXlG +X(J+Y).

Taking again into account (4.27), it follows
Rgoppm® = —L;\(ljliLé-k)mklh Li(91; L LymEmg

L)

(4.30)
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= —FM- PV (J+ V)|l — LIVigm® + LV/(V + H)]mj, and
Rgopnm”™ = —LM(W L B)-

These relations together with Rz, m*Fmh = Rof)h,;m’_“mh = R()O,;hm’_“mh give
> 1 P
Vism® + §V(V +H) =Vzm®+ §V(V + H). (4.31)

Next, (4.27) involves
Rfoﬁkmfmk = —FAWEmFmi L)l — Fa(mFm; L, ymy,
—Eply, — FE‘SmSm,; and
Ry, nm™mF = —Fa(l; L, ym"™ — - LA(I° LY, )mn
But, W— R pem” mk = = Ry, ppm” m* so that
—Eplp — FEgm*my, = —Fp(L;LL, )m” — LAR(I5 LY, Yy,
By transvection with I and m” we obtain

1 s 1 - S
7l = FAORm® + S FAO(V + H) = Usm® + JU(V + H); (4.32)
Egm® — FAEzm® = X;;m°+ X(V + H).

Using again (4.27), we have B
Rfj;lkmfmjmk‘ = —[)\(L;k)mimjmk + FB/\(ZSm”“angk)]l,—l
—[ﬂ(L;k)mimek + Fﬁﬂ(lsmkmn[/?k)]mﬁ i o i
—~(#Hjg+ $H(J+Y) + BEj)l;, — (Hsm® + $H(V + H) + FBE;zm®)mj,.
On the other hand,
Rﬂkhm]m mk = ﬂ(mq"mi_Lih) - FBﬂ(lSL?_h)mn._
But, R zym™mimk = Rrjh,;mjm’"mk = Rjr,;hmjm’"mk which leads to
—(%Hm —+ %FI(J + Y) + BE|O)lh — (ﬁ‘sms + %EI(V + H) + FBE’|Sms)mh
= —p(m"™m;L., ) — FBR(I°LY )my,.
The transvection with I* and m” gives

1. 1 _ . .1 L
oo+ SH(J +Y) + BEy = Yism® + FBOgm® — SFBO(V + H);

_ 1 _ _ _ 1 _ _
Hjgm?® + 5H(V + H)+ FBE|ym® = Hjzm® + 5H(V + H) + FBE;zm?
Now, Ryjzom™m/ = —[FA(m/1*m; Lt ) + LBA(IPIF LY yma)ly,
[F,u(mjlkaL; )+ LBu(lslkLZk)mn]m;L

—[Yj5 + FBOjg — 3LO(J + Y)]ij,
—F[Ysm + FBOgm® — FBO(V + H)Im

and
Rjgm/m” = —FX(m"m;LL, ) — LBX(ZS@gh)m ]
The conjugation Rfjﬁomfmjlh = Rrjhgmjmrlh = jrghmjmrlh gives

_ _ 1 _ _ 1 o
Yio + FBO|g — 5 LBO(J +Y) = Yy + FBO — 5 LBO(J +Y). (4.33)
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Proposition 4.4. Let (M, F') be a 2 - dimensional weakly Kdihler complex Finsler space.
Then

Lemma 4.1.
Proposition 4.5. i) %Om —10(J+Y) - AOp + TFAO(J+Y) = Jjsm’;

i) $Ejg — FAOzm® + JFAO(V + H) = Vism® + $V(V + H).
Proof. It results by Proposition 3.2, (4.28), (4.29) and (4.32) . By computation using
(3.11), we obtain the global validity of these assertions. O
Remark 4.1. If (M, F) is purely Hermitian (A = 0) and Kdhler, then %QO—%O(J—I—Y) =
Jsm* and Vism® + $V(V + H) = £ E).

Then, using (2.5), d; = LA + myp and (4.27), Ry, = R(5, 07, 6k, 0) is decomposed
into sixteen terms:

Riine = Kislilpl + Wmemgmpmy, (4.34)
1 - 1~ 1 1 -
—[f0|0 - §O(J + Y)lemylple — [f0|6 - §O(J + Y)mil;lyl

—ﬂsmslfljlﬁmk — J|§m§l7:ljmﬁlk
S _ 1 -

—[Vism® + QV(V + H)|lplyjmpmy, — fE‘Omfljl;Lmk

1 1 1 - -

— = Eplsmmyli — (Yo + BO — 5 FBO(J + Y )memlyly
5 1 - 1 _

—Ejsm®mzlympmy — [FHIO + iH(J +Y) + BEmemimyly,

1 1

_E‘Smslfmjmﬁmk — [FHIG + iH(j + }7) -+ BE|6]mijl;Lmk

I _ 1.
—[0sm® = SOV + H)lmzljmzly, = [Ogm® = SOV + H)llym;lymy,

where K := —%Jjg and W := — H;m® — H(V + H) — BFE;;m*. We call the functions
K and W the horizontal curvature invariants.

Proposition 4.6. Let (M, F) be a connected 2 - dimensional weakly Kdihler complex
Finsler space with Rgi50 = Rgogr and |A| # 0. Then

i) F2ZAK = @) — F(J +Y)®;

it) Eg = — 5% (1+ AAL);

iii) Viem® + V(V + H) = - ¥ (1 - AAL);

i) Y = —E¥ (1 - AAL) + F|®[*;

v) Hy+ LH(J +Y) = — ALK (B — FAB) + AL[@ymb — (V + H)®] + Lo,

vi) Bgm® = —1& (B — FAB) — AL [®pmF — (V + H)P);

vii) W =K (1 + AAL) — F(E;gm®)|ym! — 3BFEgm® — L|Q,

where ® := Ajg + AF(J+Y) and Q = A”;miC + A(V + H).
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Proof. Let us consider the Bianchi identity, (see [15], p. 77),

P

jsk 0lh Sr]is

+R - O = (4.35)

Rfjﬁk’l ~ SFhllk 0kh Fihn

In order to prove the statements i)-vii), we use Theorem 4.8, the covariant derivatives
(3.7), (3.13) and the expressions of the vv— hv—, vh—, hh— Riemann type tensors.

Contracting mto (4.35) by 7"m? 7" 77 using

Rl minhnk = —Rojmm = F2[0sm*® — SO(V + H)Jmy = —F3AKmy;

Prjspn” = Sfjgm =C} 177 =0 and

Efjmkﬁ’"mjﬁhn = —F[®p — F(J +Y)®]my, we obtain i).

The contraction with 7"n/m"n* of (4.35),

Ryl m!n* = —Rgpom” — Roopm" + 1 Rogoommu

= FQ[%EK) + Vism® + 1V(V + H) + K]m; and Efjﬁknj =0 lead to

1= S
FE‘O + Vigm?® + §V(V +H)=-K.
On the other hand, by Lemma 4.2 ii),

lV(f/ + H) = —LAAK.

1 _ _
=B~ Vism® — 5

The last two relations give ii) and iii).

Now, contracting again (4.35) by m"npJ7"nF, we have

rjhkhm itnt = F2(K + %Y‘() + %Em)ml and

PTJSkPomm iahn* = F? ]@\2ml.

It results [K + +Yjg + % Ejg — |®[*Jmy = 0. Hereby, Yjy = —KF — Ejg + F |®|*, which
together with ii) implies iv).

Next we prove v) and vi). First we contract (4 35) with 7"m?n"mFm! and we obtain

(Rg;orm?mF)[;m' — BRg 5, mmF — S mFm'+ R 5, CrymimFm! = 0. This implies
that

Am'LK = —[®m" + (V + H)®] (4.36)

The contraction of (4.35) by m "I phmEm! 1mphes

(Reggim ™ m®)|ym! — (R Okm m +Pr05kP§mm mF — R5,Clm"m*)m! = 0, which gives

Hp + THI+Y) = |0]lml + L®Q. Now, this together with ii), (4.36) and (4.1)

gives v).

The contraction of (4.35) by m™n/m/n*m! gives

(Ruorom"m")im' + BRypom”m" — Rypom/mm' — Ryopm"m"m
PTOSOPglhm mMm! = 0, which is equivalent to

LKA|ym! + +Hg+ $H(J +Y) + BE + Ezm® + BALK = FO(.

Using ii), v) and (4.1) it leads to vi).

For vii) we contract (4. 35) with m"n/m"m

(Regrem"m " m¥)m! + § Rygppm”mhm*

+1 Rgoppmm® — Rypm ™ mhm*m! + 1 Ruogm"mk

l

kmb and we deduce
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—Prosi P m mbm! + Ry Crom"m™m*m! = 0.

From here we obtain

—F(Ejsm®)im! — S5 Ejzm® = Vizm® — 3V(V + H) = W — 1 Ejg+ AALK — BFEzm® =
L ]0\2 , which leads to vii). The global validity of the above statements results by straight-
forward computations using (3.11). O

Note that the local Berwald frames are not only a local geometrical machinery, but
they also satisfy important properties which contain three main real curvature invariants:
I, K and W. The geometry of 2 - dimensional complex finsler spaces can be controlled by
means of these curvature invariants, but this makes the subject of a forthcoming paper.
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